首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sodium-dependent entry of proline and glycine into rat renal brush-border membrane vesicles was examined. The high Km system for proline shows no sodium dependence. The low Km system for glycine entry is strictly dependent on a Na+ gradient but shows no evidence of the carrier system having any affinity for Na+. The low Km system for proline and high Km system for glycine transport appear to be shared. Both systems are stimulated by a Na+ gradient and appear to have an affinity for the Na+. The effect of decreasing the Na+ concentration in the ionic gradient is to alter the Km for amino acid entry and, at low Na+ concentrations, to inhibit the V for glycine entry.  相似文献   

2.
The uptake of spermine by isolated rat intestinal brush-border membrane vesicles was studied. Uptake was biphasic, with an initial rapid uptake followed by a prolonged slower phase. Spermine uptake was not affected by a Na+ electrochemical gradient. The equilibrium uptake of spermine was considerably dependent upon the medium pH. At pH 7.5 the degree of uptake was higher than that at pH 6.5 and was inversely proportional to the extravesicular osmolarity with a relatively high binding, which was estimated by extraporation to infinite extravesicular osmolarity (zero intravesicular space), while the uptake at pH 6.5 was not altered under the various medium osmolarities. A kinetic analysis of the initial uptake rate of spermine at 37 degrees C gave a Km of 24.2 microM and Vmax of 206.1 pmol/mg protein per min. Furthermore, the uptake at 4 degrees C was nonlinear, providing evidence for saturability. These findings suggest that spermine was associated with intestinal brush-border membrane vesicles in two ways, by binding to the outside and inside of membrane vesicles. The interaction of spermine and the apical membrane can be a contributory factor in the accumulation of this polyamine in the intestine of the intact animal.  相似文献   

3.
The effect of membrane potential on the uptake of tryptamine, an organic cation, by rat intestinal brush-border membrane vesicles was studied. In the presence of an outwardly directed H(+)-gradient, the initial uptake of tryptamine was stimulated remarkably and the overshoot phenomenon was observed. In contrast, the uptake was depressed by an inwardly-directed H(+)-gradient. The effect of H(+)-gradient on the uptake of tryptamine was maintained in the presence of FCCP, whereas it vanished when voltage-clamped vesicles were used. Moreover, the uptake of tryptamine was linearly augmented with increase of the valinomycin-induced inside-negative K+ diffusion potential. These results suggest that tryptamine is taken up into intestinal brush-border membrane vesicles depends upon the ionic diffusion potential. The effect of several indole derivatives and amine compounds on the uptake of tryptamine was also examined. The uptake of tryptamine was inhibited by all amine compounds used, but anionic and zwitterionic compounds had no effect, suggesting that these amines interact on brush-border membrane and cause an inhibitory effect.  相似文献   

4.
The binding of aminoglycoside antibiotics to, and their effects on, the plasma membrane were studied using isolated rat renal brush-border membrane vesicles. Dibekacin was noted to bind with brush-border membrane vesicles having a single class of many binding sites. 3H-labeled dibekacin binding was inhibited competitively by unlabeled dibekacin, gentamicin or amikacin. The inhibition constants obtained from the Dixon plots followed the order of gentamicin approximately equal to dibekacin greater than amikacin. The alkaline phosphatase activity of brush-border membrane vesicles was inhibited by gentamicin significantly, as was also observed by a histochemical study. Sodium-dependent D-glucose uptake by brush-border membrane vesicles was significantly inhibited by the addition of gentamicin.  相似文献   

5.
The presence of a sodium-dependent, saturable uptake process is described in basolateral membranes of rat renal cortex for L-glutamine. Concentration-dependence studies indicate the presence of multiple transport systems withK m 1 of 0.032 mM and V1 of 0.028 nmol/mg of protein per min, andK m 2 of 17.6 mM and V2 of 17.6 nmol/mg of protein per min. Lysine completely inhibits the high-affinity, low-capacityK m system and partially inhibits the low-affinity, high-capacity system. Cystine and other dibasic amino acids also affect glutamine uptake.  相似文献   

