首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Antisera were raised against lysosomal cathepsin D of man, chicken and rabbit. 2. The antisera were found to be specific and potent inhibitors of cathepsin D activity. 3. The immunological nature of the inhibition was established. 4. The inhibitory effect was studied by varying pH, antiserum/enzyme ratio, time of incubation, concentration of components and order of mixing, and by using purified antibody and univalent antibody fragments. 5. The specificities of the antisera were examined with respect to other enzymes, isoenzymes of cathepsin D and cathepsin D from different organs. 6. The antisera prevented the action of cathepsin D on isolated proteoglycans and on cartilage. 7. The antisera produced up to 90% inhibition of the autolysis of cartilage from chicks and rabbits, indicating that cathepsin D is the enzyme mainly responsible for the breakdown of proteoglycans in this system.  相似文献   

2.
The purification and properties of cathepsin L from rabbit liver.   总被引:5,自引:4,他引:1       下载免费PDF全文
Cathepsin L was purified from rabbit liver by a method involving whole-tissue homogenization, pH precipitation, ammonium sulphate fractionation and chromatography on CM-Sephadex C-50, phenyl-Sepharose and Sephadex G-75. Pure enzyme was obtained without the necessity of laborious subcellular fractionation techniques. The Mr of the enzyme was determined to be 29 000 by gel filtration, and affinity for concanavalin A-Sepharose indicated that it was a glycoprotein. A novel technique for detection of enzyme activity in agarose isoelectrofocusing gels showed that the enzyme existed in multiple isoenzymic forms with pI values ranging from 5.0 to 5.9. The enzyme catalysed the hydrolysis of azocasein, collagen and Z-Phe-Arg-NMec (where Z and NMec indicate benzyloxycarbonyl and N-methylcoumarin derivative respectively) optimally at pH 5.2, 3.3 and 6.0 respectively. In addition, cathepsin L was found to degrade benzoyl-Phe-Val-Arg-NMec and 3-carboxypropionyl-Ala-Phe-Lys-NMec. However, cathepsin B also cleaved all of these substrates. One major difference between these two enzymes was in their Michaelis constants for Z-Phe-Arg-NMec; cathepsin B had Km 75 microM whereas that of cathepsin L was 0.7 microM. Cathepsin L was inhibited by all of the usual chemical inhibitors of thiol proteinases as well as the more specific inhibitors Z-Phe-Phe-CHN2, Z-Phe-Ala-CHN2, compound E-64 and compound Ep-475. Active-site titration with compound E-64 showed that the purified sample contained 80% active protein, which had kcat. 20s-1 for the substrate Z-Phe-Arg-NMec. Antibodies were raised to active cathepsin L, and these did not cross-react with cathepsin B, thus demonstrating that these two enzymes are immunologically distinct.  相似文献   

3.
A monoclonal antibody raised against rabbit liver cathepsin M binds to intact rabbit liver lysosomes. The binding is specific and is abolished by treating the lysosomes with trypsin, which has previously been shown to digest the membrane-bound cathepsin M [S. Pontremoli, E. Melloni, M. Michetti, F. Salamino, B. Sparatore, and B. L. Horecker (1982) Biochem, Biophys. Res. Commun. 106, 903-909]. Rabbit liver lysosomes are adsorbed onto Sepharose 4B coupled to anti-cathepsin M, but not to Sepharose 4B itself or to Sepharose coupled to a nonspecific antibody. The results confirm the location of membrane-bound cathepsin M on the outer surface of the lysosomal membrane.  相似文献   

4.
The isolated cathepsin D-like enzyme from Atlantic cod (Gadus morhua L.) liver was shown to be a monomer with a molecular mass of approximately 40 kDa. It was inhibited by Pepstatin A and had an optimum for degradation of haemoglobin at pH 3.0. The purified enzyme had lower temperature stability than bovine cathepsin D. Antibodies raised against the purified enzyme and against two C-terminal peptides of cod cathepsin D recognized a 40 kDa protein in immunoblotting of the samples from the purification process. Both antisera showed cross reactivity with a similar sized protein in liver from cod, saithe (Pollachius virens L.), Atlantic herring (Clupea harengus L.) and Atlantic salmon (Salmo salar L.). A protein of same size was detected in wolffish (Anarhichas lupus L.) liver with the antibody directed against the purified enzyme. This antibody also recognized the native enzyme and detected the presence of cathepsin D in muscle of cod, saithe, herring and salmon. These antibodies may be useful in understanding the mechanisms of post mortem muscle degradation in fish by comparing immunohistochemical localization and enzyme activity, in particular in cod with different rate of muscle degradation. They may also be used for comparing muscle degradation in different fish species.  相似文献   

