首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Fukushima K  Wada M  Sakurai M 《Proteins》2008,71(4):1940-1954
In this study, we explored the general relationship between the three-dimensional (3D) structures of enzymes and their electronic wave functions. Furthermore, we developed a method for the prediction of their functionally important sites. For this purpose, we first performed linear-scaling molecular orbital calculations for 112 nonredundant, non-homologous enzymes with known structure and function. In consequence, we showed that the canonical molecular orbitals (MOs) of the enzymes could be classified into three groups according to the degree of electron delocalization: highly localized orbitals (Group A), highly delocalized orbitals whose electrons are distributed over almost the whole molecule (Group B), and moderately delocalized orbitals (Group C). The MOs belonging to Group A are located near the HOMO-LUMO band gap, and thereby include the frontier orbitals of a given enzyme. We inferred that the MOs of Group B play a role in stabilizing the 3D structure of the enzyme, while those of Group C contribute to constructing the covalent bond framework of the enzyme. Next, we investigated whether the frontier orbitals of enzymes could be used for identifying their potential functional sites. As a result, we found that the frontier orbitals of the 112 enzymes have a high propensity to be colocalized with the known functional sites, especially when the enzymes are hydrated. Such a propensity is shown to be remarkable when Glu or Asp is a functional site residue. On the basis of these results, we finally propose a protocol for the prediction of functional sites of enzymes.  相似文献   

3.
The computation of many beam dynamical electron diffraction can be done numerically using rather sophisticated computer programs so that the physical insight is often lost. It will be shown that, in a crystal in zone oriëntation, the electrons are trapped in the atom columns which then acts as channels. In this way a one to one correspondence between the electron wavefunction and the structure of the object is maintained. This channeling approach enables to describe the diffraction in a much simpler way: the wavefunction is expanded in eigenfunctions of the Hamiltonian. For most kind of columns in a zone axis oriëntation only one bound state will occur which leads to a perfectly oscillatory motion of the electron in the column which can be expressed in a very simple form. The validity is confirmed by comparison with complete dynamical calculations.  相似文献   

4.
The G-quadruplexes are four-stranded nucleic acid structures with guanine-rich sequences that play important biological roles in, for example, regulating telomerase association and activity. Recent evidence supports the hypothesis that the telomeric G-quadruplex DNA represents a target of novel anticancer drug medication. In this work, we present results of the molecular electrostatic potential (MEP), together with the HOMO and LUMO frontier orbitals, which are physical quantities of concern in the docking of compounds on the G-quadruplex. The calculations are performed in the frame of density functional theory at the B88LYP/6-31G* level of theory. Additional functionals that introduce dispersion effects were also taken into consideration. The MEP potential and electron density of the frontier molecular orbitals of the G-quadruplex exhibit topological deformations due to the coiled conformation of the compound when they are compared with the MEP and corresponding electron density of a DNA duplex with similar nucleic acid composition. The electrostatic active zone of the G-quadruplex is localized on the top part of the quadruplex structure where the MEP acquires the most negative values. Additional computations on a set of three daunomycins, a common anticancer drug for duplex DNA, indicate an electrostatic fastening between the quadruplex and the set of daunomycins. In this regard, the G-quadruplex electrostatic interactions favor the stacking of ligands. Finally, some implications on molecular drug design are briefly discussed.  相似文献   

5.
The electronic structure of protein chains L and M in photosynthetic reaction center (PRC) of Rhodobacter sphaeroides (Van Niel) Imhoff, Truper et Pfennig) was studied by using the Overlapping Dimer Approximation method and the Extended Negative Factor Counter method at ab initio level. The result indicated that: (1) Amino acid residues, the molecular orbitals of which composed the main components of frontier orbitals of protein chain L (M ), are located at the random coil areas of chain L (α helix areas of chain M ). Since the random coil is flexible and more easy to change its conformation in the electron transfer process and to reduce the energy of the system, and the structure of the α helix is reletively stable, this difference might be one of the causes for the electron transfer in photosynthetic reaction center (PRC) only takes place along the L branch. (2) The His residues which axially coordinated to the “special pair” P and accessory chlorophyll molecules (ABChls) are essentially important for the ELUMO levels of P and ABChl. But, the corresponding molecular orbitals of these His residues do not appear in the composition of frontier orbitals of protein chains. It means that the interaction between pigment molecules and protein chains do not influence the contribution to the frontier orbitals of protein chains explicitly, but influences the corresponding ELUMO levels significantly.  相似文献   

