首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Rates of biodiversity loss are higher in freshwater ecosystems than in most terrestrial or marine ecosystems, making freshwater conservation a priority. However, prioritization methods are impeded by insufficient knowledge on the distribution and conservation status of freshwater taxa, particularly invertebrates. We evaluated the extinction risk of the world''s 590 freshwater crayfish species using the IUCN Categories and Criteria and found 32% of all species are threatened with extinction. The level of extinction risk differed between families, with proportionally more threatened species in the Parastacidae and Astacidae than in the Cambaridae. Four described species were Extinct and 21% were assessed as Data Deficient. There was geographical variation in the dominant threats affecting the main centres of crayfish diversity. The majority of threatened US and Mexican species face threats associated with urban development, pollution, damming and water management. Conversely, the majority of Australian threatened species are affected by climate change, harvesting, agriculture and invasive species. Only a small proportion of crayfish are found within the boundaries of protected areas, suggesting that alternative means of long-term protection will be required. Our study highlights many of the significant challenges yet to come for freshwater biodiversity unless conservation planning shifts from a reactive to proactive approach.  相似文献   

2.
Global climate change (GCC) is expected to lead to massive loss of global biodiversity in the alpine regions of mountain ranges. Studies on the potential effects of GCC on low mountain areas remain sparse, however, despite the high conservation value of these areas as biodiversity refugia. We chose a species distribution modeling approach to assess potential GCC impacts on the future distributions of montane freshwater invertebrates under two different greenhouse gas scenarios and three averaged general circulation models. For this, ensemble models consisting of six algorithms [generalized linear model (GLM), generalized boosted model (GBM), generalized additive model (GAM), classification tree analysis (CTA), artificial neural networks (ANN), and multivariate adaptive regression splines (MARS)] were applied to project areas of 23 cold-stenothermic aquatic insects from montane regions of Central Europe. We found an average loss of 70–80% of the potential distribution for the study species until 2080, depending on the underlying Intergovernmental Panel on Climate Change scenario. Species distribution ranges below 1000 m above sea level were found to decrease by up to ~96% according to the severest greenhouse gas emission scenario. While the Alps remain the single main refugium under the A2a greenhouse gas emission scenario, the more moderate climate scenario B2a shows fragmented potential persistence of montane insects in some low mountain ranges. The results show that montane freshwater assemblages in low mountain ranges are particularly threatened by ongoing GCC. As vertical dispersal is limited by elevational restriction, low mountain ranges may act as summit traps under GCC. We thus propose that GCC will lead to the extinction of several species and unique genetic lineages of postglacial relict species, resulting in a significant decline in Central European fauna.  相似文献   

3.
《Ostrich》2013,84(4):295-308
Global climate warming, now conclusively linked to anthropogenically-increased CO2 levels in the earth's atmosphere, has already had impacts on the earth's biodiversity and is predicted to threaten more than 1 million species with extinction by 2050. Climate change in southern Africa is expected to involve higher temperatures and lower rainfall, with less predictability and a greater frequency of severe storms, fires and El Niño events. The predicted changes to birds in Africa — the continent most at risk from climate change — have hardly been explored, yet birds and many other vertebrates face uncertain futures. Here, in one of the first focused analyses of the correlates of climate change vulnerability in southern African birds, we offer a wide-ranging perspective on which species may be most at risk, and explore which traits may influence the adaptability or extinction risk of bird species.

Our review suggests that small nomadic species with short generation times may be least at risk. While larger-bodied species may be physiologically buffered against environmental change, their longer generation times may make them less able to adapt evolutionarily to climate change. Migrant species, and those with specialised feeding niches such as pollinators, are also predicted to be at risk of population declines, based on low ability to adapt to new environments when introduced there as aliens. Species with small ranges (<50 000km2) restricted to the two southern African biodiversity hotspots most at risk from climate change — the Cape Floral Kingdom and the Succulent Karoo — are ranked according to low, medium or high risk of extinction. Those restricted to mountain slopes, mountain tops or islands, and those occurring mainly at the southern or western extremes of these biomes, are ranked as highest risk. These include endemic sunbirds, warblers and rock-jumpers — none of which are currently recognised Red Data species. Using climate envelopes we modelled the possible range shifts by 2050 of three pairs of species found in habitats considered to be at risk: fynbos, mountain and arid Karoo. All six species lost substantial portions of their range (x = 40%), with the montane Drakensberg Rock-jumper Chaetops aurantius losing most (69%). Significant reductions of available climate space in all species may interact with life history characteristics to threaten many southern African bird species unable to shift geographic range or adapt to novel resource conditions. We conclude with a list of research priorities and testable hypotheses which may advance our understanding of the complex influence that climate change is likely to have on African, particularly southern African, birds.  相似文献   

