首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
To detect DNA polymorphisms in the peanut, we screened 26 polymorphic primers using intron–exon splice junction (ISJ), universal rice primer (URP), and directed amplification of minisatellite region DNA (DAMD) techniques. Amplification of genomic DNA of 16 peanut accessions yielded 121 ISJ, 50 URP, and 25 DAMD fragments, of which 34, 25 and 16 were polymorphic, respectively. The range of polymorphism was 10.0–62.5%, averaging 27.7%, for ISJ; 20–80%, averaging 49.5%, for URP; and 28.6–50.0%, averaging 36.3%, for DAMD. In comparisons of multiplex ratio, average polymorphism information content, and marker index, the URP markers were relatively more efficient than ISJ and DAMD markers. Clustering results remained more or less the same with ISJ and URP markers. To the best of our knowledge, this is the first report on the study of the genetic diversity of the peanut using ISJ, URP, and DAMD markers.  相似文献   

2.
Flavoparmelia caperata (L.) Hale is medicinally very important and possesses antifungal and antibacterial activities. F. caperata is the only species found in India. Inter simple sequence repeat (ISSR) and Directed amplification of minisatellite DNA (DAMD) methods were used to analyze the genetic variability within F. caperata from the Western Himalayan region of India. Eleven ISSR and 10 DAMD primers produced 139 and 117 polymorphic bands, and detected 91.44 and 82.34 % polymorphisms, respectively. Cumulative band data generated for ISSR and DAMD markers resulted in 86.86 % polymorphism across all the accessions of F. caperata. The average Polymorphic information content (PIC) value obtained with ISSR, DAMD, and cumulative band data were 0.28, 0.27, and 0.27, respectively. The clustering of the F. caperata accessions in the UPGMA dendrogram showed that these accessions are intermingled with each other in different subclusters irrespective of their geographical affiliations. The pattern of genetic variations within F. caperata accessions could be due to free exchange of spores that might have taken place among these accessions in the wild. ISSR and DAMD markers efficiently and reliably resulted in discrete banding patterns and polymorphic profiles. These markers despite targeting different regions of genome, revealed almost similar levels of polymorphism across all the accessions. The wide range of genetic distance and high level of polymorphism detected by ISSR and DAMD reflected a high genetic variability among the different accessions of F. caperata.  相似文献   

3.
Murraya koenigii (L.) Spreng. (Rutaceae), is an aromatic plant and much valued for its flavor, nutritive and medicinal properties. In this study, three DNA fingerprinting methods viz., random amplification of polymorphic DNA (RAPD), directed amplification of minisatellite DNA (DAMD), and inter-simple sequence repeat (ISSR), were used to unravel the genetic variability and relationships across 92 wild and cultivated M. koenigii accessions. A total of 310, 102, and 184, DNA fragments were amplified using 20 RAPD, 5 DAMD, and 13 ISSR primers, revealing 95.80, 96.07, and 96.73% polymorphism, respectively, across all accessions. The average polymorphic information content value obtained with RAPD, DAMD, and ISSR markers was 0.244, 0.250, and 0.281, respectively. The UPGMA tree, based on Jaccard’s similarity coefficient generated from the cumulative (RAPD, DAMD, and ISSR) band data showed two distinct clusters, clearly separating wild and cultivated accessions in the dendrogram. Percentage polymorphism, gene diversity (H), and Shannon information index (I) estimates were higher in cultivated accessions compared to wild accessions. The overall high level of polymorphism and varied range of genetic distances revealed a wide genetic base in M. koenigii accessions. The study suggests that RAPD, DAMD, and ISSR markers are highly useful to unravel the genetic variability in wild and cultivated accessions of M. koenigii.  相似文献   

4.
Genetic diversity and interrelationships among 31 lentil genotypes were evaluated using 10 Inter-Simple Sequence Repeat (ISSR) and 10 directed amplification of minisatellite DNA region (DAMD) primers. A total of 43 and 48 polymorphic bands were amplified by ISSR and DAMD markers, respectively. Average polymorphism information content (PIC) for ISSR and DAMD markers were 0.37 and 0.41, respectively. All 31 lentil genotypes could be distinguished by ISSR markers into three groups and by DAMD markers into two groups. Various molecular markers show a different efficiency for evaluating DNA polymorphism in lentil and indicate that the patterns of variation are clearly influenced by the genetic marker used. Comparatively, the genetic diversity of examined lentil genotypes by two different marker techniques (ISSR and DAMD) was high and indicated that ISSR and DAMD are effective and promising marker systems for fingerprinting in lentil and give useful information on its genetic relationships.  相似文献   

