首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The CD1e protein participates in the presentation of lipid antigens in dendritic cells. Its transmembrane precursor is transported to lysosomes where it is cleaved into an active soluble form. In the presence of bafilomycin, which inhibits vacuolar ATPase and consequently the acidification of endosomal compartments, CD1e associates with a 27 kD protein. In this work, we identified this molecular partner as LAPTM5. The latter protein and CD1e colocalize in trans-Golgi and late endosomal compartments. The quantity of LAPTM5/CD1e complexes increases when the cells are treated with bafilomycin, probably due to the protection of LAPTM5 from lysosomal proteases. Moreover, we could demonstrate that LAPTM5/CD1e association occurs under physiological conditions. Although LAPTM5 was previously shown to act as a platform recruiting ubiquitin ligases and facilitating the transport of receptors to lysosomes, we found no evidence that LATPM5 controls either CD1e ubiquitination or the generation of soluble lysosomal CD1e proteins. Notwithstanding these last observations, the interaction of LAPTM5 with CD1e and their colocalization in antigen processing compartments both suggest that LAPTM5 might influence the role of CD1e in the presentation of lipid antigens.  相似文献   

2.
3.
4.
Signaling lymphocytic activation molecule F7 (SLAMF7) is a receptor present on immune cells, including natural killer (NK) cells. It is also expressed on multiple myeloma (MM) cells. This led to development of an anti-SLAMF7 antibody, elotuzumab, showing efficacy against MM. SLAMF7 mediates activating or inhibitory effects in NK cells, depending on whether cells express or do not express the adaptor EAT-2. Since MM cells lack EAT-2, we elucidated the inhibitory effectors of SLAMF7 in EAT-2-negative NK cells and tested whether these effectors were triggered in MM cells. SLAMF7-mediated inhibition in NK cells lacking EAT-2 was mediated by SH2 domain-containing inositol phosphatase 1 (SHIP-1), which was recruited via tyrosine 261 of SLAMF7. Coupling of SLAMF7 to SHIP-1 required Src kinases, which phosphorylated SLAMF7. Although MM cells lack EAT-2, elotuzumab did not induce inhibitory signals in these cells. This was at least partly due to a lack of CD45, a phosphatase required for Src kinase activation. A defect in SLAMF7 function was also observed in CD45-deficient NK cells. Hence, SLAMF7-triggered inhibition is mediated by a mechanism involving Src kinases, CD45, and SHIP-1 that is defective in MM cells. This defect might explain why elotuzumab eliminates MM cells by an indirect mechanism involving the activation of NK cells.  相似文献   

5.
6.
7.
Abstract

The helical structures of d(C-G-m5C-G-C-G) were studied in aqueous solution at various salt concentrations and temperatures by CD and 1H-NMR spectroscopy. At room temperature only the B form is observed in 0.1 M NaCl whereas the B and Z forms are simultaneously present in 1.8 M NaCl. At high salt concentration (4 M NaCl) the Z form is largely predominant (> 95%). The Z form proton resonances were assigned by using the polarisation transfer method (between B and Z at 1.8 M NaCl) and by proton-proton decoupling (at high salt concentration).

The Z-B-Coil transitions were studied as a function of temperature with the 1.8 M NaCl solution. At high temperature (95°C) only the coil form (S) is present. Below 55°C the coil proportion is negligible, and the B-Z exchange is slow. The disappearance of the coil gives rise at first to the B form and on lowering the temperature the Z proportion increases to the detriment of the B form. Proton linewidth, relaxation and polarisation transfer studies confirm the conclusion in the previous report on d(m5C-G-C-G-m5C-G) (Tran-Dinh et al Biochemistry 1984 in the press) that Z exchanges only with B whereas the latter also exchanges with S,Z ? B ? S. The present data show that even at high salt concentration where only the Z form of d(C-G-m5C-G-C-G) is observed the Z-S transition also passes through the B form as an intermediate stage. The B-Z transition takes place when the Watson-Crick hydrogen bonds are firmly maintained and is greatly favoured when there are three hydrogen bonds between the base-pairs.  相似文献   

8.
9.
10.
11.
T cells have a central role in the pathogenesis of autoimmune arthritis, and several abnormalities in T cell homeostasis have been described in rheumatoid arthritis (RA). We hypothesized that T cell phenotypes, including frequencies of different subsets of T regulatory (Treg) cells and in vitro functional responses could be genetically determined. Furthermore, we considered that the genetic contribution would be accounted for by one of the arthritis regulatory quantitative trait loci (QTL), thus providing novel clues to gene mode of action. T cells were isolated from thymus, peripheral blood, and spleen from DA (arthritis-susceptible) and ACI and F344 (arthritis-resistant) strains and from F344.DA(Cia1), DA.F344(Cia5a), and DA.F344(Cia5d) rats congenic for arthritis QTL. T cell subpopulations differed significantly between DA, F344, and ACI. DA rats had an increased frequency of CD4(+) cells, and a reduction in CD8(+) and CD4(+)CD45RC(|o) Treg cells, compared with F344. The differences in CD4/CD8 and CD4(+)CD45RC(|o) Treg cells were accounted for by Cia5a. DA rats also had a reduced frequency of CD8(+)CD45RC(|o) CD25(+) Treg cells compared with F344, and that difference was explained by Cia5d. DA rats also had a significantly lower frequency of CD4(+)CD25(+) and CD8(+)CD25(+) thymocytes, and of peripheral blood CD8(+)CD45RC(|o) Treg cells, compared with F344 rats, and that difference was accounted for by the MHC. This is the first identification of arthritis severity QTL regulating numbers of CD4(+)CD45RC(|o) (Cia5a) and CD8(+)CD45RC(|o) CD25(+) (Cia5d) Treg cells. The MHC effect on CD8(+) Treg cells and CD25(+) thymocytes raises a novel potential explanation for its association with arthritis.  相似文献   