4.
Climate change is among the most important global threats to biodiversity and mountain areas are supposed to be under especially high pressure. Although recent modelling studies suggest considerable future range contractions of montane species accompanied with increased extinction risk, data allowing to test actual population consequences of the observed climate changes and identifying traits associated to their adverse impacts are very scarce. To fill this knowledge gap, we estimated long-term population trends of montane birds from 1984 to 2011 in a central European mountain range, the Giant Mountains (Krkonoše), where significant warming occurred over this period. We then related the population trends to several species'' traits related to the climate change effects. We found that the species breeding in various habitats at higher altitudes had more negative trends than species breeding at lower altitudes. We also found that the species moved upwards as a response to warming climate, and these altitudinal range shifts were associated with more positive population trends at lower altitudes than at higher altitudes. Moreover, long-distance migrants declined more than residents or species migrating for shorter distances. Taken together, these results indicate that the climate change, besides other possible environmental changes, already influences populations of montane birds with particularly adverse impacts on high-altitude species such as water pipit (Anthus spinoletta). It is evident that the alpine species, predicted to undergo serious climatically induced range contractions due to warming climate in the future, already started moving along this trajectory.  相似文献   

5.
Island species are thought to be extinction‐prone because of small population sizes, restricted geographical distribution and limited dispersal ability. However, the topographical and environmental heterogeneity, geographical isolation and stability of islands over long timescales could create refugia for taxa whose source area is threatened by environmental changes. We address this possibility by inferring the evolution of the New Caledonia (NC) and New Zealand (NZ) conifer diversity, which represents over 10% of the world's diversity for this group. We estimate speciation and extinction rates in relation to the presence/absence on these islands, and dispersal rates between the islands and surrounding areas. We also test the Eocene submersion of NC and the Oligocene drowning of NZ by comparing the fit of biogeographical scenarios using ancestral area estimations. We find that extinction rates were significantly lower for island species, and dispersal “out of islands” was higher. A model including a diversification shift when NC emerged better explains the diversification dynamics. Biogeographical analyses corroborate that conifers experienced high continental extinctions, but survived on islands. NC and NZ have thus contributed to the world's conifer diversity as “island refugia”, by maintaining early‐diverging lineages from continents during environmental changes on continents. These ancient islands also acted as “species pumps”, providing species into adjacent areas. Our study highlights the important but neglected role of islands in promoting the evolution and conservation of biodiversity.  相似文献   

6.
Species'' geographical distributions are tracking latitudinal and elevational surface temperature gradients under global climate change. To evaluate the opportunities to track these gradients across space, we provide a first baseline assessment of the steepness of these gradients for the world''s terrestrial birds. Within the breeding ranges of 9,014 bird species, we characterized the spatial gradients in temperature along latitude and elevation for all and a subset of bird species, respectively. We summarized these temperature gradients globally for threatened and non-threatened species and determined how their steepness varied based on species'' geography (range size, shape, and orientation) and projected changes in temperature under climate change. Elevational temperature gradients were steepest for species in Africa, western North and South America, and central Asia and shallowest in Australasia, insular IndoMalaya, and the Neotropical lowlands. Latitudinal temperature gradients were steepest for extratropical species, especially in the Northern Hemisphere. Threatened species had shallower elevational gradients whereas latitudinal gradients differed little between threatened and non-threatened species. The strength of elevational gradients was positively correlated with projected changes in temperature. For latitudinal gradients, this relationship only held for extratropical species. The strength of latitudinal gradients was better predicted by species'' geography, but primarily for extratropical species. Our findings suggest threatened species are associated with shallower elevational temperature gradients, whereas steep latitudinal gradients are most prevalent outside the tropics where fewer bird species occur year-round. Future modeling and mitigation efforts would benefit from the development of finer grain distributional data to ascertain how these gradients are structured within species'' ranges, how and why these gradients vary among species, and the capacity of species to utilize these gradients under climate change.  相似文献   

7.
The biodiversity in mountainous ecosystems is high but is threatened by rapid environmental change. Urbanization and other anthropogenic factors in the mountains can affect land use and spatial fragmentation. Moreover, patterns of habitat are closely related to elevation and have a major effect on montane biodiversity. The aim of this study was to analyze the effects of spatial fragmentation on the vertical distribution pattern of bird diversity by characterizing the structure of the bird community, species diversity, and landscape factors at different altitudes. From 2016 to 2019, this study made a four years of continuous monitoring of the breeding birds. The result indicated that Mount Tai harbored a high bird diversity. Bird richness, abundance, and Shannon‐Wiener index decreased with latitude in Mount Tai monotonically. Moreover, the structure of bird communities varied along altitudinal gradients, and some special species were supported in different elevational bands due to the environmental filtering. Road density, number of habitat patches, patch density, and the percentage of forest were significantly related to bird diversity. Sufficient habitat and more patches in the low‐mountain belt supported higher bird diversity. The middle‐mountain belt and high‐mountain belt showed contrasting patterns. Our results highlight the effects of on‐going urbanization and human activities on montane biodiversity and emphasize the need for artificial habitats in the mountains to be managed.  相似文献   

