共查询到20条相似文献,搜索用时 15 毫秒
1.
Kahler CM Lyons-Schindler S Choudhury B Glushka J Carlson RW Stephens DS 《The Journal of biological chemistry》2006,281(29):19939-19948
O-Acetylation is a common decoration on endotoxins derived from many Gram-negative bacterial species, and it has been shown to be instrumental (e.g. in Salmonella typhimurium) in determining the final tertiary structure of the endotoxin and the immunogenicity of the molecule. Structural heterogeneity of endotoxins produced by mucosal pathogens such as Neisseria meningitidis is determined by decorations on the heptose inner core, including O-acetylation of the terminal N-acetylglucosamine (GlcNAc) attached to HepII. In this report, we show that O-acetylation of the meningococcal lipooligosaccharide (LOS) inner core has an important role in determining inner core assembly and immunotype expression. The gene encoding the LOS O-acetyltransferase, lot3, was identified by homology to NodX from Rhizobium leguminosarum. Inactivation of lot3 in strain NMB resulted in the loss of the O-acetyl group located at the C-3 position of the terminal GlcNAc of the LOS inner core. Inactivation of either lot3 or lgtG, which encodes the HepII glucosyltransferase, did not result in the appearance of the O-3-linked phosphoethanolamine (PEA) groups on the LOS inner core. Construction of a double mutant in which both lot3 and lgtG were inactivated resulted in the appearance of O-3-linked PEA groups on the LOS inner core. In conclusion, O-acetylation status of the terminal GlcNAc of the gamma-chain of the meningococcal LOS inner core is an important determinant for the appearance or exclusion of the O-3-linked PEA group on the LOS inner core and contributes to LOS structural diversity. O-Acetylation also likely influences resistance to complement-mediated lysis and may be important in LOS conjugate vaccine design. 相似文献
2.
Contribution of genes from the capsule gene complex (cps) to lipooligosaccharide biosynthesis and serum resistance in Neisseria meningitidis 总被引:6,自引:3,他引:6
Sven Hammerschmidt Carola Birkholz Ulrich Zähringer Brian D. Robertson Jos van Putten Olaf Ebeling Matthias Frosch 《Molecular microbiology》1994,11(5):885-896
3.
The inner core structures of the lipooligosaccharides (LOS) of Neisseria meningitidis are potential vaccine candidates because both bactericidal and opsonic antibodies can be generated against these epitopes. In an effort to better understand LOS biosynthesis and the potential immunogenicity of the LOS inner core, we have determined the LOS structure from a meningococcal rfaK mutant CMK1. The rfaK gene encodes the transferase that adds an alpha-N-acetylglucosaminosyl residue to O-2 of the inner core heptose (Hep) II of the LOS. The LOS oligosaccharide from this mutant was previously shown to contain only Hep, 3-deoxy-D-manno-2-octulosonic acid (Kdo), and multiple phosphoethanolamine (PEA) substituents (Kahler et al., 1996a, J. Bacteriol., 178, 1265-1273). The complete structure of the oligosaccharide (OS) component of the LOS from mutant CMK1 was determined using glycosyl composition and linkage analyses, and 1H, 13C, and 31P nuclear magnetic resonance spectroscopy. The CMK1 OS structure contains a PEA group at O-3 of Hep II in place of the usual glucosyl residue found at this position in the completed L2 LOS glycoform from the parent NMB strain. The PEA group at O-6 of Hep II, however, is present in both the CMK1 mutant LOS and parental NMB L2 LOS structures. The structure of the OS from CMK1 suggests that PEA substituents are transferred to both the O-3 and O-6 positions of Hep II prior to: (1) the incorporation of the alpha-GlcNAc on Hep II; (2) the synthesis of the alpha-chain on Hep I; and (3) the substitution of the glycosyl residue at the O-3 Hep II, which distinguishes L2 and L3 immunotypes. The LOS structure of the CMK1 mutant makes it a candidate immunogen that could generate broadly cross-reactive inner-core LOS antibodies. 相似文献
4.
5.
6.
The amino acid glycine is identified as a component of the inner core oligosaccharide in meningococcal lipopolysaccharide (LPS). Ester-linked glycine residues were consistently found by mass spectrometry experiments to be located on the distal heptose residue (HepII) in LPS from several strains of Neisseria meningitidis. Nuclear magnetic resonance studies confirmed and extended this observation locating the glycine residue at the 7-position of the HepII molecule in L3 and L4 immunotype strains. 相似文献
7.