5.
Cathepsin L variants purified from sheep and ox liver are shown to have similar catalytic properties to those from rat, rabbit and man with regard to activity against the substrate benzyloxycarbonyl-Phe-Arg-7-(4-methyl)coumarylamide and inhibition by benzyloxycarbonyl-Phe-Phe-diazomethane, thus identifying cathepsin L in these species for the first time. All five variants of cathepsin L are shown to be immunologically related by their interaction with antibodies raised to the human enzyme. Sheep liver was found to yield more enzyme than any other species, suggesting that this tissue is a good source of cathepsin L. Cathepsin S, a closely related enzyme, could not be detected in livers of any of these species.  相似文献   

6.
An erythrocyte membrane-associated cathepsin D-like acid proteinase, termed "EMAP," was purified to homogeneity from freshly collected rat blood in a yield of 60-65%. The molecular weight of the enzyme was determined to be 80,000-82,000 by Sephadex G-100 gel filtration. The enzyme was inhibited strongly by pepstatin and partially by HgCl2, Pb(NO3)2, and iodoacetic acid. The preferred substrate for the enzyme was hemoglobin. The enzyme also hydrolyzed serum albumin and casein, but to lesser extents, with an optimum pH of 3.5-4.0. However, it could not hydrolyze leucyl-2-naphthylamide, benzyloxycarbonyl-Phe-Arg-4-methyl-7-coumarylamide or other synthetic substrates at pH values ranging from 3.5 to 9.5. The enzyme was very similar to human EMAP in a number of enzymatic properties, whereas it differed from rat cathepsin D in several respects, such as pH stability, molecular weight, isoelectric point, and chromatographic properties. Immunologically, the enzyme cross-reacted with the rabbit antibody prepared against human EMAP. The patterns of immunoelectrophoresis, immunoblotting, and immunoprecipitation of the enzyme were remarkably similar, if not identical, to those of human EMAP. In contrast, rat EMAP showed no reaction with the rabbit antibody raised to rat spleen cathepsin D. These results indicate that EMAP is a unique cathepsin D-like acid proteinase different from ordinary cathepsin D.  相似文献   

7.
To investigate the intracellular transport mechanism of lysosomal cathepsin L in yeast cells, we attempted to produce mouse cathepsin L in Saccharomyces cerevisiae by placing the coding region under the control of the promoter of the yeast glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene. Immunoblotting analysis by the use of an antibody specific for rat cathepsin L revealed that the yeast cells carrying the cathepsin L coding sequence produced 39- and 30-kDa products, which correspond to the rat procathepsin L and the single-chain form of mature cathepsin L, respectively. The precursor polypeptide showed sensitivity toward endoglycosidase H treatment. Cell fractionation experiments demonstrated that the processed form of 30-kDa cathepsin L was found to be colocalized to the yeast vacuole with the marker enzyme carboxypeptidase Y in a Ficoll step gradient. In the prepared vacuolar fraction, a considerable amount of cathepsin L was revealed to be cofractionated with the vacuolar membranes. Furthermore, the phase separation experiments with Triton X-114 provide the first evidence showing that the mature form of cathepsin L polypeptide is strongly associated with the vacuolar membranes. Therefore, the present results suggest that the mouse cathepsin L precursor polypeptide is initially synthesized as the proenzyme in the yeast cells and then correctly delivered to the vacuole. During the intracellular sorting pathway, the procathepsin L would undergo the post-translational proteolytic processing step to generate the mature enzyme. Based on these lines of evidence, we propose that cathepsin L is recognized by mechanisms similar to those for the intracellular sorting and processing of vacuolar proteins in the yeast cells.  相似文献   

