首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fox M  Boyle JM  Fox BW 《Mutation research》1976,35(2):289-309
Purine analogue resistant clones have been selected from the closely related Chinese hamster lines V79A and V79S. Clones were of either spontaneous origin or induced by EMS or ultraviolet light. The majority of clones selected in 8-azaguanine showed stable cross resistance to 6-thioguanine. Clones derived from V79A and selected for 6-thioguanine resistance were cross resistant to 8-azaguanine: however a group of 6-thioguanine resistant mutants selected from V79S cells were 8-azaguanine sensitive. All clones except two were unable to grow in HAT medium. The two exceptions were 8-azaguanine resistant, showed partial sensitivity to 6-thioguanine, and also differed in other biochemical characteristics. HGPRT activity was measurable in extracts of all clones under standard conditions. In many clones, HGPRT activity increased as the hypoxanthine concentration was reduced. Whole cell uptake of [14C] hypoxanthine was low in all cases examined and was not modified by incubation in the presence of amethopterin. The heat sensitivity and electrophoretic mobility of HGPRT in extracts of some clones was compared to that in wild-type extracts. All clones tested except one, which was consistently HAT positive, showed enhanced heat sensitivity and reduced electrophoretic mobility. None of the mutants reverted spontaneously at detectable frequency but some could be induced to revert by EMS. The presence of measurable enzyme with altered properties in all clones suggests that these revertable drug resistant clones represent missense mutants.  相似文献   

2.
From cultures of V79 Chinese hamster cells, 10 independent clones of 8-azaguanine resistant cells were isolated and subcultured. Cells from all ten clones were resistant to 1 mg/ml levels of 8-azaguanine (8-AzG), contained less than 3% of the wild type levels of the enzyme, hypoxanthine guanine phosphoribosyl transferase (HGPRT), and were unable to grow in HAT medium. The ten clones were classified according to the conditions under which they reverted to the wild type phenotype. Clones in classes I and II reverted spontaneously with frequencies of 40-10(-5) and about 3-10(-5) respectively, and the reversion frequency was independent of the density of cells of all but one of the clones in the culture medium used. Class II clones evinced increased reversion frequencies with ethyl methanesulfonate (EMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), and to a lesser extent with 5-bromo-2'-deoxyuridine (budR), suggesting that these clones contained point mutations in a locus which controls HGPRT activity. The processes of reversion and toxicity appeared to be associated. Class III clones did not revert spontaneously or with BUdR and MNNG, but did revert with EMS. The reversion frequency of class I clones was not increased after treatment with EMS, MNNG or BUdR.  相似文献   

3.
R L Wells  A Han 《Mutation research》1984,129(2):251-258
We have examined the response of Chinese hamster V79 cells to monochromatic light of selected wavelengths in the mid- to near-UV region, using cell survival and induction of mutants resistant to 6-thioguanine (6-TG) or ouabain (OUA) as end points. As the wavelength increased from 313 to 405 nm, the induction of mutants resistant to 6-TG and to OUA decreased to a greater degree than did cell survival. Cells resistant to OUA were induced with considerably lesser efficiency at wavelengths of 313 and 334 nm than cells resistant to 6-TG. No mutants resistant to either 6-TG or OUA were induced by 405-nm light, and no mutants resistant to OUA were induced by 365-nm light. Thus, cell killing and mutation induction have different action spectra, and furthermore, action spectra for mutation induction at the HGPRT and Na+/K+-ATPase loci are different from each other. These observations imply important differences in the cellular mechanisms, and/or lesions, for cell inactivation, induction of 6-TG and OUA resistance for V79 cells exposed to near-UV monochromatic light.  相似文献   