12.
13.
The helical structures of d(C-G-m5C-G-C-G) were studied in aqueous solution at various salt concentrations and temperatures by CD and 1H-NMR spectroscopy. At room temperature only the B form is observed in 0.1 M NaCl whereas the B and Z forms are simultaneously present in 1.8 M NaCl. At high salt concentration (4 M NaCl) the Z form is largely predominant (greater than 95%). The Z form proton resonances were assigned by using the polarisation transfer method (between B and Z at 1.8 M NaCl) and by proton-proton decoupling (at high salt concentration). The Z-B-Coil transitions were studied as a function of temperature with the 1.8 M NaCl solution. At high temperature (95 degrees C) only the coil form (S) is present. Below 55 degrees C the coil proportion is negligible, and the B-Z exchange is slow. The disappearance of the coil gives rise at first to the B form and on lowering the temperature the Z proportion increases to the detriment of the B form. Proton linewidth, relaxation and polarisation transfer studies confirm the conclusion in the previous report on d(m5C-G-C-G-m5C-G) (Tran-Dinh et al Biochemistry 1984 in the press) that Z exchanges only with B whereas the latter also exchanges with S,Z in equilibrium B in equilibrium S. The present data show that even at high salt concentration where only the Z form of d(C-G-m5C-G-C-G) is observed the Z-S transition also passes through the B form as an intermediate stage. The B-Z transition takes place when the Watson-Crick hydrogen bonds are firmly maintained and is greatly favoured when there are three hydrogen bonds between the base-pairs.  相似文献   

14.
15.
16.
TRF1, a telomere-binding protein, is important for telomere protection and homeostasis. PinX1 interacts with TRF1, but the physiological consequences of their interaction in telomere protection are not yet understood. Here we investigated PinX1 function on TRF1 stability in HeLa cells. PinX1 overexpression stabilized TRF1, but PinX1 depletion by siRNA led to TRF1 degradation, TRF1 ubiquitination, and less TRF1 telomere association. The depletion also induced DNA damage responses at telomeres and chromosome instability. These telomere dysfunctional phenotypes were in fact due to TRF1 deficiency. We also report that hTERT, a catalytic component of telomerase, plays dual roles in the TRF1 steady state pathway. PinX1-mediated TRF1 stability was not observed in hTERT-negative immortal cells, but was pronounced when hTERT was ectopically expressed in the cells, suggesting that hTERT may be needed in the PinX1-mediated TRF1 stability pathway. Interestingly, the knockdown of both PinX1 and hTERT in HeLa cells stabilized TRF1, suppressed DNA damage response activation, and restored chromosome stability. In summary, our findings suggested that PinX1 may maintain telomere integrity by regulating TRF1 stability and that hTERT may act as both a positive and a negative regulator of TRF1 homeostasis in a PinX1-dependent manner.  相似文献   

17.
18.
19.
It is essential to establish a useful validation method for newly generated humanized mouse models. The novel approach of combining our established species-specific protein quantification method combined with in vivo functional studies is evaluated to validate a humanized mouse model of P-gp/MDR1 efflux transporter. The P-gp substrates digoxin, verapamil and docetaxel were administered to male FVB Mdr1a/1b(+/+) (FVB WT), FVB Mdr1a/1b(-/-) (Mdr1a/1b(-/-)), C57BL/6 Mdr1a/1b(+/+) (C57BL/6 WT) and humanized C57BL (hMDR1) mice. Brain-to-plasma total concentration ratios (Kp) were measured. Quantitative targeted absolute proteomic (QTAP) analysis was used to selectively quantify the protein expression levels of hMDR1, Mdr1a and Mdr1b in the isolated brain capillaries. The protein expressions of other transporters, receptors and claudin-5 were also quantified. The Kp for digoxin, verapamil, and docetaxel were 20, 30 and 4 times higher in the Mdr1a/1b(-/-) mice than in the FVB WT controls, as expected. The Kp for digoxin, verapamil and docetaxel were 2, 16 and 2-times higher in the hMDR1 compared to the C57BL/6 WT mice. The hMDR1 mice had 63- and 9.1-fold lower expressions of the hMDR1 and Mdr1a proteins than the corresponding expression of Mdr1a in C57BL/6 WT mice, respectively. The protein expression levels of other molecules were almost consistent between C57BL/6 WT and hMDR1 mice. The P-gp function at the BBB in the hMDR1 mice was smaller than that in WT mice due to lower protein expression levels of hMDR1 and Mdr1a. The combination of QTAP and in vivo functional analyses was successfully applied to validate the humanized animal model and evaluates its suitability for further studies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号