5.
A combination of directed amplification of minisatellite DNA (DAMD) and random amplification of polymorphic DNA (RAPD) primes were used to assess the genetic variation within and between three isolated populations of Indian sandalwood (Santalum album). Eleven primers used in this study amplified 65.99 % polymorphic bands. Analysis of molecular variance revealed a high genetic variation among these populations (ϕST = 0.549). There are indications of clonality within the existing Indian sandalwood populations which can be attributed to habitat fragmentation, isolation and vegetative reproduction.  相似文献   

6.
应用SRAP标记分析黄瓜的遗传差异   总被引:1,自引:0,他引:1  
利用49对SRAP引物对4种不同类型28份黄瓜种质资源进行了遗传差异分析.结果表明,有35对引物扩增出多态性,在28份资源间共产生724条扩增带,平均每对引物组合产生20.69条;共检测出337个多态性位点,多态性比率为46.5%,每对引物平均为96.3个.利用NTSYS软件分析遗传相似系数,UPGMA方法聚类分析表明,28份资源可聚为两大类.试验结果表明SRAP标记位点多,重复性好,可以揭示不同类型黄瓜种质之间的遗传基础.  相似文献   

7.
Mulberry is the sole food source for mulberry silkworm and a number of indigenous and exotic varieties are used in sericulture. Studies on assessment of genetic diversity have been done amongst a few mulberry varieties using one or at the most two methods. However, no comprehensive study on a large number of varieties has been carried out. In present study, single primer amplification reaction (SPAR) methods have been used for determination of diversity in 27 mulberry varieties (exotic as well as indigenous), using four minisatellite core sequence primers for directed amplification of minisatellite DNA (DAMD), three simple sequence repeat (SSR) motifs as primers for inter simple sequence repeat (ISSR) and 20 arbitrary sequence decamer primers for random amplified polymorphic DNA (RAPD) reactions. The Jaccard coefficients were determined for the DAMD, ISSR and RAPD band data (total of 58, 39 and 235 bands respectively). All three methods revealed wide range of distances supporting a wide range of mulberry genetic diversity. A cumulative analysis of the data generated by three methods resulted in a neighbour-joining (NJ) tree that gave a better reflection of the relatedness and affinities of the varieties to each other. Comparison of the three methods by marker indices and the Mantel test of correlation indicated that though all methods were useful for the assessment of diversity in mulberry, the DAMD method was better. When considered as two groups (10 exotic and 17 indigenous varieties), the mulberry varieties in the exotic group were found to have slightly greater diversity than the indigenous ones. These results support the concept of naturalization of mulberry varieties at locales distant from their origins. NBRI communication No. 542.  相似文献   

8.
 Inter-simple sequence repeat polymorphic DNA (ISSR) was evaluated for its applicability as a genetic marker system in wheat. PCR was carried out with primers that annealed to simple sequence repeats. The resultant products were subjected to agarose-gel electrophoresis, and the banding patterns were compared among six wheat accessions containing diploid, tetraploid, and hexaploid members. Out of 100 examined, 33 primers produced distinguishable as well as polymorphic bands in each of the six accessions. Although most of the primers that gave distinct bands (30 primers out of 33) contained dinucleotide repeats, each of the primers with tri-, tetra-, and penta-nucleotide motifs also yielded discrete bands. Primers based on (AC)n repeats gave the most polymorphic bands. In total, 224 polymorphic bands were found in the comparison between Einkorn wheats whereas, on the average, 120 polymorphic bands were detected between common wheats. ISSR primers produced several times more information than RAPD markers. The extent of band polymorphism was similar to that of RFLP markers, and greater than that of RAPDs. The genetic relationships of wheat accessions estimated by the polymorphism of ISSR markers were identical with those inferred by RFLP and RAPD markers, indicating the reliability of ISSR markers for estimation of genotypes. These polymorphic bands are potential candidates as novel markers for use in linkage-map construction in wheat. The characteristic features of ISSR markers, i.e. polymorphism, generation of information and ease of handling, suggest their applicability to the analysis of genotypes as well as to the construction of PCR-based genome maps of wheats. Received: 15 September 1996 / Accepted: 25 October 1996  相似文献   