4.
We have investigated coelectroporation as a method for introducing minor genetic changes into specific genes in embryonic stem cells. A selectable marker (neo) and a targeting replacement vector designed to insert a 4-bp insertion into exon 3 of the mouse hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene were coelectroporated into embryonic stem cells and selected in G418 and 6-thioguanine (6-TG). HPRT-negative clones were obtained at a frequency of approximately 1 per 520 G418r clones. Southern analysis and the polymerase chain reaction were used to demonstrate that 3 of 36 of the 6-TG-resistant clones had the desired 4-bp insertion without any other disruption of the HPRT locus. Initial studies indicated that the other 33 6-TG-resistant clones probably resulted from the targeted integration of a concatemer containing both the targeting construct and the selectable neo gene.  相似文献   

5.
The human lymphoblast line MGL8 was treated with HAT and subsequently "mutagenized" with EMS (200 microgram/ml) to give 15% survival, and 6-thioguanine-resistant cells were selected by cloning in soft agarose containing the drug (1 microgram/ml). Eighteen sublines of independently derived resistant clones were isolated and studied in detail. One subline had a low residual HGPRT activity of about 1% of the parental cells. The HGPRT of this subline had a higher Km for PRPP, was more sensitive to heat, and was degraded faster by trypsin than the enzyme in extracts of MGL8 cells. This resistant subline and three others contained CRM levels of 1--38%, compared to the wild-type, so they probably represent true structural mutants of the HGPRT gene. All the variants maintained the karyotype of the parental line (46, XY, 6p-).  相似文献   

6.
Induction of 6-thioguanine resistance was studied in human cells treated with the direct-acting chemical carcinogen N-acetoxy-2-acetylaminofluorene (NA-AAF). At low concentrations (2.5–7.5 μM) induction of resistant clones was linear and followed one-hit kinetics, while at 10 μM the yield of resistant clones was higher and appeared to result from the combination of one-hit and two-hit kinetics. A study of about 50 resistant clones revealed that most had reduced levels of hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity (25–85% of controls) and were able to use exogenous hypoxanthine for growth (“Type II mutants,” deMars, 1974); a few had very low HGPRT activity (1–8% of controls) and were unable to use exogenous hypoxanthine (“Type I mutants”). Use of [914-C]NA-AAF allowed us to examine the frequency of induction of thioguanine resistance as a function of binding to DNA (μmole AAF/mole DNA-P). Calculations from these data suggest that most “hits” on the HGPRT locus do not result in detectable mutations: At three different levels of binding and induced mutation frequency, the yield was 2.5–3 detectable mutants/10 000 molecules of acetylaminofluorene bound to the HGPRT locus. These data suggest that most bound acetylaminofluorene molecules either produce no change in the primary sequence of DNA (possibly as a result of repair or correct “read through” by the DNA polymerase) or result in changes which are phenotypically undetectable.  相似文献   

7.
Induction of 6-thioguanine resistance was studied in human cells treated with the direct-acting chemical carcinogen N-acetoxy-2-acetylaminofluorene (NA-AAF). At low concentrations (2.5–7.5 μM) induction of resistant clones was linear and followed one-hit kinetics, while at 10 μM the yield of resistant clones was higher and appeared to result from the combination of one-hit and two-hit kinetics. A study of about 50 resistant clones revealed that most had reduced levels of hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity (25–85% of controls) and were able to use exogenous hypoxanthine for growth (“Type II mutants,” deMars, 1974); a few had very low HGPRT activity (1–8% of controls) and were unable to use exogenous hypoxanthine (“Type I mutants”). Use of [9-14C]NA-AAF allowed us to examine the frequency of induction of thioguanine resistance as a function of binding to DNA (μmole AAF/mole DNA-P). Calculations from these data suggest that most “hits” on the HGPRT locus do not result in detectable mutations: At three different levels of binding and induced mutation frequency, the yield was 2.5-3 detectable mutants/10 000 molecules of acetylaminofluorene bound to the HGPRT locus. These data suggest that most bound acetylaminofluorene molecules either produce no change in the primary sequence of DNA (possibly as a result of repair or correct “read through” by the DNA polymerase) or result in changes which are phenotypically undetectable.  相似文献   

