首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Conjugation experiments were performed in which the donor was Escherichia coli K-12 strain KP245 containing either R plasmid NR1 plus an ampicillin-resistant derivative of ColE1 (*ColE1::Tn3, called RSF2124) or NR1 plus RSF2124 carrying a cloned EcoRI fragment of NR1. The recipient was the polA amber mutant JG112, in which RSF2124 cannot replicate. Ampicillin-resistant transconjugants can arise only when the genes for ampicillin resistance are linked to NR1 or are transposed to the host chromosome. When EcoRI fragment A of NR1 (20.5 kilobases) was cloned to RSF2124, the frequency of cotransfer of ampicillin resistance with tetracycline resistance was 25 to 60%. Plasmid DNA from these ampicillin-resistant transconjugant cells was analyzed by gel electrophoresis and was shown to be a cointegrate of NR1 and the RSF2124 derivative. Analysis of plasmid DNA isolated from donor cultures showed that the cointegrates were present before conjugation, which indicates that the mating does not stimulate cointegrate formation. When the cloned fragment was EcoRI fragment H of NR1 (4.8 kilobases), the frequency of cotransfer of ampicillin resistance with tetracycline resistance was about 4%, and the majority of the ampicillin-resistant transconjugants were found to contain cointegrate plasmids. When the donor contained NR1 and RSF2124, the frequency of cotransfer of ampicillin resistance was less than 0.1%, and analysis of plasmid DNA from the ampicillin-resistant transconjugants showed that Tn3 had been transposed onto NR1. These data suggest that plasmids which share homology may exist in cointegrate form to a high degree within a host cell.  相似文献   

4.
Aims: This work describes the effects of the presence of nonconjugative plasmids in Escherichia coli cells forming biofilms on a flow cell system under turbulent conditions. Methods and Results: The pET28 and pUC8 plasmids were separately used to transform E. coli JM109(DE3). Biofilm formation, removal and antimicrobial susceptibility to the cationic biocide benzyldimethyldodecylammonium chloride (BDMDAC) were assessed. Transformed cells formed thicker biofilms with higher cell densities, and the metabolic activity was higher whereas nontransformed cells had higher viabilities. Biocide treatment was not efficient for biofilm removal but was effective for cell killing. Biofilms formed by nontransformed cells were less affected by the treatment. Conclusions: Cell transformation with the tested plasmids has significant impacts on biofilm formation, cell viability, metabolic activity and resistance to biocide treatment. Our results show that in biofilm studies involving deletion/complementation experiments, a control with the strain carrying a plasmid devoid of the gene under investigation must be included so that the real effects of the genetic manipulation are not biased by the presence of the plasmid backbone. Significance and Impact of the Study: This is the first report where the presence of nonconjugative plasmids is assessed in flow conditions analysing biofilm formation, removal and antimicrobial susceptibility of high cell‐density biofilms.  相似文献   

5.
The conditions were found for obtaining trimeric, dimeric, and monomeric forms of the Escherichia coli inorganic pyrophosphatase from its native hexameric form. Interconversions of the oligomers were studied, and rate constants for their dissociation and association were determined. All forms were found to be catalytically active, with the activity decreasing in the order: hexamer-trimer-dimer-monomer. The activity of trimeric and dimeric forms was high enough to study and to compare their catalytic properties. The monomeric form of the enzyme was unstable.  相似文献   

6.
7.
Bioprocess and Biosystems Engineering - Peptide-displaying Escherichia coli cells were investigated for use in adsorptive removal of bisphenol A (BPA) both in Luria–Bertani medium including...  相似文献   

8.
9.
We inserted foreign DNA segments into plasmids which replicate by a rolling-circle mechanism in Escherichia coli and observed the appearance of high-molecular-weight plasmid multimers (HMW). This phenomenon, which occurs more frequently with GC-rich segments, depends on the mode of replication of the plasmid and on host homologous recombination functions. We found that (i) HMW are formed upon insertion of a foreign DNA segment into a single-stranded DNA plasmid, whereas the same DNA insert has no such effect on a theta replicon, and (ii) HMW are not present in a recA mutant strain but are found in a lexA (Ind-) mutant. Enzymatic studies allowed us to define the HMW structure as linear double-stranded tandem head-to-tail plasmid repeats. Use of heteroplasmid strains showed that HMW production by one plasmid does not affect another resident plasmid, indicating that no host functions are phenotypically inactivated. This distinguishes our system from the HMW observed with various replicons in the absence of RecBCD enzyme activity. We propose that the role of the foreign insert is to protect the DNA from RecBCD exonuclease attack.  相似文献   

