首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arrestin is one of the key proteins for the termination of G protein signaling. Activated G protein-coupled receptors (GPCRs) are specifically phosphorylated by G protein-coupled receptor kinases (GRKs) and then bind to arrestins to preclude the receptor/G protein interaction, resulting in quenching of the following signal transduction. Vertebrates possess two types of arrestin; visual arrestin expressed exclusively in photoreceptor cells in retinae and pineal organs, and beta-arrestin, which is expressed ubiquitously. Unlike visual arrestin, beta-arrestin contains the clathrin-binding domain at the C-terminus, responsible for the agonist-induced internalization of GPCRs. Here, we isolated a novel arrestin gene (Ci-arr) from the primitive chordate, the ascidian Ciona intestinalis larvae. The deduced amino acid sequence suggests that Ci-Arr be closely related to vertebrate arrestins. Interestingly, this arrestin has the feature of both visual and beta-arrestin. Whereas the expression of Ci-arr was restricted to the photoreceptors in the larvae similarly to visual arrestin, the gene product, containing the clathrin-binding domain, promoted the GPCR internalization in HEK293tsA201 cells similarly to beta-arrestin. The phylogenetic tree shows that Ci-Arr is branched from a common root of visual and beta-arrestins. Southern analysis suggests that the Ciona genome contains only one gene for the arrestin family. These results suggest that the visual and beta-arrestin genes were generated by the duplication of the prototypical arrestin gene like Ci-arr in the early evolution of vertebrates.  相似文献   

2.
The three-dimensional structure of the enzyme diaminopimelate decarboxylase from Mycobacterium tuberculosis has been determined in a new crystal form and refined to a resolution of 2.33 Å. The monoclinic crystals contain one tetramer exhibiting D2-symmetry in the asymmetric unit. The tetramer exhibits a donut-like structure with a hollow interior. All four active sites are accessible only from the interior of the tetrameric assembly. Small-angle X-ray scattering indicates that in solution the predominant oligomeric species of the protein is a dimer, but also that higher oligomers exist at higher protein concentrations. The observed scattering data are best explained by assuming a dimer–tetramer equilibrium with about 7% tetramers present in solution. Consequently, at the elevated protein concentrations in the crowded environment inside the cell the observed tetramer may constitute the biologically relevant functional unit of the enzyme.  相似文献   

3.
We have tested whether arrestin binding requires the G-protein-coupled receptor be a dimer or a multimer. To do this, we encapsulated single-rhodopsin molecules into nanoscale phospholipid particles (so-called nanodiscs) and measured their ability to bind arrestin. Our data clearly show that both visual arrestin and β-arrestin 1 can bind to monomeric rhodopsin and stabilize the active metarhodopsin II form. Interestingly, we find that the monomeric rhodopsin in nanodiscs has a higher affinity for wild-type arrestin binding than does oligomeric rhodopsin in liposomes or nanodiscs, as assessed by stabilization of metarhodopsin II. Together, these results establish that rhodopsin self-association is not required to enable arrestin binding.  相似文献   

4.
Hirsch JA  Schubert C  Gurevich VV  Sigler PB 《Cell》1999,97(2):257-269
G protein-coupled signaling is utilized by a wide variety of eukaryotes for communicating information from the extracellular environment. Signal termination is achieved by the action of the arrestins, which bind to activated, phosphorylated G protein-coupled receptors. We describe here crystallographic studies of visual arrestin in its basal conformation. The salient features of the structure are a bipartite molecule with an unusual polar core. This core is stabilized in part by an extended carboxy-terminal tail that locks the molecule into an inactive state. In addition, arrestin is found to be a dimer of two asymmetric molecules, suggesting an intrinsic conformational plasticity. In conjunction with biochemical and mutagenesis data, we propose a molecular mechanism by which arrestin is activated for receptor binding.  相似文献   