8.
Activity of hypoxanthine-guanine phosphoribosyl-transferase (HGPRT) has been demonstrated in the hybrid cells formed from the fusion of clonal cells from four Chinese hamster diploid clones, Cl. 250, 252, 253, and 254 cells derived from clonal wild type cells, deficient in this enzyme activity, by the stepwise treatment with 8-azaguanine and 6-thioguanine. The HGPRT-positive cells, characterized by tetraploid karyology, were isolated clonally by the chemical selection (HAT) in 3 hybrid mixtures; Cl. 250 × 254, 252 × 254, and 253 × 254 cells, while none was isolated in another seven hybrid mixtures including 4 homologous mixtures. The enzyme activity was proved by enzymological as well as autoradiographical studies with the use of 3H-hypoxanthine. These results indicate that mutually complementable alterations rather than gene deletions were induced in the 2 cistrons of the locus responsible for the relevant enzyme activity in hamster cells by analog treatment. Interallelic complementation occurred in these hybrid cells.  相似文献   

9.
The development of a system for the detection of somatic cell mutation to hypoxanthine-guanine-phosphoribosyl-transferase (HGPRT) (EC 2.4.2.8) deficiency in L5178Y mouse lymphoma cells is described. The selection of mutant cells was not influenced by the concentration of the selective agent 6-thioguanine (6-TG). In addition, all the mutants selected, spontaneous as well as induced ones, showed a complete loss of HGPRT activity. In reconstruction experiments, in which mutant cells were mixed with wild-type cells, the recovery of mutant cells was only markedly influenced when wild-type cells were seeded in a cell density ten times higher than the one, 5-10(4) cells/ml, used in subsequent induction experiments. X-irradiation and treatment with ethyl methanesulfonate (EMS) increased in the mutation rate above the spontaneous background. A clear-cut dose-dependent mutagenic effect after exposure to X-rays was measured. The rate of induced mutations at the HGPRT locus in lymphoma cells was 1-3-10(-7) per R, as determined after exposures of 200, 300, 400, 500 and 600 R. The time the cells needed to express their mutations was much longer than 48 h. Further study of this phenomenon showed that the optimal expression time for TGr-resistant mutants in L5178Y cells was 6 to 7 days. No indication for a dose-dependent effect on the optimal expression of the mutants was found.  相似文献   

10.
The resistance of Chinese hamster epithelial liver cells (CHEL) and Chinese hamster fibroblasts (V79) towards toxic purine analogues has been determined. The liver cells are more sensitive than fibroblasts to 6-thioguanine (6-TG), 8-azaguanine (8-AZ) and 2,6-diaminopurine (DAP). The hypoxanthine-guanine (HGPRT) and adenine phosphoribosyl transferase (APRT) activities of extracts of CHEL cells were lower than those of corresponding extracts of V79. The level of 5'-nucleotidase was about 5-fold higher in the epithelial cells. It appears that HGPRT and APRT activities of extracts of liver epithelial cells are masked or reduced by 5'-nucleotidase activity and other inhibitors. The significance of these findings is discussed.  相似文献   

11.
NIH3T3 cells are widely used in transformation assays and readily take up transfected DNA. A system has been devised using NIH3T3 cells to measure the mutagenic effect of transfected DNA on recipient cell genes. NIH3T3 cells can be mutated to 6-thioguanine resistance at a frequency which suggests that at least a portion of the cells have only one functional copy of the HGPRT gene. They have a low spontaneous background mutation frequency (approximately 1 X 10(-7)). Transfection of three different plasmids into NIH3T3 cells induced 6-thioguanine resistant mutants at frequencies ranging from 3 to 11 fold above background. The mutant phenotype is stable and reversion frequencies of several mutants are less than or equal to 1 X 10(-7). Southern blot analysis of the HGPRT gene in several mutants showed that 4 of 26 mutants (15.4%) had detectable alterations in the structure of the HGPRT gene. Interestingly 3 of the 4 mutants showing rearrangements were obtained by transfection of the HSV-2 morphological transforming region.  相似文献   