Lin LY Rakic B Chiu CP Lameignere E Wakarchuk WW Withers SG Strynadka NC 《The Journal of biological chemistry》2011,286(43):37237-37248
The first x-ray crystallographic structure of a CAZY family-52 glycosyltransferase, that of the membrane associated α2,3/α2,6 lipooligosaccharide sialyltransferase from Neisseria meningitidis serotype L1 (NST), has been solved to 1.95 Å resolution. The structure of NST adopts a GT-B-fold common with other glycosyltransferase (GT) families but exhibits a novel domain swap of the N-terminal 130 residues to create a functional homodimeric form not observed in any other class to date. The domain swap is mediated at the structural level by a loop-helix-loop extension between residues Leu-108 and Met-130 (we term the swapping module) and a unique lipid-binding domain. NST catalyzes the creation of α2,3- or 2,6-linked oligosaccharide products from a CMP-sialic acid (Neu5Ac) donor and galactosyl-containing acceptor sugars. Our structures of NST bound to the non-hydrolyzable substrate analog CMP-3F(axial)-Neu5Ac show that the swapping module from one monomer of NST mediates the binding of the donor sugar in a composite active site formed at the dimeric interface. Kinetic analysis of designed point mutations observed in the CMP-3F(axial)-Neu5Ac binding site suggests potential roles of a requisite general base (Asp-258) and general acid (His-280) in the NST catalytic mechanism. A long hydrophobic tunnel adjacent to the dimer interface in each of the two monomers contains electron density for two extended linear molecules that likely belong to either the two fatty acyl chains of a diglyceride lipid or the two polyethylene glycol groups of the detergent Triton X-100. In this work, Triton X-100 maintains the activity and increases the solubility of NST during purification and is critical to the formation of ordered crystals. Together, the mechanistic implications of the NST structure provide insight into lipooligosaccharide sialylation with respect to the association of substrates and the essential membrane-anchored nature of NST on the bacterial surface. 相似文献
8.
9.
10.
Neisseria meningitidis expresses a heterogeneous populationof lipooligosaccharide (LOS) inner cores variously substitutedwith 1-3-linked glucose and O-3, O-6, and O-7 linked phosphoethanolamine(PEA), as well as glycine, attached to HepII. Combinations ofthese attachments to the LOS inner core represent immunodominantepitopes that are being exploited as future vaccine candidates.Historically, each LOS immunotype was structurally assessedand prescribed a certain unique inner core epitope. We reportthat a single isolate, strain NMB, possesses the capacity toproduce all of the known neisserial LOS inner core immunotypestructures. Analysis of the inner cores from parental LOS revealedthe presence or absence of 1,3-linked glucose, O-6 and/or O-7linked PEA, in addition to glycine attached at the 7 positionof the HepII inner core. Identification and inactivation oflpt-6 in strain NMB resulted in the loss of both O-6 and O-7linked PEA groups from the LOS inner core, suggesting that Lpt-6of strain NMB may have bifunctional transferase activities orthat the O-6 linked PEA groups once attached to the inner coreundergo nonenzymatic transfer to the O-7 position of HepII.Although O-3 linked PEA was not detected in parental LOS innercores devoid of 1-3-linked glucose residues, LOS glycoformsbearing O-3 PEA groups accumulated in a truncated mutant, NMBlgtK(Hep2Kdo2-lipid A). Because these structures disappeared uponinactivation of the lpt-3 locus, strain NMB expresses a functionalO-3 PEA transferase. The LOS glycoforms expressed by NMBlgtKwere also devoid of glycine attachments, indicating that glycinewas added to the inner core after the completion of the -chainby LgtK. In conclusion, strain NMB has the capability to expressall known inner core structures, but in in vitro culture L2and L4 immunotype structures are predominantly expressed. 相似文献
11.