9.
The genetic fidelity of in vitro-raised plants of three successive regenerations of Nepenthes khasiana Hook. f. was assessed using three different single primer amplification reaction (SPAR) methods, viz., random amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR) and direct amplification of minisatellite DNA region (DAMD) markers. Out of 80 RAPD primers screened, 14 primers reflected a genetic variation of 4.1% in the first regeneration which was increased to 9.4% in the third regeneration. In the case of ISSR, out of 36 primers screened for assessment of genetic homogeneity of the regenerated plantlets, 12 primers showed an increase of genetic variation from 4.3% to 10% from the first to the third regenerations. In DAMD profiling, 15 primers were used for the evaluation of genetic fidelity where 8.47% of polymorphism was observed in the first regeneration which was increased to 13.33% in the third regeneration. The cumulative analysis reflected a genetic variation of 5.65% in the first regeneration which increased subsequently to 7.77% in the second regeneration and 10.87% in the third regeneration. The present study demonstrates SPAR technique to be an efficient tool for the assessment of clonal fidelity of in vitro-raised plants.  相似文献   

10.
Genetic variability and population structure of Sapindus trifoliatus L. (Sapindaceae), collected from Gujarat, Karnataka and Uttar Pradesh states were estimated using three DNA fingerprinting methods viz., random amplified polymorphic DNA (RAPD), directed amplification of minisatellite DNA (DAMD) and inter-simple sequence repeats (ISSR). The cumulative data analysis carried out for all three markers showed 69.42 % polymorphism. The intra-population genetic diversity analysis revealed the highest values of Nei’s genetic diversity (0.16), Shannon information index (0.24) and polymorphic loci (43.99 %) among Bhavnagar (BH) population, whereas lowest values were found in Junagarh (JU) population. The maximum inter-population average genetic distance (0.20) was between Allahabad (AL) and JU populations. Analysis of molecular variance (AMOVA) showed highest percentage of variation among individuals of populations (56 %) followed by 25 % among populations and 19 % among regions. Principal coordinate analysis and UPGMA dendrogram revealed that genetic diversity was in congruence with the geographical diversity. The data strongly suggest that low genetic flow, geographic isolation and to some extent genetic drift are the major factors responsible for high genetic differentiation. Preservation of genetic diversity of S. trifoliatus is important, both to promote adaptability of the populations to changing environment as well as to preserve a large gene pool for future genetic improvement. The present study using RAPD, DAMD and ISSR profiles of S. trifoliatus provide the means of rapid characterization of accessions within the populations, and thus enable the selection of appropriate accessions for further utilization in conservation and prospection programs of this important plant genetic resource.  相似文献   

11.
RAPD和ISSR标记对水稻化感种质资源遗传多态性的分析   总被引:23,自引:1,他引:22  
运用RAPD和ISSR技术分析水稻化感种质资源的遗传多态性。从供试材料中筛选到具有多态性的RAPD引物12条,ISSR引物7条。RAPD引物共扩增到85条清晰的多态性条带,多态性条带比率为69.4%。ISSR引物共扩增到34条清晰的多态性条带,多态性条带比率为53.0%。对两种标记结果进行UPGMA聚类分析,结果极其类似,呈极显著的正相关(r=0.74)。聚类结果表明,地理位置相近的品种聚为一类。部分具有较强化感作用潜力的水稻品种亲缘关系很近,表明控制其化感作用性状的基因可能是等位的相同基因。而部分化感作用潜力差异显著的水稻品种聚为一类,这是由于人类在长期高产品种的定向选择过程中,水稻化感作用性状不被注意而丢失,遗传基础日益狭窄的原因。  相似文献   

12.
利用RAPD标记分析大麦种质资源的遗传多样性   总被引:6,自引:4,他引:6  
利用RAPD标记对19份西藏近缘野生大麦材料、33份我国不同省市的地方品种以及8份国外引进大麦品种共60份大麦种质资源的遗传多样性进行检测.结果表明材料间遗传差异明显.32个RAPD引物中,有25个引物(占78.13%)可扩增出清晰且具多态性的条带,另外7个引物能扩增出1~3条清晰但无多态性的条带.每个引物可扩增出1~8条多态性带,平均为3.72条.32个引物共产生119条DNA片段,其中87条具有多态性,多态性比率(PPB)为73.11%,平均多态信息量(PIC)为0.434;每个位点平均有效等位基因数(Ne)为2.304;材料间遗传相似系数GS变化范围为0.757~0.981,平均值为0.871.19份来源于西藏的近缘野生大麦材料间GS值变幅为0.818~0.969,平均为0.892;33份我国栽培大麦地方品种间的GS值变化范围为0.783~0.981,平均为0.879;8份分别来自8个国家的栽培大麦品种间的GS值变幅为0.820~0.956,平均为0.882.根据RAPD标记分析的结果,对60份大麦种质资源进行聚类分析,在平均GS值0.871水平上60份大麦材料可聚为5类,聚类结果能在一定程度上反应材料的地理分布关系,但某些相同地理来源的材料也较分散地分布在整个聚类树中.本研究从分子水平上进一步证明了我国栽培大麦丰富的遗传多样性,是世界栽培大麦的遗传多样性中心之一.  相似文献   