5.
G-protein-coupled receptor signaling is terminated by arrestin proteins that preferentially bind to the activated phosphorylated form of the receptor. Arrestins also bind active unphosphorylated and inactive phosphorylated receptors. Binding to the non-preferred forms of the receptor is important for visual arrestin translocation in rod photoreceptors and the regulation of receptor signaling and trafficking by non-visual arrestins. Given the importance of arrestin interactions with the various functional forms of the receptor, we performed an extensive analysis of the receptor-binding surface of arrestin using site-directed mutagenesis. The data indicated that a large number of surface charges are important for arrestin interaction with all forms of the receptor. Arrestin elements involved in receptor binding are differentially engaged by the various functional forms of the receptor, each requiring a unique subset of arrestin residues in a specific spatial configuration. We identified several additional phosphate-binding elements in the N-domain and demonstrated for the first time that the active receptor preferentially engages the arrestin C-domain. We also found that the interdomain contact surface is important for arrestin interaction with the non-preferred forms of the receptor and that residues in this region play a role in arrestin transition into its high affinity receptor binding state.  相似文献   

6.
Arrestins play a key role in the homologous desensitization of G protein-coupled receptors (GPCRs). These cytosolic proteins selectively bind to the agonist-activated and GPCR kinase-phosphorylated forms of the GPCR, precluding its further interaction with the G protein. Certain mutations in visual arrestin yield "constitutively active" proteins that bind with high affinity to the light-activated form of rhodopsin without requiring phosphorylation. The crystal structure of visual arrestin shows that these activating mutations perturb two groups of intramolecular interactions that keep arrestin in its basal (inactive) state. Here we introduced homologous mutations into arrestin2 and arrestin3 and found that the resulting mutants bind to the beta(2)-adrenoreceptor in vitro in a phosphorylation-independent fashion. The same mutants effectively desensitize both the beta(2)-adrenergic and delta-opioid receptors in the absence of receptor phosphorylation in Xenopus oocytes. Moreover, the arrestin mutants also desensitize the truncated delta-opioid receptor from which the C terminus, containing critical phosphorylation sites, has been removed. Conservation of the phosphate-sensitive hot spots in non-visual arrestins suggests that the overall fold is similar to that of visual arrestin and that the mechanisms whereby receptor-attached phosphates drive arrestin transition into the active binding competent state are conserved throughout the arrestin family of proteins.  相似文献   

7.
Proper function of visual arrestin is indispensable for rapid signal shut-off in rod photoreceptors. Dramatic light-dependent changes in its subcellular localization are believed to play an important role in light adaptation of photoreceptor cells. Here we show that visual arrestin binds microtubules. The truncated splice variant of visual arrestin, p44, demonstrates dramatically higher affinity for microtubules than the full-length protein (p48). Enhanced microtubule binding of p44 underlies its earlier reported preferential localization to detergent-resistant membranes, where it is anchored via membrane-associated microtubules in a rhodopsin-independent fashion. Experiments with purified proteins demonstrate that arrestin interaction with microtubules is direct and does not require any additional protein partners. Most importantly, arrestin interactions with microtubules and light-activated phosphorylated rhodopsin are mutually exclusive, suggesting that microtubule interaction may play a role in keeping p44 arrestin away from rhodopsin in dark-adapted photoreceptors.  相似文献   

8.
In this study we investigate conformational changes in Loop V-VI of visual arrestin during binding to light-activated, phosphorylated rhodopsin (Rho*-P) using a combination of site-specific cysteine mutagenesis and intramolecular fluorescence quenching. Introduction of cysteines at positions in the N-domain at residues predicted to be in close proximity to Ile-72 in Loop V-VI of arrestin (i.e. Glu-148 and Lys-298) appear to form an intramolecular disulfide bond with I72C, significantly diminishing the binding of arrestin to Rho*-P. Using a fluorescence approach, we show that the steady-state emission from a monobromobimane fluorophore in Loop V-VI is quenched by tryptophan residues placed at 148 or 298. This quenching is relieved upon binding of arrestin to Rho*-P. These results suggest that arrestin Loop V-VI moves during binding to Rho*-P and that conformational flexibility of this loop is essential for arrestin to adopt a high affinity binding state.  相似文献   