Structure of the L2 lipopolysaccharide core oligosaccharides of Neisseria meningitidis. 总被引:4,自引:0,他引:4
A Gamian M Beurret F Michon J R Brisson H J Jennings 《The Journal of biological chemistry》1992,267(2):922-925
Three different oligosaccharides were identified following mild acid hydrolysis of the lipopolysaccharide obtained from Neisseria meningitidis serotype 2 and their structures elucidated by combined chemical and physical techniques. The use of 500 MHz 1H nmr in both one- and two-dimensional modes as well as nuclear Overhauser effect experiments were employed. To assist in the structural assignments the oligosaccharides were also degraded by chemical and enzymatic procedures to smaller fragments. The oligosaccharides were all triantennary nonasaccharides in which the longest antenna terminates in lacto-N-neotetraose. Two of the nonasaccharides (major components), not separable by column chromatography, were distinguishable only by their different patterns of phosphorylethanolamine substitution and the third minor component by the absence of this substituent. 相似文献
12.
Tzeng YL Datta A Strole C Kolli VS Birck MR Taylor WP Carlson RW Woodard RW Stephens DS 《The Journal of biological chemistry》2002,277(27):24103-24113
We have identified and defined the function of kpsF of Neisseria meningitidis and the homologues of kpsF in encapsulated K1 and K5 Escherichia coli. KpsF was shown to be the arabinose-5-phosphate isomerase, an enzyme not previously identified in prokaryotes, that mediates the interconversion of ribulose 5-phosphate and arabinose 5-phosphate. KpsF is required for 3-deoxy-d-manno-octulosonic acid (Kdo) biosynthesis in N. meningitidis. Mutation of kpsF or the gene encoding the CMP-Kdo synthetase (kpsU/kdsB) in N. meningitidis resulted in expression of a lipooligosaccharide (LOS) structure that contained only lipid A and reduced capsule expression in the five invasive disease-associated meningococcal serogroups (A, B, C, Y, and W-135). The step linking meningococcal capsule and LOS biosynthesis was shown to be Kdo production as the expression of capsule was wild type in a Kdo transferase (kdtA) mutant. Thus, in addition to lipooligosaccharide assembly, Kdo is required for meningococcal capsular polysaccharide expression. Furthermore, N. meningitidis, unlike enteric Gram-negative bacteria, can survive and synthesize only unglycosylated lipid A. 相似文献
13.
Comparison of lipopolysaccharide biosynthesis genes rfaK, rfaL, rfaY, and rfaZ of Escherichia coli K-12 and Salmonella typhimurium. 下载免费PDF全文
Analysis of the sequence of a 4.3-kb region downstream of rfaJ revealed four genes. The first two of these, which encode proteins of 27,441 and 32,890 Da, were identified as rfaY and rfaZ by homology of the derived protein sequences of their products to the products of similar genes of Salmonella typhimurium. The amino acid sequences of proteins RfaY and RfaZ showed, respectively, 70 and 72% identity. Genes 3 and 4 were identified as rfaK and rfaL on the basis of size and position, but the derived amino acid sequences of the products of these genes showed very little similarity (about 12% identity) between Escherichia coli K-12 and S. typhimurium. The next gene in the cluster, rfaC, encodes a product which also shows strong protein sequence homology between E. coli K-12 and S. typhimurium, as do the rfaF and rfaD genes which lie beyond it. Thus, the rfa gene cluster appears to consist of two blocks of genes which are conserved flanking a central region of two genes which are not conserved between these species. Although the RfaL protein sequence is not conserved, hydropathy plots of the two RfaL species are nearly identical and indicate that this is a typical integral membrane protein with 10 or more potential transmembrane domains. We noted the similarity of the structure of the rfa gene cluster to that of the rfb gene cluster, which has now been sequenced in several Salmonella serovars. The rfb cluster also contains a gene which lies within a central nonconserved region and encodes an integral membrane protein similar to protein RfaL. We speculate that protein RfaL may interact in a strain- or species-specific way with one or more Rfb proteins in the expression of surface O antigen. 相似文献
14.