6.
The effect of parathyroid hormone (PTH) on Ca2+ uptake was studied in brush-border membrane vesicles (BBMV) prepared from the kidneys of dogs administered 4-5 micrograms/kg of bovine PTH 1-84 in vivo. PTH stimulated Ca2+ uptake at 20 s of incubation from control values of 231 +/- 21 to 306 +/- 30 pmol/mg of protein, p less than 0.001. The stimulation of Ca2+ uptake by PTH was not reversed by incubation of the BBMV with the Ca2+ ionophore, despite the fact that Ca2+ uptake was several times greater than the expected uptake at equilibrium, indicating that most of the uptake represented Ca2+ binding to the BBMV. In BBMV from kidneys exposed to PTH, hypotonic lysis or increasing the osmolality of the solution external to the BBMV did not affect Ca2+ uptake. These data also indicated that the largest fraction of Ca2+ uptake in the presence of a chemical potential represented binding of Ca2+ to BBMV. Ca2+ binding was initially to the exterior of the BBMV, then translocated within the membrane and to the interior vesicular face as assessed by chelation of Ca2+ bound to the BBMV by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. Incubation of BBMV from kidneys exposed to PTH with gentamicin, which competes with Ca2+ for anionic phospholipid-binding sites, reversed the stimulatory effects of PTH on Ca2+ uptake. Phosphorylation of BBMV and PTH treatment in vivo had similar effects on BBMV phospholipid composition increasing the levels of anionic phospholipids. Phosphorylation of the BBMV also produced gentamicin-inhibitable increases in membrane Ca2+ binding. Phosphorylation of BBMV from kidneys exposed to PTH was inhibited suggesting a higher state of phosphorylation in vivo. The data demonstrate that PTH administered in vivo stimulated Ca2+ binding in BBMV that was gentamicin inhibitable and associated with an increase in the membrane content of anionic phospholipids.  相似文献   

7.
8.
Amiloride-sensitive and amiloride-insensitive components of 22Na+ uptake were examined in brush-border membrane vesicles prepared from rabbit renal cortex. Both components could be stimulated by interior-negative electrical potentials, demonstrating a sodium conductance pathway and an effect of electrical potential on the initial rate of Na+/H+ exchange.  相似文献   

9.
Intestinal disaccharide uptake was studied with isolated brush-border membrane vesicles lacking the corresponding hydrolase. Either 15-day-old chick intestine, lacking both trehalase and lactase, or newborn pig intestine, lacking sucrase, was used. Both animal species yielded osmotically active vesicles capable of D-glucose/Na+ cotransport with a positive overshoot test. Vesicles from either origin gave quantitatively similar results in regard to both initial uptake rates and relative vesicle volumes. The nontransported analogs D-mannitol and L-glucose were used as diffusion markers. When tested with the appropriate disaccharidase-lacking vesicles, lactose, trehalose and sucrose exhibited uptake rates indistinguishable from those of D-mannitol and L-glucose. These uptakes were unaffected by the presence or absence of Na+, phlorizin and Tris. Chromatographic analysis confirmed the lack of hydrolysis of each disaccharide after prolonged incubation. The inescapable conclusion seems to be that intact disaccharides are not transported through the brush-border membrane, their uptake occurring through simple diffusion.  相似文献   

10.
Characteristics of succinate transport were determined in basolateral and brush-border membrane vesicles (BLMV and BBMV, respectively) isolated in parallel from rabbit renal cortex. The uptake of succinate was markedly stimulated by the imposition of an inwardly directed Na+ gradient, showing an "overshoot" phenomenon in both membrane preparations. The stimulation of succinate uptake by an inwardly directed Na+ gradient was not significantly affected by pH clamp or inhibition of Na(+)-H+ exchange. The Na(+)-dependent and -independent succinate uptakes were not stimulated by an outwardly directed pH gradient. The Na dependence of succinate uptake exhibited sigmoidal kinetics, with Hill coefficients of 2.17 and 2.38 in BLMV and BBMV, respectively. The Na(+)-dependent succinate uptake by BLMV and BBMV was stimulated by a valinomycin-induced inside-negative potential. The Na(+)-dependent succinate uptake by BLMV and BBMV followed a simple Michaelis-Menten kinetics, with an apparent Km of 22.20 +/- 4.08 and 71.52 +/- 0.14 microM and a Vmax of 39.0 +/- 3.72 and 70.20 +/- 0.96 nmol/(mg.min), respectively. The substrate specificity and the inhibitor sensitivity of the succinate transport system appeared to be very similar in both membranes. These results indicate that both the renal brush-border and basolateral membranes possess the Na(+)-dependent dicarboxylate transport system with very similar properties but with different substrate affinity and transport capacity.  相似文献   