12.
Factors affecting the efficiency of selection of “reverants” of salvage pathway mutants in media containing amethopterin have been examined. Our V79 Chines hamster cell line was found to require a significantly higher level of thymidine for optimal growth in such media than has been reported for other cell lines. Hypoxanthine (but not glycine) was also required for reversal of amethopterin toxicity, but levels did not differ significantly from those reported elsewhere. Growth in HAT was also dependent on plating density and serum batch. Our modification (VHAT) was compared with published HAT recipies in back selection reconstruction experiments. A sharp fall in EOR (efficiency of recovery) of wild type cells from mixtures with mutants at plating densities greater than 3500 cells/cm2 (105 cells/6 cm dish) was observed for VHAT. EOR with other HAT recipes was lower still, and was affected also by the particular mutant used in the mixture.EMS induced “revertants” were isolated from three 8AZr mutants by plating in VHAT. All. revertants were however amethopterin resistant, they were also 8AZ resistant and the mobility of residual HGPRT (as measured by polyacrylamide gel electrophoresis) was similar to that of their 8AZr parents i.e. dissimilar from that in wild type. The modal chromosome number of V79 wild type cells was 21. No significant deviation from this mode was detected in any of the mutant lines examined. The data indicate that the recovery of colonies in HAT from 8AZr mutants does not necessarily indicate that a back mutation in the structural gene for HGPRT has occurred. Thus, the frequency of HAT+ colonies cannot be taken as a direct indication of reversion frequencies.  相似文献   

13.
Induction of 6-thioguanine (TG) resistance by chemical mutagens was examined in a line of cells derived from a human epithelial teratocarcinoma cell clone. The cells, designated as P3 cells, have a stable diploid karyotype with 46(XX) chromosomes, including a translocation between chromosomes 15 and 20. Efficient recovery of TG-resistant mutants induced by the direct-acting mutagens: N-methyl-N′-nitro-N-nitrosoguanidine (MNNG); 7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE); and benzo[a]pyrene (B[a]P); activated in a cell-mediated assay, required an expression time of 7 days and a saturation density of 2 × 104 cells/60-mm petri dish. The TG-resistant mutant cells induced by MNNG and BPDE maintained their resistant phenotype 4–6 weeks after isolation. This mutant phenotype was associated with a more than 10-fold reduction in hypoxanthine-guanine phosphoribosyl transferase (HGPRT) activity relative to that of the parental P3 cell line, which was shown to catalyze the formation of 4.6 pmoles inosine-5′-monophosphate (IMP)/min/μg protein. Induction of TG resistance was also observed in P3 cells cocultivated in a cell-mediated assay with human breast carcinoma cells, which are capable of polyclinic aromatic hydrocarbon (PAH) metabolism, after treatment with the carcinogenic PAHs: B[a]P, chrysene, 7,12-dimethylbenz[a]anthracene (DMBA), and 3-methylcholanthrene (MCA). The degree of mutant induction in this assay was related to the carcinogenic potency of these PAHs in experimental animals. The most potent mutagen was DMBA, followed in decreasing order by MCA, B[a]P, and chrysene. DMBA, at 0.4 μM, increased the frequency of mutants for TG resistance from 2 for the control to about 200 TG-resistant mutants/106 colony-forming cells (CFC). Benzo[e]pyrene (B[e]P) and pyrene, which are not carcinogenic, were not effective in the assay. None of the PAHs was mutagenic in the P3 cells cultivated in the absence of the PAH-metabolizing cells. These results indicate that the P3 cells can be useful for the study of mutagenesis at the HGPRT locus by direct-acting chemical mutagens, as well as by chemicals activated in a cell-mediated assay.  相似文献   