Khomenkov VG Kazeeva TN Shevelev BI Bargrasser VP Skoblov MIu Shevelev AB 《Molekuliarnaia genetika, mikrobiologiia i virusologiia》2007,(1):30-35
IgA1-specific proteinases (Igase) are acknowledged as a pivotal pathogenicity factor in meningococcus (Neisseria meningitidis) and in some related bacteria. These enzymes belong to trypsin-like clan of serine proteases. They exhibit high substrate selectivity being able to discriminate between IgA1 and IgA2. On the other hand, these enzymes are able to distinguish the human IgA1 from IgA1 of non-primate species of mammals. In addition to conventional IgA1-processing enzymes, alternative enzymes were recently reported to occur in meningococci. However, the substrate specificity of the conventional Igase, its role in pathogenesis, and ability to complement functionality remains obscure. Within the framework of the present project we studied the structure of the Igase genes and their products in two highly virulent N. meningitidis serogroup A strains M9 and A208. In particular, we succeeded to find both conventional and alternative Igase genes in each genome: nucleotide sequences of these genes were deposited in the NCBI Gene Bank under the access number AY770504, AY558158, AY558159. The DNA sequence of the conventional Igase was almost entirely conserved in the two strains, whereas the recently discovered alternative Igase (formerly known as meningococcal adhesine, type 1) exhibited occurrence of a variable region spanning about 900 bp in the 5'-terminal part of the gene. Conventional genes from both strains were expressed in E. coli rendering inclusion bodies. The recombinant products were used for immunization of rabbits and exhibited reaction with both recombinant and native antigen from the N. meningitidis cultural medium. 相似文献
15.
The biosynthesis of the lipooligosaccharide (LOS) in Neisseria meningitidis has a control point that regulates the extension of the alpha-chain on heptose (I) of the LOS. The gene that encodes the protein responsible for this control had been identified elsewhere, but the enzyme encoded by the gene was not characterized. We have now shown that this same control mechanism operates in the related species, Neisseria gonorrhoeae, using a gene knockout and subsequent characterization of the LOS species produced. We also cloned and expressed the enzyme from both of these pathogens. Using a synthetic acceptor substrate, we have shown unequivocally that the enzyme is an alpha-1,2-N-acetylglucosaminyltransferase. Experiments with both the core oligosaccharide and the synthetic acceptors suggests that the addition of the alpha-1,2-N-acetylglucosamine moiety on the heptose (II) residue precedes the addition of the ethanolamine phosphate at the O3 position on this heptose (II), and that in the absence of the alpha-1,2-N-acetylglucosamine moiety leads to the addition of an extra ethanolamine phosphate on the heptose (II) residue. Our data do not support the hypothesis that ethanolamine phosphate at O3 of heptose (II) is added and is then required for the addition of the N-acetylglucosamine at O2 by the LgtK enzyme. This enzyme represents a control point in the biosynthesis of the LOS of this pathogen and is a potential target for therapeutic intervention. 相似文献
16.
Vyacheslav L. L'vov Irina K. Verner Larisa Yu. Musina Alexander V. Rodionov Anatoly V. Ignatenko Alexander S. Shashkov 《Archives of microbiology》1992,157(2):131-134
On the basis of chemical and NMR data the partial structure of lipid A from lipooligosaccharide (LOS) of Neisseria meningitidis group B, strain BC5S No 125 was established. Lipid A consisted of disaccharide 2-deoxy-6-O-[2-deoxy-2-(3-hydroxytetradecanoylamino)--gluco-pyranosyl]-2-(3-hydroxytetradecanoylamino)--glucopyranose carrying the -(2-aminoethyl)pyrophosphate residue at 0–4 and the pyrophosphate or phosphate residue at 0–1. On hydrolysis of the acidic form of LOS with 1% acetic acid the substituent at 0–1 was practically completely removed whereas that at 0–4 was stable. The analogous hydrolysis of the Mg-salt of LOS was accompanied by splitting off the pyrophosphate linkage in the substituent at 0–4. Hydrolysis of LOS at pH 4.5 in the presence of SDS led mainly to a lipid A preparation retaining both pyrophosphate residues.Abbreviations KDO
2-keto-3-deoxyoctulosonic acid
- LA-I, LA-II
preparations of lipid A
- LOS
lipooligosaccharide
- LOS-H+
the acidic form of LOS
- OS
oligosaccharide
- TLC
thin-layer chromatography
- GLC-MS
gas-liquid chromatography/mass spectrometry 相似文献
17.
18.