9.
Invertebrate visual signal transduction involves photoisomerization of rhodopsin, activating a guanine nucleotide binding protein (G protein) of the G(q) class, iG(q), which stimulates a phospholipase C, increasing intracellular Ca2+. Arrestin binding to photoactivated rhodopsin is a key mechanism of desensitization. We have previously reported the cloning of a retina-specific arrestin cDNA from Loligo pealei displaying 56-64% sequence similarity to other reported arrestin sequences. Here, we report the purification of the 55-kDa squid visual arrestin. Purified squid visual arrestin is able to inhibit light-activated GTPase activity dose-dependently in arrestin-depleted rhabdomeric membranes and associate with the membrane in a light-dependent manner. Membrane association can be partially inhibited by inositol 1,2,3,4,5,6-hexakisphosphate (IP6), a soluble analog of the membrane lipid phosphatidylinositol 3,4,5-triphosphate. In reconstitution assays, we demonstrate arrestin phosphorylation by squid rhodopsin kinase, a novel function among the G protein-coupled receptor kinase family. Phosphorylation of purified arrestin requires squid rhodopsin kinase, membranes, light-activation, and the presence of Ca2+. This is the first large-scale purification of an invertebrate arrestin and biochemical demonstration of arrestin function in the invertebrate visual system.  相似文献   

10.
Guanidine hydrochloride and urea-induced unfolding of B. malayi hexokinase (BmHk), a tetrameric protein, was examined in detail by using various optical spectroscopic techniques, enzymatic activity measurements, and size-exclusion chromatography. The equilibrium unfolding of BmHk by guanidine hydrochloride (GdmCl) and urea proceeded through stabilization of several unique oligomeric intermediates. In the presence of low concentrations of GdmCl, stabilization of an enzymatically active folded dimer of BmHk was observed. However an enzymatically inactive dimer of BmHk was observed for urea-treated BmHk. This is the first report of an enzymatically active dimer of hexokinase from any human filarial parasite. Furthermore, although complete recovery of the native enzyme was observed on refolding of BmHk samples denatured by use of low concentrations of GdmCl or urea, no recovery of the native enzyme was observed for BmHk samples denatured by use of high concentrations of GdmCl or urea.  相似文献   

11.
The oligomeric states of bovine visual arrestin in solution were studied by small-angle x-ray scattering. The Guinier plot of arrestin at the concentration ranging from 0.4 mg/ml to 11.1 mg/ml was approximated with a straight line, and the apparent molecular weight was evaluated by the concentration-normalized intensity at zero angle (I(0)/conc). Using ovalbumin as a molecular weight standard, it was found that arrestin varied from monomer to tetramer depending on the concentration. The I(0)/conc decreased at high-salt concentration, but was independent of temperature. The simulation analysis of the concentration-dependent increase of I(0)/conc demonstrated that the tetramerization is highly cooperative, and arrestin at the physiological concentration is virtually in the equilibrium between monomer and tetramer. The concentration of arrestin monomer, which is considered to be an active form, remains at an almost constant level even if the total concentration of arrestin fluctuates within the physiological range. The scattering profile of arrestin tetramer in solution was in good agreement with that in the crystal, indicating that the quaternary structure in solution is essentially identical to that in crystal. Small-angle x-ray scattering was applied to a binding assay of phosphorylated rhodopsin and arrestin in the detergent system, and we directly observed their association as the increase of I(0)/conc.  相似文献   