8.
We describe a novel diazomethylketone-containing irreversible inhibitor (BIL-DMK) which is specific for a subset of pharmaceutically important cysteine cathepsin proteases. BIL-DMK rapidly inactivates cathepsins B, F, K, L, S, and V in isolated enzyme assays and labels cathepsins in whole cells. The presence of catalytically active cathepsins B, L, and K or S was demonstrated using radioiodinated BIL-DMK in HepG2 (hepatoma), HIG82 (rabbit synoviocyte), and Ramos (B lymphoma) cell lines, respectively. The identity of each protein labeled was confirmed from the isoelectric point and molecular mass of the radioactive spots on two-dimensional gel and by comigration with each cathepsin as identified by immunoblotting. These cell lines were used to establish whole-cell enzyme occupancy assays to determine the potency of both irreversible and reversible inhibitors against each cathepsin in their native cellular lysosomal or endosomal environment. These whole-cell enzyme occupancy assays are useful to determine the cellular permeability of competing inhibitors and have the advantage of not requiring specific substrates for each cathepsin of interest.  相似文献   

9.
Membrane-associated cathepsin L: a role in metastasis of melanomas   总被引:1,自引:0,他引:1  
Subcellular distribution of cathepsin L, the major protein released by transformed or ras transfected fibroblasts, was examined in murine liver, murine B16 amelanotic melanoma and human A2058 melanoma after sequential differential and Percoll density gradient centrifugation. In both murine and human melanomas, cathepsin L activity was found to be enriched in plasma membrane fractions; cathepsin L in these fractions was in both native and acid activatable forms. Plasma membrane fractions from B16 melanoma subpopulations of "low" and "high" metastatic potential were assayed for activity of cathepsin L and of heat stable endogenous inhibitors. The relative specific activity of cathepsin L was 7-fold greater in the subpopulation of "high" metastatic potential, whereas cysteine proteinase inhibitory activity was 5-fold less. Since cathepsin L can degrade intact basement membrane, this membrane-associated cathepsin L may well contribute to metastatic spread of melanomas.  相似文献   

10.
A previously found proteinase possibly involved in the modification of hexokinase to eliminate the mitochondria-binding ability without appreciable change in the catalytic activity (called hexokinase-processing enzyme hereafter), was purified by sequential chromatographies from rat liver and its properties were examined. The hexokinase-processing enzyme had carbohydrate moieties as evidenced by adsorption on immobilized concanavalin A, and had a molecular weight of about 23,000 as estimated by SDS-PAGE and gel filtration chromatography. Benzyloxycarbonyl-phenylalanyl-L-arginine-4-methylcoumaryl-7-amide (Z-Phe-Arg-MCA)-hydrolyzing activity was co-purified with this processing activity throughout the purification, while the hydrolyzing activity for benzyloxycarbonyl-L-arginyl-L-arginine-4-methylcoumaryl-7-amide (Z-Arg-Arg-MCA) was not. The processing activity, as well as Z-Phe-Arg-MCA hydrolyzing activity, was highly sensitive to cysteine proteinase inhibition, for example, by leupeptin and N-[N-3-(trans-carboxirane-2-carbonyl)-L-leucyl]agmatine (E-64). Furthermore, the enzyme preparation reacted with an antibody against cathepsin L purified from rat kidney. These results indicated that cathepsin L may be involved in the above-mentioned processing of hexokinase.  相似文献   