11.
Summary Glutamine uptake by rat renal brushborder vesicles occurred via two distinct saturable processes withK m values of 0.145 and 8.5 mM which were stimulated by both ionic and sodium gradients with a pH optimum of 6.8–7.1 Glutamic acid uptake also occurred by a two-component system withK m values of 0.016 and 3.60 mM. Both components were stimulated specifically by a sodium gradient. The lowK m system for glutamic acid had a pH optimum of 7.2–7.4. Glutamine entry at 0.06 mM was inhibited by a variety of amino acids at 3 mM, including dibasic amino acids, glycine, valine, and phenylalanine. Glutamic acid entry at 0.06 mM was inhibited 20–30% by 3 mM phenylalanine, valine, -aminoisobutyric acid, and glutamine. No metabolic alteration of glutamic acid was observed on incubation with membrane vesicles, but glutamine was significantly hydrolyzed to glutamic acid upon prolonged incubation. Hydrolysis of glutamine was negligible at 15 sec incubation which was employed for measurement of initial rate of entry. These studies provide support for the existence of an uptake system in the brushborder of the renal proximal tubule cell capable of handling the reabsorption of glutamine normally present in glomerular filtrate.  相似文献   

12.
Folate binding and transport by rat kidney brush-border membrane vesicles   总被引:1,自引:0,他引:1  
[3H]Pteroylglutamic acid (PteGlu) uptake was studied using brush-border membrane vesicles isolated from rat kidney. Results on the uptake of [3H]PteGlu by brush-border membrane vesicles incubated in media of increasing osmolarities demonstrated that uptake was contributed by two components, intravesicular transport and membrane binding. Both the components of the uptake exhibited similar pH dependence, with maxima at pH 5.6, and were found to be saturable mechanisms with Km values of 6.7.10(-7) and 11.2.10(-7) M, respectively. These studies show that PteGlu is transported by isolated rat kidney brush-border membrane vesicles in a manner consistent with a saturable system and that a binding component may be functionally associated with this.  相似文献   

13.
Transport of [3H]tetraethylammonium, an organic cation, has been studied in brush-border and basolateral membrane vesicles isolated from rat kidney cortex. Some characteristics of carrier-mediated transport for tetraethylammonium were demonstrated in brush-border and basolateral membrane vesicles; the uptake was saturable, was stimulated by the countertransport effect, and showed discontinuity in an Arrhenius plot. In brush-border membrane vesicles, the presence of an H+ gradient ( [H+]i greater than [H+]o) induced a marked stimulation of tetraethylammonium uptake against its concentration gradient (overshoot phenomenon), and this concentrative uptake was completely inhibited by HgCl2. In contrast, the uptake of tetraethylammonium by basolateral membrane vesicles was unaffected by an H+ gradient. Tetraethylammonium uptake by basolateral membrane vesicles was significantly stimulated by a valinomycin-induced inside-negative membrane potential, while no effect of membrane potential was observed in brush-border membrane vesicles. These results suggest that tetraethylammonium transport across brush-border membranes is driven by an H+ gradient via an electroneutral H+-tetraethylammonium antiport system, and that tetraethylammonium is transported across basolateral membranes via a carrier-mediated system and this process is stimulated by an inside-negative membrane potential.  相似文献   