12.
Insulin regulates glucose homeostasis via binding and activation of the insulin receptor dimer at two distinct pairs of binding sites 1 and 2. Here, we present cryo-EM studies of full-length human insulin receptor (hIR) in an active state obtained at non-saturating, physiologically relevant insulin conditions. Insulin binds asymmetrically to the receptor under these conditions, occupying up to three of the four possible binding sites. Deletion analysis of the receptor together with site specific peptides and insulin analogs used in binding studies show that both sites 1 and 2 are required for high insulin affinity. We identify a homotypic interaction of the fibronectin type III domain (FnIII-3) of IR resulting in tight interaction of membrane proximal domains of the active, asymmetric receptor dimer. Our results show how insulin binding at two distinct types of sites disrupts the autoinhibited apo-IR dimer and stabilizes the active dimer. We propose an insulin binding and activation mechanism, which is sequential, exhibits negative cooperativity, and is based on asymmetry at physiological insulin concentrations with one to three insulin molecules activating IR.  相似文献   

13.
In the rod cell of the retina, arrestin is responsible for blocking signaling of the G-protein-coupled receptor rhodopsin. The general visual signal transduction model implies that arrestin must be able to interact with a single light-activated, phosphorylated rhodopsin molecule (Rho*P), as would be generated at physiologically relevant low light levels. However, the elongated bi-lobed structure of arrestin suggests that it might be able to accommodate two rhodopsin molecules. In this study, we directly addressed the question of binding stoichiometry by quantifying arrestin binding to Rho*P in isolated rod outer segment membranes. We manipulated the "photoactivation density," i.e. the percentage of active receptors in the membrane, with the use of a light flash or by partially regenerating membranes containing phosphorylated opsin with 11-cis-retinal. Curiously, we found that the apparent arrestin-Rho*P binding stoichiometry was linearly dependent on the photoactivation density, with one-to-one binding at low photoactivation density and one-to-two binding at high photoactivation density. We also observed that, irrespective of the photoactivation density, a single arrestin molecule was able to stabilize the active metarhodopsin II conformation of only a single Rho*P. We hypothesize that, although arrestin requires at least a single Rho*P to bind the membrane, a single arrestin can actually interact with a pair of receptors. The ability of arrestin to interact with heterogeneous receptor pairs composed of two different photo-intermediate states would be well suited to the rod cell, which functions at low light intensity but is routinely exposed to several orders of magnitude more light.  相似文献   

14.
Gibson SK  Parkes JH  Liebman PA 《Biochemistry》2000,39(19):5738-5749
Reduced effector activity and binding of arrestin are widely accepted consequences of GPCR phosphorylation. However, the effect of receptor multiphosphorylation on G protein activation and arrestin binding parameters has not previously been quantitatively examined. We have found receptor phosphorylation to alter both G protein and arrestin binding constants for light-activated rhodopsin in proportion to phosphorylation stoichiometry. Rod disk membranes containing different average receptor phosphorylation stoichiometries were combined with G protein or arrestin, and titrated with a series of brief light flashes. Binding of G(t) or arrestin to activated rhodopsin augmented the 390 nm MII optical absorption signal by stabilizing MII as MII.G or MII.Arr. The concentration of active arrestin or G(t) and the binding constant of each to MII were determined using a nonlinear least-squares (Simplex) reaction model analysis of the titration data. The binding affinity of phosphorylated MII for G(t) decreased while that for arrestin increased with each added phosphate. G(t) binds more tightly to MII at phosphorylation levels less than or equal to two phosphates per rhodopsin; at higher phosphorylation levels, arrestin binding is favored. However, arrestin was found to bind much more slowly than G(t) at all phosphorylation levels, perhaps allowing time for phosphorylation to gradually reduce receptor-G protein interaction before arrestin capping of rhodopsin. Sensitivity of the binding constants to ionic strength suggests that a strong membrane electrostatic component is involved in both the reduction of G(t) binding and the increase of arrestin binding with increasing rhodopsin phosphorylation.  相似文献   