11.
We have utilized specific, irreversible inhibitors of cysteine proteinases to examine the role of renal cathepsin B and cathepsin L in the proteinuria which occurs in an experimental model of human glomerular disease. Administration of trans-epoxysuccinyl-L-leucylamido-(3-methyl)butane (Ep475) a specific, irreversible inhibitor of cysteine proteinases, including cathepsins B and L, significantly reduced proteinuria in rats with experimentally induced, neutrophil-independent, anti-GBM antibody disease (controls: 10 +/- 1 mg/24 h, N = 8; anti-GBM antibody disease: 203 +/- 30 mg/24 h, N = 8; anti-GBM antibody disease + Ep475: 112 +/- 13 mg/24 h, mean +/- SEM, N = 6, P less than 0.05). There was a marked reduction in the activity of both cathepsin B and cathepsin L in renal cortices obtained from Ep475-treated rats compared to either saline-treated controls or rats treated with anti-GBM IgG only. Administration of Z-Phe-Tyr(O-t-butyl)CHN2, a specific, irreversible cysteine proteinase inhibitor with a high degree of selectivity toward cathepsin L, also caused a reduction in anti-GBM antibody-induced proteinuria (90 +/- 18 mg/24 h, N = 6, P less than 0.05). This reduction in proteinuria was accompanied by a marked decrease (-84%) in the specific activity of renal cortical cathepsin L in Z-Phe-Tyr(O-t-butyl)CHN2-treated rats. However, cathepsin B activity was unchanged. There was no significant change in the renal anti-GBM antibody uptake, plasma urea nitrogen, or plasma creatinine values in the Z-Phe-Tyr(O-t-butyl)CHN2-treated rats compared to rats treated with anti-GBM IgG only or saline-treated controls. These data document the ability of cysteine proteinase inhibitors to decrease the proteinuria which occurs in a neutrophil-independent model of human anti-GBM antibody disease and suggest an important role for cathepsin L in the pathophysiology of the proteinuria which occurs in this model.  相似文献   

12.
1. This paper describes the purification and characterization of collagenolytic property of renal cathepsin L isolated from kidney of rats rendered adjuvant arthritis. The enzyme was isolated by acid extraction, ammonium sulfate fractionation, Sephadex gel filtration, CM-Sephadex chromatography and Sephacryl S-300 chromatography. 2. The enzyme preparation was found to be homogeneous by gel filtration and SDS-polyacrylamide gel electrophoresis. The molecular weight of the enzyme was estimated to be 29,000. 3. Incubation of rat tail tendon collagen with purified cathepsin L resulted a conversion of cross-linked beta-chain dimers into uncross-linked alpha-chain monomers. The pH optimum for collagen degradation by purified cathepsin L was found to be 3.5. This optimal pH is shifted to 4.5 when haemoglobin was used as a substrate for the enzyme. 4. Various activators and inhibitors were tested for their influence on the activity of cathepsin L. The purified enzyme showed a maximal activity in the presence of EDTA. Cysteine was also found to increase the activity of cathepsin L. This enzyme was strongly inhibited by iodoacetate, p-chloromercurobenzoate, mercuric chloride but not inhibited by pepstatin or PMSF. E-64 and leupeptin were also found to be strong inhibitors for cathepsin L. The degradation of rat tail tendon collagen by cathepsin L was completely inhibited by E-64. 5. The results presented in this investigation suggest that cathepsin L play a crucial role in the pathogenesis of adjuvant arthritis.  相似文献   

13.
Cathepsin K is known to play an important role in bone resorption, and it has the P2 specificity for proline. Rat cathepsin K has 88% identity with the human enzyme. However, it has been reported that its enzymatic activity for a Cbz-Leu-Arg-MCA substrate is lower than that of human cathepsin K, and that the rat enzyme is not well inhibited by human cathepsin K inhibitors. For this study, we prepared recombinant enzyme to investigate the substrate specificity of rat cathepsin K. Cleavage experiments using the fragment of type I collagen and peptidic libraries demonstrated that rat cathepsin K preferentially hydrolyses the substrates at the P2 Hyp position. Comparison of the S2 site between rat and human cathepsin K sequences indicated that two S2 residues at Ser134 and Val160 in rat are varied to Ala and Leu, respectively, in the human enzyme. Cleavage experiments using two single mutants, S134A and V160L, and one double mutant, S134A/V160L, of rat cathepsin K showed that all the rat mutants lost the P2 Hyp specificity. The information obtained from our comparative studies on rat and human cathepsin K should make a significant impact on developing specific inhibitors of human cathepsin K since rat is usually used as test species.  相似文献   

14.
Summary The immunohistochemical location of cathepsin L in rabbit soleus, plantaris and psoas muscles was investigated using the peroxidase-anti-peroxidase (PAP) technique. The amount of enzyme detected varied according to the fibre type, which were identified by histochemical staining of serial sections for succinate dehydrogenase and alkali-stable myosin ATPase. In the three muscles studied labelling was strongest in the highly oxidative fibres and weaker in the other fibre types with least staining in the fast white fibres. Immunoreactive cathepsin L appeared to be most concentrated at the periphery of muscle fibres, especially near to the nuclei, although some staining was seen throughout the fibres.  相似文献   