13.
从300条随机引物中筛选出能稳定扩增的26个引物.对黄瓜育成品种“春玉”等21个实验材料进行扩增,在扩增出的173条谱带中,多态性带有80条,比例为46.24%。“春玉”在用引物E13扩增时有特异缺失条带,大小为400bp,可作为特征性指纹图谱,为其产权保护提供分子依据。利用各材料的DNA指纹可将不同参试材料鉴别出来。同时利用MEGA软件进行UPGMA聚类分析,将参试材料在相似系数0.706处分为4个组群。  相似文献   

14.
The genetic diversity among 39 cucumber collections from Karnataka, India was assessed using 23 RAPD and 18 ISSR primers. A total of 309 bands were scored of which 147 (47.57 %) were polymorphic. The average number of bands per primer was 7.82 and an average number of polymorphic bands of 3.58 per primer. The primers UBC855 revealed the highest PIC (polymorphism information content) value of 0.49 followed by the primers UBC846, OPE13, OPC01 and OPR12 (0.48). The Jaccard’s similarity coefficients ranged from 0.36 to 0.84 and the first two principal components explained 53.33 % of the total variance. The UPGMA phenogram and the PCA (Principle component analysis) indicated that the populations formed five major clusters. CSC 83 (774 g per fruit) and CSC 71 (yellow skin) are considered to be the most important collections to be stressed for further breeding purpose. The available genetic resources of cucumber in Karnataka were characterized.  相似文献   

15.
小苍兰种质遗传多样性的ISSR分析   总被引:6,自引:5,他引:1  
利用ISSR(Inter Simple Sequence Repeat)分子标记对12份小苍兰(Freesia refracta)种质进行了遗传多样性分析研究。从34条ISSR引物中筛选出了12条适宜的引物。这12条引物中每条引物可扩增出5~11条DNA片段,共扩增了96个条带,其中多态性片段62条,平均每条引物可产生5.2条多态性片段,多态性条带比率(PPB)为64.6%。经NTSYS-pc分析,12份小苍兰种质间的遗传距离(GD)的变化范围为0.123~0.907,平均为0.442。根据Nei’s相似系数建立了UPGMA聚类图,在相似系数为0.56时,可将紫色花系的小苍兰种质与其它种质分开,形成两个组。结果表明,ISSR分子标记可有效地分析小苍兰种质资源的遗传多样性和亲缘关系,为小苍兰的杂交育种和新品种保护提供理论基础。  相似文献   

16.
Sharma SK  Kumaria S  Tandon P  Rao SR 《Gene》2011,483(1-2):54-62
A total of 53 primers belonging to three SPAR methods, viz. RAPD, ISSR and DAMD, collectively produced 456 polymorphic amplicons with 96.6% polymorphism at inter-specific level in five species of Cymbidium, viz. C. aloifolium, C. mastersii, C. elegans, C. eburneum and C. tigrinum, whereas at intra-specific level, the observed polymorphism ranged from 51.2% to 77.1% among them. Three SPARs collectively revealed 25 unique species-specific amplicons; most of them were amplified with RAPD and DAMD primers besides few bands which were either missed (absent) or lost (heterozygosity). UPGMA clustering evidently distinguished the representatives of C. aloifolium and C. tigrinum, with distinct genetic distance, which may be due to their entirely different habitats as well as discrete morphological characteristics. Upon analysis of the data generated, all the three SPAR methods, either independently and/or in combination, revealed wide range of genetic variation between and within five species of Cymbidium. Comparison of matrix of individual SPAR method revealed that analysis of natural genetic variation using combination of SPAR methods, rather than an isolated approach, is highly effective. The critical analyses of the amplicon data are indicative of DAMD as the most powerful SPAR method by showing highest resolving power (Rp) followed by ISSR and RAPD. Alternatively, the total polymorphic information content was highest in case of RAPD followed by other two SPAR methods. Thus, the present investigation for the first time provides a valuable baseline data for genetic variation at inter- and intra-specific levels in horticultural Cymbidiums and also addresses conservation concerns.  相似文献   