15.
Pyruvate oxidase, a tetrameric enzyme consisting of 4 identical subunits, dissociates into apoenzyme monomers and free FAD when treated with acid ammonium sulfate in the presence of high concentrations of potassium bromide. Reconstitution of the native enzymatically active protein can be accomplished by incubating equimolar concentrations of apomonomers and FAD at pH 6.5. The kinetics of the reconstitution reaction have been measured by 1) enzyme activity assays, 2) spectrophotometric assays to measure FAD binding, and 3) high performance liquid chromatography analysis measuring the distribution of monomeric, dimeric, and tetrameric species during reconstitution. The kinetic analysis indicates that the second order reaction of apomonomers with FAD to form an initial monomer-FAD complex is fast. The rate-limiting step for enzymatic reactivation appears to be the folding of the polypeptide chain in the monomer-FAD complex to reconstitute the three-dimensional FAD binding site prior to subunit reassociation. The subsequent formation of native tetramers appears to proceed via an essentially irreversible dimer assembly pathway.  相似文献   

16.
The molecular weights of different aggregational states of phosphoenolpyruvate carboxylase purified from the leaves of Zea mays have been determined by measurement of the molecular diameter using a Malvern dynamic light scattering spectrometer. Using these data to identify the monomer, dimer, tetramer, and larger aggregate(s) the effect of pH and various ligands on the aggregational equilibria of this enzyme have been determined. At neutral pH the enzyme favored the tetrameric form. At both low and high pH the tetramer dissociated, followed by aggregation to a "large" inactive form. The order of dissociation at least at low pH appeared to be two-step: from tetramer to dimers followed by dimer to monomers. The monomers then aggregate to a large aggregate, which is inactive. The presence of EDTA at pH 8 protected the enzyme against both inactivation and large aggregate formation. Dilution of the enzyme at pH 7 at room temperature results in driving the equilibrium from tetramer to dimer. The presence of malate with EDTA stabilizes the dimer as the predominant form at low protein concentrations. The presence of the substrate phosphoenolpyruvate alone and with magnesium and bicarbonate induced formation of the tetramer, and decreased the dissociation constant (Kd) of the tetrameric form. The inhibitor malate, however, induced dissociation of the tetramer as evidenced by an increase in the Kd of the tetramer.  相似文献   

17.
Arrestins selectively bind to phosphorylated activated forms of their cognate G protein-coupled receptors. Arrestin binding prevents further G protein activation and often redirects signaling to other pathways. The comparison of the high-resolution crystal structures of arrestin2, visual arrestin, and rhodopsin as well as earlier mutagenesis and peptide inhibition data collectively suggest that the elements on the concave sides of both arrestin domains most likely participate in receptor binding directly, thereby dictating its receptor preference. Using comparative binding of visual arrestin/arrestin2 chimeras to the preferred target of visual arrestin, light-activated phosphorylated rhodopsin (PRh*), and to the arrestin2 target, phosphorylated activated m2 muscarinic receptor (P-m2 mAChR*), we identified the elements that determine the receptor specificity of arrestins. We found that residues 49-90 (beta-strands V and VI and adjacent loops in the N-domain) and 237-268 (beta-strands XV and XVI in the C-domain) in visual arrestin and homologous regions in arrestin2 are largely responsible for their receptor preference. Only 35 amino acids (22 of which are nonconservative substitutions) in the two elements are different. Simultaneous exchange of both elements between visual arrestin and arrestin2 fully reverses their receptor specificity, demonstrating that these two elements in the two domains of arrestin are necessary and sufficient to determine their preferred receptor targets.  相似文献   