15.
A noninvasive cell-based assay has been developed to monitor the proteolytic activity of cathepsin L within a specific subcellular compartment, the lysosome. The green fluorescent protein (GFP) of Aequorea victoria was selected as a substrate. Targeting to lysosomes was achieved by fusing GFP to preprocathepsin L, which also ensures colocalization of the enzyme and the substrate. Stably transfected HeLa-rtTA (reverse tetracycline-controlled transactivator) cells were induced with doxycycline and cultured in the presence of various concentrations of cysteine protease inhibitors for 48 h. In the absence of inhibitor, proteolytic degradation of GFP leads to loss of fluorescence, which is due almost exclusively to the action of recombinant cathepsin L. However, a dose-dependent increase of GFP fluorescence is observed for cells treated with the potent cathepsin L inhibitor benzyloxycarbonyl-LeuLeuTyr-CHN(2). Fluorescence is also observed when GFP is fused to an inactive preprocathepsin L (C25A mutant). Targeting of GFP to an acidic cellular compartment can destabilize the protein and render it susceptible to proteolytic degradation. The approach should be generally applicable for proteases localized in acidic environments. Such an assay can be of great value in validating the participation of a specific enzyme in a given process or in testing the ability of putative inhibitors to reach their intracellular target.  相似文献   

16.
The immunohistochemical location of cathepsin L in rabbit soleus, plantaris and psoas muscles was investigated using the peroxidase-anti-peroxidase (PAP) technique. The amount of enzyme detected varied according to the fibre type, which were identified by histochemical staining of serial sections for succinate dehydrogenase and alkali-stable myosin ATPase. In the three muscles studied labelling was strongest in the highly oxidative fibres and weaker in the other fibre types with least staining in the fast white fibres. Immunoreactive cathepsin L appeared to be most concentrated at the periphery of muscle fibres, especially near to the nuclei, although some staining was seen throughout the fibres.  相似文献   

17.
Two unique cathepsin D-type proteases apparently present only in rat thoracic duct lymphocytes and in rat lymphoid tissues are described. One, termed H enzyme, has an apparent molecular weight of similar to95,000; the other, termed L enzyme, has an apparent molecular weight of similar to45,000, in common with that of most cathepsins D from other tissues and species. Both enzymes differ from cathepsin D, however, by a considerably greater sensitivity to inhibition by pepstatin and by a smaller degree of inhibition by an antiserum which inhibits rat liver cathepsin D. H enzyme is converted to L enzyme by treatment with beta-mercaptoethanol; the relationship between the two enzymes remains unknown. H and L enzyme have been detected in rat lymphoid tissues and in mouse spleen, but they are not present in other rat tissues (liver, kidney, adrenals), rabbit tissues, calf thymus, bovine spleen, or human tonsils. As measured on acid-denatured bovine hemoglobin as substrate, both enzymes have pH activity curves identical with that of rat liver cathepsin D, with optimal activity at pH 3.6. Activity on human serum albumin is much less and also shows an optimum at pH 3.6; hence, neither enzyme has the properties of cathepsin E. Thiol-reactive inhibitiors have no effect on the activity of H and L enzyme; thus they do not belong to the B group of cathepsins. Additional information, discussed in this paper, leads us to conclude that partially purified H and L enzymes are cathepsin D-type proteases.  相似文献   

18.
Participation of a cathepsin L-type protease in the activation of caspase-3   总被引:7,自引:0,他引:7  
A previous paper from this laboratory reported the activation of a caspase-3-like protease by a digitonin-treated lysosomal fraction [FEBS Lett. 435, 233-236, 1998]. In this study, we examined the effects of specific inhibitors of lysosomal cysteine proteases, such as cathepsins B, S, and L, on the activation of caspase-3 to find out which cathepsin is responsible for the activation. Pro-caspase-3 in the cytosol was cleaved by a lysosomal protease(s) contained in the supernatant of a digitonin-treated crude mitochondrial fraction containing lysosomes (ML) and the cleaved product was detected by Western blotting using anti-caspase-3 antibody. The activation of caspase-3 by the lysosomal protease(s) was pH dependent and the optimum pH for activation was pH 6.6-6.8. This activation was not inhibited by CA-074, a specific inhibitor of cathepsin B, but was strongly inhibited by CLIK-066 and CLIK-181, specific inhibitors of cathepsin L. The inhibitory effect of CLIK-060, a specific inhibitor of cathepsin S, was very weak. Furthermore, the activation of caspase-3 was enhanced by addition of purified cathepsin L only in the presence of the supernatant of the digitonin-treated ML. These results suggested that a cathepsin L-type protease activity might participate in the activation mechanism of caspase-3 in the presence of the supernatnat from the ML.  相似文献   