17.
Genetic variability and population structure of Bergenia ciliata (Haw.) Sternb., commonly known as “Pashanbheda” (Stone-breaker), collected from the Western Himalayan region of India were estimated using two DNA fingerprinting methods viz., directed amplification of minisatellite DNA (DAMD) and inter simple sequence repeats (ISSR). The cumulative data analysis of DAMD and ISSR markers for 74 accessions from eight populations showed 86.1% polymorphism. Analysis of molecular variance (AMOVA) showed highest percentage of variation within individuals of populations (73.6%) and 21.7% among populations. STRUCTURE and PCoA analyses on the hierarchical partitioning of genetic diversity showed strong admixture of individuals among the eight assumed geographical populations of B. ciliata. The data suggests that high genetic flow is one of the major factors responsible for low genetic differentiation. Preservation of genetic diversity of B. ciliata is important, both to promote adaptability of the populations to changing environment as well as to preserve a large gene pool for future prospection. The present study using DAMD and ISSR markers, therefore, provide the means of rapid characterization of accessions within the populations, and thus enable the selection of appropriate accessions for further utilization in conservation and prospection programmes.  相似文献   

18.
 A polymerase chain reaction (PCR) application, involving the directed amplification of minisatellite-region DNA (DAMD) with several minisatellite core sequences as primers, was used to detect genetic variation in 17 species of the genus Oryza and several rice cultivars (O. sativa L.). The electrophoretic analysis of DAMD-PCR products showed high levels of variation between different species and little variation between different cultivars of O. sativa. Polymorphisms were also found between accessions within a species, and between individual plants within an accession of several wild species. The DAMD-PCR yielded genome-specific banding patterns for the species studied. Several DAMD-PCR-generated DNA fragments were cloned and characterized. One clone was capable of detecting multiple fragments and revealed individual-specific hybridization banding patterns using genomic DNA from wild species as well as rice cultivars. A second clone detected only a single polymorphic locus, while a third clone expressed a strong genome specificity by Southern analysis. The results demonstrated that DAMD-PCR is potentially useful for species and genome identification in Oryza. The DAMD-PCR technique also allows for the isolation of informative molecular probes to be utilized in DNA fingerprinting and genome identification in rice. Received: 1 October 1996 / Accepted: 25 April 1997  相似文献   

19.
Twenty-five accessions of mango were examined for random amplified polymorphic DNA (RAPD) genetic markers with 80 10-mer random primers. Of the 80 primers screened, 33 did not amplify, 19 were monomorphic, and 28 gave reproducible, polymorphic DNA amplification patterns. Eleven primers were selected from the 28 for the study. The number of bands generated was primer- and genotype-dependent, and ranged from 1 to 10. No primer gave unique banding patterns for each of the 25 accessions; however, ten different combinations of 2 primer banding patterns produced unique fingerprints for each accession. A maternal half-sib (MHS) family was included among the 25 accessions to see if genetic relationships could be detected. RAPD data were used to generate simple matching coefficients, which were analyzed phenetically and by means of principal coordinate analysis (PCA). The MHS clustered together in both the phenetic and the PCA while the randomly selected accessions were scattered with no apparent pattern. The uses of RAPD analysis for Mangifera germ plasm classification and clonal identification are discussed.  相似文献   

20.
Selected amplicon data obtained through our earlier study using ISSR and DAMD markers were utilized for determination of diversity within and among the populations of Prosopis cineraria (L.) accessions collected from different districts of Rajasthan (India). A total of 83 bands were generated from eight ISSR and five DAMD primers of which 79 were found to be polymorphic (95.18%). Nei’s gene diversity (h) ranged between 0.185 and 0.301 with overall diversity of 0.316 while Shannon’s information index (I) values recorded between 0.253 and 0.438 with an average value of 0.243. The gene flow value (1.713) and the diversity among populations (0.226) demonstrated higher genetic variation within the population. It is concluded that P. cineraria is accompanied by high genetic diversity within the population and elevated gene flow showing indications of adaptation to callous and fragile dry conditions of arid environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号