14.
We describe an assay for the quantification of reverse mutations at the hypoxanthine-guanine phosphoribosyltransferase (hgprt) locus in Chinese hamster ovary cells utilizing the selective agent L-azaserine (AS). Conditions are defined in terms of optimal AS concentration, cell density, and phenotypic expression time. After treatment, replicate cultures of 106 cells are allowed a 48-h phenotypic expression time in 100-mm plates. AS (10 μM) is then added directly to the growing culture and AS-resistant (ASr) cells form visible colonies. This assay is used to quantify ICR-191-, ICR-170-, and N-ethyl-N-nitrosourea-induced reversion of independently isolated HGPRT? clones. The ASr phenotype is characterized both physiologically and biochemically. All ASr clones isolated are stably resistant to AS and aminopterin but sensitive to 6-thioguanine. They also have re-expressed HGPRT enzyme. In addition, several revertants are shown to contain altered HGPRT. The data provide further evidence that ICR-191 and ICR-170 cause structural gene mutations in mammalian cells and also suggest that ICR-191, ICR-170, and N-ethyl-N-nitrosourea induce similar types of mutations in Chinese hamster ovary cells.  相似文献   

15.
The ability of posttreatment exposure to non-toxic concentrations of thymidine (TdR) to enhance the lethal effects of a number of alkylating agents, X-rays and UV and the lethal and mutagenic effects of N′-ethyl-N-nitrosourea (ENU) and N-methyl-N-nitrosourea (MNU) has been examined in V79 cell lines. TdR posttreatment enhanced the cytotoxic effects of ethyl methanesulphonate (EMS), MNU and ENU but not of UV or X-rays and increased both the spontaneous and MNU- and ENU-induced frequencies of azaguanine resistant (AZR) mutants. No significant effect of TdR on the spontaneous frequency of thioguanine resistant (TGR) mutants was demonstrated but the frequency of MNU-induced mutants to TGR was enhanced. The effects on expression of both potentially lethal and premutagenic damage were reversed by addition of an equimolar concentration of deoxycytidine (dCdR). The enhancement in spontaneous and induced mutant frequency (IMF) at the HGPRT locus appears to be due to an alteration in the selective efficiency of purine analogous due to alteration in growth kinetics of cells exposed to TdR or treated with alkylated agents or posttreated with thymidine after alkylation damage and not to an alteration in the miscoding potential of alkylated bases.  相似文献   

16.
Structural alterations in the hypoxanthine-guanine phosphoribosyl transferase (HPRT) gene in genomic DNA of adult rat-liver (ARL) epithelial cells that were mutated by alkylating and arylating mutagens were studied by restriction enzyme fragment pattern (RFP) analysis. ARL cells were mutated with the direct-acting alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) or the activation-dependent arylating agents 7,12-dimethylbenz[a]anthracene (DMBA) and N-2-acetylaminofluorene (AAF). Alterations in the HPRT gene of at least 10 independent 6-thioguanine-resistant (TGr) clones mutated by each chemical were analyzed using 8 different restriction endonucleases; Hind III, EcoRI, BamHI, XbaI, Hae III, XhoI, MspI and PstI, and a full-length HPRT cDNA as a probe in molecular hybridization. Among the 10 MNNG-induced mutants, the RFPs obtained with most endonucleases displayed no changes, while an altered RFP was found in only one mutant using XbaI. None of the 10 DMBA-induced mutants displayed altered RFPs. Restriction analysis of the 10 AAF-induced mutants showed no abnormality in HPRT gene structure in most restriction digests, while altered RFPs were detected in one mutant using MspI and in two mutants with XbaI digestion. Overall, the studies reveal an absence of major DNA sequence changes in 26 of 30 induced mutants although the mutant phenotype of 4 of the TGr clones can be attributed to gross chromosomal changes or a point mutation at the restriction site. The absence of detectable alterations in the RFPs of the majority of the mutants is strongly suggestive of base substitution as the major molecular alteration underlying the mutant phenotype. The HPRT activity of 14 of 30 mutants was at least 5% of the wild-type level, which is consistent with a structural alteration in the gene product expressed as partial activity of the enzyme. Therefore, the data are interpreted as indicating that in the ARL cells, all 3 mutagens induced primarily localized alterations in base sequences in the HPRT gene together with a few mutations involving large sequence changes.  相似文献   