19.
By indirect immunofluorescence and immunogold electron microscopy with an antibody that recognizes specifically the two forms of native mature rat cathepsin B (31 kDa and 5:25 kDa) but not the proenzyme, we detected cathepsin B not only in lysosomes of adult rat exocrine pancreatic cells but also in the trans Golgi condensing vacuoles, the zymogen granules and the pancreatic juice in the intralobular ducts. In contrast, immunocytochemistry with an antibody specific for rat cathepsin D showed the latter to be present in the same cells only in lysosomal compartments as expected. The same pattern of labeling with these two antibodies was found in the first zymogen granules to form in 17-day-old fetal rat pancreas. Counts of the extent of immunogold labeling of cathepsin B in the adult exocrine cells showed that the concentration of the enzyme was only two-fold higher in the lysosomal compartments than in the zymogen granules. To confirm these observations, rat pancreatic postnuclear supernatant (PNS), a fraction enriched in zymogen granules and rat pancreatic juice obtained by catheterization of the pancreatic duct, were subjected to 2D gel electrophoresis followed by immunoblotting with the cathepsin B antibody. All three samples contained a 31 kDa protein recognized by the antibody with a pI of about 4.5, the single chain mature form of cathepsin B. We then radiolabeled pancreatic PNS and zymogen granule fractions with benzyloxycarbonyl-Tyr[125I]-Ala-CHN2, an affinity label that covalently binds to the active sites of mature forms of both cathepsin B and cathepsin L. In both PNS and zymogen granule fractions this reagent labeled cathepsin B. Immunoprecipitation experiments showed that the antibody to cathepsin B recognized specifically both the single chain and the double chain mature forms of cathepsin B in the native state. Finally, Northern blots with a cDNA of rat cathepsin B showed that the concentration of cathepsin B mRNA in total pancreatic RNA increased following in vivo stimulation of the exocrine pancreatic cells with optimal doses of cerulein, a cholecystokinin analogue. We conclude that significant amounts of mature cathepsin B are secreted from exocrine pancreatic cells via the apical regulated exocytotic pathway, and we discuss this in terms of models for sorting of proteins to the cores of dense cored secretory granules.  相似文献   

20.
Lysosomal cysteine proteinase cathepsin B is implicated in remodeling the extracellular matrix, a crucial step in the process of tumor cell invasion. In this study the contributions of intracellular and extracellular cathepsin B activities in the invasion of ras-transformed human breast epithelial cells, MCF-10A neoT, were assessed using specific cathepsin B neutralizing monoclonal antibody (Mab) 2A2, together with other general and specific cysteine proteinase inhibitors. We showed that the degradation of extracellular matrix by living MCF-10A neoT cells was predominantly intracellular, as imaged by confocal assays using quenched fluorescent substrate DQ-collagen IV. CA-074, a membrane-impermeable cathepsin B-selective inhibitor and its membrane-permeable analogue CA-074Me showed similar inhibition of invasion at 10 microM, i.e., 24.9 and 27.0%, respectively. Neutralizing monoclonal antibody exhibited a significantly higher inhibitory effect, decreasing invasion at 0.5 microM by 42.7%. Tumor cells may internalize monoclonal antibody; therefore, 2A2 Mab could impair both the intracellular and the extracellular fractions of cathepsin B activity. However, both 2A2 Mab and cathepsin B-selective inhibitors were less potent than the general cysteine proteinase inhibitors chicken cystatin and E-64, indicating that other cysteine proteinases, presumably cathepsin L, are involved in invasion. Our results show that intracellular and extracellular cathepsin B activity contribute to in vitro invasion of MCF-10A neoT cells and suggest that inhibitors capable of impairing both fractions have a potential as new anticancer drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号