6.
The first and second moment operators are used to define the origin invariant shape and size of a molecule or functional group, as well as expressions for the distance between two electrons and the distance between an electron and a nucleus. The measure of molecular size correlates quite well with an existing theoretical measure of molecular volume calculated from isodensity contours. Also, the measure of size is effective in predicting steric effects of substituents which have been measured experimentally. The electron-electron and electron-nuclear distances are related to components of the Hartree-Fock energy. The average distance between two-electrons can model the Coulomb energy quite well, especially in the case of localized molecular orbitals. The average distance between an electron and a nucleus is closely related to the electron-nuclear attraction energy of a molecule.  相似文献   

7.
Abstract

We discuss some of the problems that have frustrated the development of reliable model intermolecular potentials for polyatomic molecules. In particular, the usual assumption of an isotropic atom-atom model potential is analysed, and evidence for its inadequacies is presented. A new approach to designing model potentials, an anisotropic site—site model, is introduced by describing several applications to both small and organic molecules, including molecular dynamics and Monte Carlo simulations. The anisotropy required in an atom—atom potential can be directly linked to the non-spherical features in the valence electron distribution, such as lone pairs and π electrons. An accurate electrostatic model for these effects can be constructed from a distributed multipole analysis of the ab initio wavefunction. The empirically required forms of anisotropy in the repulsion potential can also be qualitatively linked to the molecular electron density difference map. Thus, consideration of the molecular bonding can be a useful indication of how to construct adequate model intermolecular pair potentials.  相似文献   

8.
Mechanisms of antifungal actions of cinnamaldehyde, citral, perillaldehyde and citronellal were investigated. The growth inhibitions by the aldehydes were reduced or abolished in the presence of cysteine or glutathione in some cases, indicating that the inhibitions were mainly due to reactions of the aldehydes with SH groups involved in the fungal growth. In other cases, the SH compounds were ineffective on the inhibitory actions of the aldehydes. By calculating energies of molecular orbitals of the aldehydes, it was found that the antifungal activity was related to the energy of the lowest empty molecular orbital, i.e., the lower the energy, the higher is the antifungal activity. The energy values of the molecular orbitals indicate that the aldehydes except citronellal are good electron acceptors. It was further demonstrated, by studies of difference spectra, that cinnamaldehyde, citral and perillaldehyde are capable of forming charge transfer complexes with tryptophan, a good electron donor. These results strongly suggest that the antifungal actions of the aldehydes are possibly due to their abilities to form charge transfer complexes with electron donors in addition to their reactivity with SH groups.  相似文献   

9.
The electronic structures of one-dimensional and two-dimensional siloxene (Si6O3H6) model compounds have been examined theoretically, using the semiempirical tight-binding self-consistent field crystal orbital (SCF-CO) method. These compounds are formed by silicon-based chain and planar structures containing a regular array of oxygen atoms. Results show that the two-dimensional polysilane in which OH groups are substituted for H atoms possesses a relatively smaller direct gap than other siloxenes. It is assumed that the electronic structures of siloxenes are affected not only by the dimensionality of Si-Si -conjugational networks due to an array of oxygen atoms, but also by the diminishing of the electron population in the Si-Si bonding orbitals caused by oxygen atoms with large electronegativity.  相似文献   

10.
In this study, we derive analytical expressions for one-dimensional harmonic oscillators for variational path integrals (VPIs). A Gaussian-type trial wavefunction is adopted. Total and potential energies of the system are analytically expressed both for the continuous time and an approximate discretised VPIs. Obtained expressions are numerically verified using molecular dynamics calculations. Convergence properties regarding the projection time and the Trotter number are discussed.  相似文献   