10.
Bacillus subtilis competent cells harboring plasmid pUB110 were transformed by plasmids unable to replicate in this host but carrying segments of pUB110, 260 to 4500 bp long. Recombinants between the incoming and the resident plasmids were found in the transformed cells. Transforming efficiency of the incoming plasmids depended strongly on their molecular form and the length of their region homologous with the resident plasmid. It increased with the fourth to fifth power of that length for monomers having at least 900 bp of homology. Activity of monomers having less than 900 bp homology was too low to be measured in our experiments. Transforming efficiency of dimers was much greater than that of monomers, and varied with the square of the length of the homologous region. These results indicate that dimeric and monomeric plasmid molecules are processed differently during transformation of B. subtilis competent cells.  相似文献   

11.
R483, an atypical, I pilus-determining plasmid, and also R144, a typical one, were shown to suppress the DnaA phenotype by integration into the Escherichia coli chromosome.  相似文献   

12.
13.
14.
Studies on transformation of Escherichia coli with plasmids   总被引:1272,自引:0,他引:1272  
Factors that affect the probability of genetic transformation of Escherichia coli by plasmids have been evaluated. A set of conditions is described under which about one in every 400 plasmid molecules produces a transformed cell. These conditions include cell growth in medium containing elevated levels of Mg2+, and incubation of the cells at 0 degrees C in a solution of Mn2+, Ca2+, Rb+ or K+, dimethyl sulfoxide, dithiothreitol, and hexamine cobalt (III). Transformation efficiency declines linearly with increasing plasmid size. Relaxed and supercoiled plasmids transform with similar probabilities. Non-transforming DNAs compete consistent with mass. No significant variation is observed between competing DNAs of different source, complexity, length or form. Competition with both transforming and non-transforming plasmids indicates that each cell is capable of taking up many DNA molecules, and that the establishment of a transformation event is neither helped nor hindered significantly by the presence of multiple plasmids.  相似文献   

15.
16.
17.
18.
Effect of ColV plasmids on the hydrophobicity of Escherichia coli   总被引:1,自引:0,他引:1  
Abstract The hydrophobicity of E. coli strains carrying or lacking the colicin V ( ColV ) plasmids, ColV , I-K94 or ColV -K30 was assayed. ColV + derivatives of strain 1829, produced by conjugation or transformation, were more hydrophobic than either the original 1829 parental strain or a Col - derivative formed by curing 1829 ColV -K30 of its plasmid by an SDS/high temperature growth technique. Transfer of ColV into other E. coli strains also led to increased hydrophobicity. This effect of ColV plasmids was observed for organisms grown at 37°C; ColV + and ColV- strains did not differ in hydrophobicity of grown at 21°C. This finding and other studies suggest that sex pili may be involved in the increased hydrophobicity.  相似文献   

19.
A number of ruthenium complexes were tested for their ability to induce filamentation in Escherichia coli. These included monomeric and dimeric complexes with ruthenium in the II or III oxidation states, as well as mixed-valence complexes with ruthenium in the (II,III) oxidation states. In general, dimeric mixed-valence Ru(II,III) complexes were the most active class of compound, although some complexes of this type were relatively inactive. These were pyrazine- or bipyridyl-bridged complexes which are known to involve strong metal-ligand interaction, which stabilizes the Ru(II) oxidation state. Some Ru(III) complexes were also significantly active in induction of filamentous growth in E. coli. One of these was [Ru(NH3)5Cl]Cl2, which did not inhibit electron transport, Mg2+-ATPase activity or DNA synthesis in E. coli, but like [Ru2(NH3)6Br3]Br2 X H2O was a potent inhibitor of respiration-driven calcium transport in the organism. Filament-inducing activity of the complex was reduced in the presence of NaCl, but not in the presence of added Ca2+, ethanol, calcium pantothenate, or E. coli 'division promoting extract'. This behaviour is also similar to that of [Ru2(NH3)6Br3]Br2 X H2O. It is suggested that both complexes may induce filamentation in E. coli by a common mechanism, which may involve interference with calcium metabolism, or a wall or membrane target, rather than interaction with DNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号