17.
BACKGROUND: The consequences of mutations in embryonic and fetal cells are serious and contribute to high prenatal sensitivity to mutagenic agents. An understanding of the factors that influence the yield of such mutations is important for management of adverse effects of perinatal exposures. Resistance to 6-thioguanine (6-TG) can be utilized to study mutational events at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus. HGPRT is X-linked and recessive. According to the Lyon hypothesis, male cells have only one X-chromosome and female cells randomly inactivate the second X-chromosome. This leads to the prediction that X-linked genes should be equally sensitive to the mutagenic effects of toxicants in male and female fetuses. METHODS: We tested this supposition by in utero exposure of Syrian hamster fetuses to N-ethyl-N-nitrosourea (ENU) at day 12 of gestation. ENU is a strong carcinogen and mutagen. HGPRT mutations were detected by selection with 6-TG. RESULTS: Surprisingly. the male cells had 4 to 5 times more 6-TG mutants than female cells, in two separate experiments (p<0.001). Ouabain resistance, reflecting a co-dominant autosomal locus, was used as a control, and we found that there was no significant difference between male and female cells (p=0.549). CONCLUSIONS: Possible reasons for the sex difference in mutations include escape of the second X-chromosome from inactivation in some of the female cells, or higher mutability in male cells. In any event, there is a gender difference in vulnerability to mutation of an X-linked gene that has previously not been appreciated, and that may be relevant to toxicological studies of such genes. HGPRT is frequently used to monitor mutagenic events in human fetuses.  相似文献   

18.
We have studied the influence of anoxia and respiratory deficiency (RD) in yeast on the cytotoxic and recombinogenic effects of 5 direct-acting alkylating agents, namely N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), methylnitrosourea (MNU), ethylnitrosourea (ENU), methyl methanesulphonate (MMS) and ethyl methanesulphonate (EMS). We found that the effects of both conditions parallel each other for MMS, MNNG, MNU and ENU. Both anoxia and RD did not modify the effects of MMS to any significant extent. On the other hand, anoxic and respiratory-deficient cells were found to be more resistant than euoxic and respiratory-proficient cells respectively for MNNG, MNU and ENU. In the case of EMS, which is similar to MMS in its chemical reaction with DNA, the respiratory-deficient cells were found to be more sensitive than the respiratory-proficient ones. These studies indicate that the response of anoxic and respiratory deficient cells cannot be predicted solely on the basis of the chemical reactivity pattern of the alkylating agents. The physiological state which exists under these conditions may exert considerable influence on the cellular response.  相似文献   

19.
D Wild 《Mutation research》1974,25(2):229-234
Induction of 8-azaguanine-resistant mutants by N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) was studied in Chinese hamster cell cultures. The rate of expression of newly induced mutations and the total yield of mutants were affected by the fetal calf serum used for the growth medium. A correlation was observed between reduced growth rate of cells, reduced expression rate and low yield of mutants.The involvement of a repair process is discussed.  相似文献   

20.
The molecular nature of mutations in 6-thioguanine-resistant hypoxanthine/guanine phosphoribosyl transferase (HGPRT)-deficient clones of an adult rat liver (ARL) epithelial cell line mutated by benzo[a]pyrene or aflatoxin B1 was studied. DNA from these clones or spontaneous HGPRT-deficient mutants was subjected to Southern blotting using an HGPRT probe following DNA digestion with the restriction enzymes BamH1, EcoR1, HindIII or XbaI. With either the chemically induced or spontaneous mutants, no difference in restriction fragment pattern was observed between any of the mutants and their wild-type parent. However, differences were found between two lines ARL 6 and ARL 14 and the lines ARL 18, ARL 19 and DNA from Fischer rat hepatocytes. Although the variants did not display loss of HGPRT activity. It is suggested that deletion or loss of a pseudogene sequence could be the basis for the alterations in restriction fragment patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号