11.
12.
《Inorganica chimica acta》1986,119(1):99-105
The REX relativistically parameterized extended Hückel method is used to study the electronic structure of lanthanide trihalide molecules. All valence orbitals are described in terms of double-zeta Slater functions, with the atomic orbital parameters being determined by a least-squares fitting to published relativistic (Dirac- Fock) radial densities. Comparisons of orbital energies to experimental values are made and various trends are discussed. Ab initio all-electron calculations at the self-consistent field level and as a function of molecular geometry are reported for LaH3, LaF3, and LaCl3. While LaH3 and LaF3 are calculated to be pyramidal, LaCl3 is calculated to be planar.  相似文献   

13.
Electronic structural signatures of the guanine-7H and guanine-9H tautomers have been investigated on an orbital by orbital basis using dual space analysis. A combination of density functional theory (B3LYP/TZVP), the statistical average of model orbital potentials (SAOP/TZ2P) method and outer valence Green's function theory (OVGF/TZVP) has been used to generate optimal tautomer geometries and accurate ionization energy spectra for the guanine tautomer pair. The present work found that the non-planar form for both of the guanine keto pair possesses lower energies than their corresponding planar counterparts, and that the canonical form of the guanine-7H tautomer has slightly lower total energy than guanine-9H. This latter result is in agreement with previous experimental and theoretical findings. In the planar guanine pair the geometric parameters and anisotropic molecular properties are compared, focusing on changes caused by the mobile proton transfer. It is demonstrated that the mobile proton only causes limited disturbance to isotropic properties, such as geometry and the energetics, of the guanine keto tautomer pair. The exception to this general statement is for related local changes such as the N((7))-C((8)) and C((8))-N((9)) bond length resonance between the single and double bonds, reflecting the nitrogen atom being bonded with the mobile proton in the tautomers. The mobile proton distorts the electron distribution of the tautomers, which leads to significant changes in the molecular anisotropic properties. The dipole moment of guanine-7H is altered by about a factor of three, from 2.23 to 7.05 D (guanine-9H), and the molecular electrostatic potentials also reflect significant electron charge distortion. The outer valence orbital momentum distributions, which were obtained using the plane wave impulse approximation (PWIA), have demonstrated quantitatively that the outer valence orbitals of the tautomer pair can be divided into three groups. That is orbitals 1a'-7a' and 18a', which do not have visible alternations in the tautomeric process (which consist of either pi orbitals or are close to the inner valence shell); a second group comprising orbitals 19a'-22a', 25a', 26a', 28a', 29a' and 31a', which show small perturbations as a result of the mobile hydrogen locations; and group three, orbitals 23a', 24a', 27a', 30a' and 32a', which demonstrate significant changes due to the mobile proton transfer and are therefore considered as signature orbitals of the G-7H/G-9H keto tautomeric process.  相似文献   

14.
15.
Theoretical results on the geometric and electronic structures of some donor-acceptor polymers based on polythiophene (X=S), polyfuran (X=O) and polypyrrole (X=NH) were obtained, using a one-dimensional tight-binding self-consistent field crystal-orbital (SCF-CO) method at the MNDO-AM1 level of approximation. The repeat unit of these polymers consits of a bithiophene, furan or bipyrrole unit bridged by an electron-accepting group or. The optimized geometries of the polymers show a strong dependence on the nature of the electron donating group X. All the polymers studied are predicted to have band gap values ranging between 1 eV and 2 eV. An analysis of their -bond order data and of the patterns of their frontier orbitals shows they have benzenoid-like electronic structures.  相似文献   

16.
The 4‐nitro‐1H‐indole‐carboxaldehyde (NICA) molecule was characterized experimentally using FT‐IR, FT‐Raman and UV‐Vis spectra, and it was studied theoretically using DFT calculations. The optimized structure of the NICA molecule was determined by DFT calculations using B3LYP functional with cc‐pVTZ basis set. The electron localization function (ELF) and local orbital localizer (LOL) studies were performed to visualize the electron delocalization in the molecule. The experimental and theoretical wavenumbers of the title molecule were assigned using VEDA 4.0 program. The charge delocalization and stability of the title molecule were investigated using natural bond orbital (NBO) analysis. Frontier molecular orbitals (FMOs) and related molecular properties were calculated. UV‐Vis spectrum was calculated theoretically and validated experimentally. The reactive sites of the molecule were studied from the MEP surface and Fukui function analysis. The molecular docking analysis reveals that the NICA ligand shows better inhibitory activity against RAS, which causes lung cancer. The in vitro cytotoxic activity of the molecule against human lung cancer cell lines (A549) was determined by MTT assay. Thus, the NICA molecule can be used as a potential candidate for the development of the drug against lung cancer.  相似文献   