18.
Arrestins selectively bind to the phosphorylated activated form of G protein-coupled receptors, thereby blocking further G protein activation. Structurally, arrestins consist of two domains topologically connected by a 12-residue long loop, which we term the "hinge" region. Both domains contain receptor-binding elements. The relative size and shape of arrestin and rhodopsin suggest that dramatic changes in arrestin conformation are required to bring all of its receptor-binding elements in contact with the cytoplasmic surface of the receptor. Here we use the visual arrestin/rhodopsin system to test the hypothesis that the transition of arrestin into its active receptor-binding state involves a movement of the two domains relative to each other that might be limited by the length of the hinge. We have introduced three insertions and 24 deletions in the hinge region and measured the binding of all of these mutants to light-activated phosphorylated (P-Rh*), dark phosphorylated (P-Rh), dark unphosphorylated (Rh), and light-activated unphosphorylated rhodopsin (Rh*). The addition of 1-3 extra residues to the hinge has no effect on arrestin function. In contrast, sequential elimination of 1-8 residues results in a progressive decrease in P-Rh* binding without changing arrestin selectivity for P-Rh*. These results suggest that there is a minimum length of the hinge region necessary for high affinity binding, consistent with the idea that the two domains move relative to each other in the process of arrestin transition into its active receptor-binding state. The same length of the hinge is also necessary for the binding of "constitutively active" arrestin mutants to P-Rh*, dark P-Rh, and Rh*, suggesting that the active (receptor-bound) arrestin conformation is essentially the same in both wild type and mutant forms.  相似文献   

19.
The vast majority of G protein-coupled receptors are desensitized by a uniform two-step mechanism: phosphorylation of an active receptor followed by arrestin binding. The arrestin x receptor complex is then internalized. Internalized receptor can be recycled back to the plasma membrane (resensitization) or targeted to lysosomes for degradation (down-regulation). The intracellular compartment where this choice is made and the molecular mechanisms involved are largely unknown. Here we used two arrestin2 mutants that bind with high affinity to phosphorylated and unphosphorylated agonist-activated beta 2-adrenergic receptor to manipulate the receptor-arrestin interface. We found that mutants support rapid internalization of beta 2-adrenergic receptor similar to wild type arrestin2. At the same time, phosphorylation-independent arrestin2 mutants facilitate receptor recycling and sharply reduce the rate of receptor loss, effectively protecting beta 2-adrenergic receptor from down-regulation even after very long (up to 24 h) agonist exposure. Phosphorylation-independent arrestin2 mutants dramatically reduce receptor phosphorylation in response to an agonist both in vitro and in cells. Interestingly, co-expression of high levels of beta-adrenergic receptor kinase restores receptor down-regulation in the presence of mutants to the levels observed with wild type arrestin2. Our data suggest that unphosphorylated receptor internalized in complex with mutant arrestins recycles faster than phosphoreceptor and is less likely to get degraded. Thus, targeted manipulation of the characteristics of an arrestin protein that binds to a G protein-coupled receptors can dramatically change receptor trafficking and its ultimate fate in a cell.  相似文献   

20.
Rhodopsin is a canonical class A photosensitive G protein–coupled receptor (GPCR), yet relatively few pharmaceutical agents targeting this visual receptor have been identified, in part due to the unique characteristics of its light-sensitive, covalently bound retinal ligands. Rhodopsin becomes activated when light isomerizes 11-cis-retinal into an agonist, all-trans-retinal (ATR), which enables the receptor to activate its G protein. We have previously demonstrated that, despite being covalently bound, ATR can display properties of equilibrium binding, yet how this is accomplished is unknown. Here, we describe a new approach for both identifying compounds that can activate and attenuate rhodopsin and testing the hypothesis that opsin binds retinal in equilibrium. Our method uses opsin-based fluorescent sensors, which directly report the formation of active receptor conformations by detecting the binding of G protein or arrestin fragments that have been fused onto the receptor''s C terminus. We show that these biosensors can be used to monitor equilibrium binding of the agonist, ATR, as well as the noncovalent binding of β-ionone, an antagonist for G protein activation. Finally, we use these novel biosensors to observe ATR release from an activated, unlabeled receptor and its subsequent transfer to the sensor in real time. Taken together, these data support the retinal equilibrium binding hypothesis. The approach we describe should prove directly translatable to other GPCRs, providing a new tool for ligand discovery and mutant characterization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号