14.
Fe2+ uptake by brush-border membrane vesicles from rabbit duodenum has been investigated and found to show similar qualitative properties to those previously demonstrated with mouse proximal intestine brush-border membrane vesicles (Simpson, R.J. and Peters, T.J. (1986) Biochim. Biophys. Acta 856, 109-114). In particular, a relatively low affinity (Km(app) approx. 83 microM), NaCl and pH sensitive transport component is present. The disruption of 59Fe2+-laden vesicles with sodium cholate, followed by gel filtration or centrifugal analysis reveals that cholate insoluble material (Mr greater than 10(6)) is the major destination for 59Fe2+ taken up by intact vesicles. Analysis of cholate extracts for Fe2+ binding ability reveals a single high-capacity (49.8 +/- 15.6 nmol/mg vesicle protein (S.E., n = 3)), high-affinity (Kd(app) less than 5 microM) binding component with an Mr equivalent to approx. 10(4) on gel filtration in the presence of cholate. This binding component is extracted into chloroform/methanol (2:1, v/v) is relatively heat and protease resistant and thus appears to be a lipid.  相似文献   

15.
We have previously reported the metabolic consequences of feeding rats Steenbock and Black's rickets-inducing diet, deficient in vitamin D and with an altered Ca/P ratio. Using isolated brush-border membrane vesicles prepared from the jejunum, ileum and duodenum of control and rachitic rats, we have demonstrated a marked decrease of Na+-dependent D-glucose uptake at jejunum-ileum level of rachitic rats. At duodenum level Na+-dependent D-glucose transport was not influenced by rickets. A lack of any significant difference between the two animal groups was observed studying the facilitated transport of D-glucose, the diffusion of L-glucose and the Na+-dependent uptake of phenylalanine and aspartate.  相似文献   

16.
Biotin transport in rat intestinal brush-border membrane vesicles   总被引:1,自引:0,他引:1  
Transport of biotin across rat intestinal brush-border membrane was examined using the brush-border membrane vesicle (BBMV) technique. Uptake of biotin by BBMV is the result of transport of the substrate into the intravesicular space with negligible binding to membrane surfaces. In the presence of a Na+ gradient (out greater than in), transport of biotin was higher with a transient 'overshoot' phenomenon. In comparison, transport of biotin in the presence of a choline gradient (out greater than in) was lower with no 'overshoot' phenomenon. In both jejunal and ileal BBMV, the transport of biotin as a function of concentration was saturable in the presence of a Na+ gradient (out greater than in) but was linear in the presence of a choline gradient (out greater than in). Vmax of the Na+-dependent transport system was 0.88 and 0.37 pmol/mg protein per s and apparent Kt was 7.57 and 7.85 microM in jejunal and ileal BBMV, respectively. Structural analogues inhibited the transport process of biotin. Unlike the electrogenic transport of D-glucose, the transport of the anionic biotin was not affected by imposing a relatively positive intravesicular potential with the use of valinomycin and an inwardly-directed K+ gradient, suggesting that biotin transport is most probably an electroneutral process. This suggestion was further supported by studies on biotin transport in the presence of anions of different lipid permeability. The results of this study demonstrate that biotin transport across rat intestinal brush-border membrane is by a carrier-mediated, Na+-dependent and electroneutral process. Furthermore, transport of biotin is higher in the jejunum than the ileum.  相似文献   