17.
Resonance Raman spectroscopy has been employed to investigate the molecular bases for the markedly different properties of horseradish oxyperoxidase and oxymyoglobin. The porphyrin core of oxyperoxidase is slightly more expanded with the iron atom closer to the porphyrin plane, and there is greater iron d pi-to-oxygen pi backbonding compared to oxymyoglobin. The iron-oxygen (stretching or bending) bands are observed at 570 and 562 cm-1, respectively, for oxymyoglobin and oxyperoxidase, and the iron-His stretching bands have been tentatively identified at 276 and 289 cm-1, respectively. It is suggested that the stronger iron-His bond in oxyperoxidase facilitates greater iron d pi-to-oxygen pi backdonation by raising the energy of the iron d pi orbitals closer to the energy of the oxygen pi orbitals. This weakens the O-O bond and activates dioxygen for use as an electron acceptor in the peroxidase-oxidase reaction.  相似文献   

18.
Graphs of atomic orbitals (GAOs) have been used to represent molecular structures. We describe rules to convert the labelled hydrogen-filled graphs (LHFGs) into GAOs. The GAO is one possible way of taking account of the structure of atoms (i.e., atomic orbitals, such as 1s(1), 2p(2) and 3d(10)) for QSPR/QSAR analyses. Optimization of correlation weights of local invariants (OCWLI) of the LHFGs and the GAOs was used to obtain a method of quail dietary toxicity modelling. Statistical characteristics of the models based on the OCWLI of GAO are better than those based on the OCWLI of the LHFGs.  相似文献   

19.
The stereochemistries of main group molecules have been discussed by using the angular overlap model in its molecular orbital oriented form (MO-AOM). Either ligand-field stabilisation of the ground state s2pq−2 configuration, or s-p mixing, or both, provide a consistent bonding model for the stereochemistries. The transformation of the non-bonding orbitals into equivalent orbitals leads invariably to agreement with the lone-pair locations of the valence shell electron pair repulsion (VSEPR) model. The concepts of Hamiltonian-generated hybrids and pseudohemispherical molecular systems are found useful in this context. The MO-AOM formalism is also used for discussing s-d mixing in transition metal systems, and the energetic consequences within the ligand-field AOM (LF-AOM) are included. This is a second-order effect, which depends on squares and cross-products of radial parameters. It may still be quite large for tetragonal systems and for systems that deviate strongly from orthoaxiality. The usual ligand-additive property of the AOM is lost when the symmetry is lower than tetragonal and so is the energy separability into angular and radial factors. The cellular ligand-field model is found to be identical with the LF-AOM, except that its users consider it important not to acknowledge the formal hierarchy, MO-AOMLF-AOM, as relevant. The unintelligible concept of an active coordination void is found to be unnecessary and insufficient.  相似文献   

20.
Theoretical investigations on the diblock molecular diode, thiophene–thiazole compound, have been carried out at the Hartree–Fock (HF) level by considering the interaction under the external bias. They demonstrate that the electronic structures of this kind of diode molecule are essentially different from those based on the Aviram and Ratner model, in which donor and acceptor π-conjugated segments are separated by an insulating σ-bonded segment, in terms of the energy levels of the frontier molecular orbitals as well as their spatial distributions. The introduction of the external bias modifies both the geometric and electronic structures. In particular, the spatial distributions of the frontier molecular orbitals are also shifted under the external bias. Moreover, all these features show a strong dependence on the polarity of the applied bias due to the build in intrinsic molecular asymmetric structures, which could be used to intuitively interpret the asymmetrical current–voltage behaviours of molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号