John S. Swartley Jacqueline T. Balthazar Jack Coleman William M. Shafer David S. Stephens 《Molecular microbiology》1995,18(3):401-412
Lysophosphatidic acid (LPA) acyltransferases of Neisseria meningitidis and Neisseria gonorrhoeae were identified which share homology with other prokaryotic and eukaryotic LPA acyltransferases. In Escherichia coli, the conversion of LPA to phosphatidic acid, performed by the 1-acyl-sn-glycerol-3-phosphate acyltransferase PlsC, is a critical intermediate step in the biosynthesis of membrane glycerophospholipids. A Tn916-generated mutant of a serogroup B meningococcal strain was identified that exhibited increased amounts of capsular polysaccharide, as shown by colony immunoblots, and a threefold increase in the number of assembled pili. The single, truncated 3.8 kb Tn916 insertion in the meningococcal mutant was localized within a 771 bp open reading frame. The gonococcal equivalent of this gene was identified by transformation with the cloned meningococcal mutant gene. In N. gonorrhoeae, the mutation increased piliation fivefold. The insertions were found to be within a gene that was subsequently designated nIaA (n eisserial L PA acyltransferase). The predicted neisserial LPA acyltransferases were homologous (>20% identity,>40% amino acid similarity) to the family of PlsC protein homologues. A cloned copy of the meningococcal nIaA gene complemented in trans a temperature-sensitive E. coli PlsCts? mutant. Tn916 and Ω-cassette insertional inactivations of the neisserial nIaA genes altered the membrane glycerophospholipid compositions of both N. meningitidis and N. gonorrhoeae but were not lethal. Therefore, the pathogenic Neisseria spp. appear to be able to utilize alternative enzyme(s) to produce phosphatidic acid. This hypothesis is supported by the observation that, although the amounts of mature glycerophospholipids were altered in the meningococcal and the gonococcal nIaA mutants, glycerophospholipid synthesis was detectable at significant levels. In addition, acyltransferase enzymatic activity, while reduced in the gonococcal nIaA mutant, was increased in the meningococcal nIaA mutant. We postulate that the pathogenic Neisseria spp. are able to utilize alternate acyltransferases to produce glycerophospholipids in the absence of nIaA enzymatic activity.Implementation of these secondary enzymes results in alterations of glycerophospholipid composition that lead to pleiotropic effects on the cell surface components, including effects on capsule and piliation. 相似文献
19.
Analysis in Neisseria meningitidis and other Neisseria species of genes homologous to the FKBP immunophilin family 总被引:2,自引:0,他引:2
The immunophilin family of FK506-binding proteins (FKBPs), involved in eukaryotic protein folding and cell regulation, have recently been found to have prokaryotic homologues. Genes with sequences homologous to those encoding human FKBPs were examined in Neisseria species. An FKBP DNA sequence was present, as shown by the polymerase chain reaction and Southern blotting experiments, in the chromosome of Neisseria meningitidis (14 strains) and in all 11 different commensal Neisseria spp. studied, but was not found in Neisseria gonorrhoeae (11 strains tested) or in Moraxella catarrhalis. The nucleotide and predicted protein sequences of the FKBP-encoding domain from five of the meningococcal strains were highly conserved (e.g. ≥97% homologous). The meningococcal nucleotide sequence was ≥93% homologous and the consensus meningococcal protein sequence was ≥97% homologous to FKBP sequences found in seven different commensal Neisseria spp. The meningococcal nucleotide and predicted protein sequences were ≥59% homologous to the conserved C-terminus of the human FKBP gene family. The FKBP nucleotide sequence was present as a single copy in the chromosome of commensal Neisseria spp. and in most strains of N. meningitidis. The FKBP gene was linked to the silent pilin locus, pilS, in class II-piliated meningococcal strains. In meningococcal strains expressing class I pili, the FKBP gene was linked to one of several pilS loci but not the pilE locus present in these strains. FKBP genes found in commensal Neisseria spp. were not linked to known pilin loci. 相似文献
20.
The genes for phosphofructokinase and pyruvate kinase of Lactobacillus delbrueckii subsp. bulgaricus constitute an operon. 下载免费PDF全文
In Lactobacillus delbrueckii subsp. bulgaricus, the pyk gene coding for pyruvate kinase and the pfk gene coding for phosphofructokinase formed a bicistronic operon transcribed into a 2.9-kb RNA. The nucleotide sequence of the pyk gene indicated that the encoded protein possessed an extra C-terminal domain with a potential phosphoenolpyruvate-dependent autophosphorylation site. 相似文献