17.
Ca2+ uptake in brush-border vesicles isolated from rat duodena was studied by a rapid-filtration technique. Ca2+ uptake showed saturation kinetics, was dependent on the pH and ionic strength of the medium and was independent of metabolic energy. Uptake activity was readily inhibited by Ruthenium Red, La3+, tetracaine, EGTA, choline chloride and Na+ or K+. The effect of variations in medium osmolarity on Ca2+ uptake and the ionophore A23187-induced efflux of the cation from preloaded vesicles indicated that the Ca2+-uptake process involved binding to membrane components, as well as transport into an osmotically active space. Scatchard-plot analyses of the binding data suggested at least two classes of Ca2+-binding sites. The high-affinity sites, Ka = (2.7 +/- 1.1) x 10(4) M-1 (mean +/- S.D.) bound 3.2 +/- 0.8 nmol of Ca2+/mg of protein, whereas the low-affinity sites (Ka = 60 +/- 6 M-1) bound 110 +/- 17 nmol of Ca2+/mg of protein. In the presence of 100 mM-NaCl, 1.7 and 53 nmol of Ca2+/mg of protein were bound to the high- and low-affinity sites respectively. Decreased Ca2+-uptake activity was observed in vesicles isolated from vitamin D-deficient as compared with vitamin D-replete animals and intraperitoneal administration of 1,25-dihydroxycholecalciferol to vitamin D-deficient rats 16 h before membrane isolation stimulated the initial rate of Ca2+ uptake significantly. The data indicated that Ca2+ entry and/or binding was passive and may involve a carrier-mediated Ca2+-uptake component that is associated with the brush-border membrane. Altering the electrochemical potential difference across the membrane by using anions of various permeability and selected ionophores appeared to increase primarily binding to the membrane rather than transport into the intravesicular space. Since there is considerable binding of Ca2+ to the vesicle interior, a comprehensive analysis of the transport properties of the brush-border membrane remains difficult at present.  相似文献   

18.
We had previously proposed that organic cations are transported across the brush-border membrane in the canine kidney by a H+ exchange (or antiport) system (Holohan, P.D. and Ross, C.R. (1981) J. Pharmacol. Exp. Ther. 216, 294–298). In the present report, we demonstrate that in brush-border membrane vesicles the transport of organic cations is chemically coupled to the countertransport of protons, by showing that the uphill or concentrative transport of a prototypic organic cation, N1-methylnicotinamide (NMN), is chemically coupled to the flow of protons down their chemical gradient. In a reciprocal manner, the concentrative transport of protons is coupled to the counterflow of organic cations down their concentration gradient. The transport of organic cations is monitored by measuring [3H]NMN while the transport of protons is monitored by measuring changes in acridine orange absorbance. The functional significance of the coupling is that a proton gradient lowers the Km and increases the Vmax for NMN transport.  相似文献   

19.
We had previously proposed that organic cations are transported across the brush-border membrane in the canine kidney by a H+ exchange (or antiport) system (Holohan, P.D. and Ross, C.R. (1981) J. Pharmacol. Exp. Ther. 216, 294-298). In the present report, we demonstrate that in brush-border membrane vesicles the transport of organic cations is chemically coupled to the countertransport of protons, by showing that the uphill or concentrative transport of a prototypic organic cation, N1-methylnicotinamide (NMN), is chemically coupled to the flow of protons down their chemical gradient. In a reciprocal manner, the concentrative transport of protons is coupled to the counterflow of organic cations down their concentration gradient. The transport of organic cations is monitored by measuring [3H]NMN while the transport of protons is monitored by measuring changes in acridine orange absorbance. The functional significance of the coupling is that a proton gradient lowers the Km and increases the Vmax for NMN transport.  相似文献   

20.
Iron uptake from Fe/ascorbate by mouse brush-border membrane vesicles is not greatly inhibited by prior treatment with a variety of protein-modification reagents or heat. Non-esterified fatty acid levels in mouse proximal small intestine brush-border membrane vesicles show a close positive correlation with initial Fe uptake rates. Loading of rabbit duodenal brush-border membrane vesicles with oleic acid increases Fe uptake. Depletion of mouse brush-border membrane vesicle fatty acids by incubation with bovine serum albumin reduces Fe uptake. Iron uptake by vesicles from Fe/ascorbate is enhanced in an O2-free atmosphere. Iron uptake from Fe/ascorbate and Fe3+-nitrilotriacetate (Fe3+-NTA) were closely correlated. Incorporation of oleic acid into phosphatidylcholine/cholesterol (4:1) liposomes leads to greatly increased permeability to Yb3+, Tb3+, Fe2+/Fe3+ and Co2+. Ca2+ and Mg2+ are also transported by oleic acid-containing liposomes, but at much lower rates than transition and lanthanide metal ions. Fe3+ transport by various non-esterified fatty acids was highest with unsaturated acids. The maximal transport rate by saturated fatty acids was noted with chain length C14-16. It is suggested that Fe transport can be mediated by formation of Fe3+ (fatty acid)3 complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号