8.
China is one of the countries with the richest bird biodiversity in the world. Among the 1372 Chinese birds, 146 species are considered threatened and three species are regionally extinct according to the officially released China Biodiversity Red List in 2015. Here, we conducted the first extensive analysis to systematically investigate the patterns and processes of extinction and threat in Chinese birds. We addressed the following four questions. First, is extinction risk randomly distributed among avian families in Chinese birds? Second, which families contain more threatened species than would be expected by chance? Third, which species traits are important in determining the extinction risk in Chinese birds using a multivariate phylogenetic comparative approach? Finally, is the form of the relationship between traits additive or nonadditive (synergistic)? We found that the extinction risk of Chinese birds was not randomly distributed among taxonomic families. The families that contained significantly more threatened species than expected were the hornbills, cranes, pittas, pheasants and hawks and eagles. We obtained eleven species traits that are commonly hypothesized to influence extinction risk from the literature: body size, clutch size, trophic level, mobility, habitat specificity, geographical range size, nest type, nest site, flocking tendency, migrant status and hunting vulnerability. After phylogenetic correction, model selection based on Akaike's information criterion identified the synergistic interaction between body size and hunting vulnerability as the single best correlate of extinction risk in Chinese birds. Our results suggest that, in order to be effective, priority management efforts should be given both to certain extinction‐prone families, particularly the hornbills, pelicans, cranes, pittas, pheasants and hawks and eagles, and to bird species with large body size and high hunting vulnerability.  相似文献   

9.
Plant species have responded to recent increases in global temperatures by shifting their geographical ranges poleward and to higher altitudes. Bioclimate models project future range contractions of montane species as suitable climate space shifts uphill. The species–climate relationships underlying such models are calibrated using data at either ‘macro’ scales (coarse resolution, e.g. 50 km × 50 km, and large spatial extent) or ‘local’ scales (fine resolution, e.g. 50 m × 50 m, and small spatial extent), but the two approaches have not been compared. This study projected macro (European) and local models for vascular plants at a mountain range in Scotland, UK, under low (+1.7 °C) and high (+3.3 °C) climate change scenarios for the 2080s. Depending on scenario, the local models projected that seven or eight out of 10 focal montane species would lose all suitable climate space at the site. However, the European models projected such a loss for only one species. The cause of this divergence was investigated by cross‐scale comparisons of estimated temperatures at montane species' warm range edges. The results indicate that European models overestimated species' thermal tolerances because the input coarse resolution climate data were biased against the cold, high‐altitude habitats of montane plants. Although tests at other mountain ranges are required, these results indicate that recent large‐scale modelling studies may have overestimated montane species' ability to cope with increasing temperatures, thereby underestimating the potential impacts of climate change. Furthermore, the results suggest that montane species persistence in microclimatic refugia might not be as widespread as previously speculated.  相似文献   

10.
Mountain ecosystems support a significant one‐third of all terrestrial biodiversity, but our understanding of the spatiotemporal maintenance of this high biodiversity remains poor, or at best controversial. The Himalaya hosts a complex mountain ecosystem with high topographic and climatic heterogeneity and harbors one of the world''s richest floras. The high species endemism, together with increasing anthropogenic threats, has qualified the Himalaya as one of the most significant global biodiversity hotspots. The topographic and climatic complexity of the Himalaya makes it an ideal natural laboratory for studying the mechanisms of floral exchange, diversification, and spatiotemporal distributions. Here, we review literature pertaining to the Himalaya in order to generate a concise synthesis of the origin, distribution, and climate change responses of the Himalayan flora. We found that the Himalaya supports a rich biodiversity and that the Hengduan Mountains supplied the majority of the Himalayan floral elements, which subsequently diversified from the late Miocene onward, to create today''s relatively high endemicity in the Himalaya. Further, we uncover links between this Miocene diversification and the joint effect of geological and climatic upheavals in the Himalaya. There is marked variance regarding species dispersal, elevational gradients, and impact of climate change among plant species in the Himalaya, and our review highlights some of the general trends and recent advances on these aspects. Finally, we provide some recommendations for conservation planning and future research. Our work could be useful in guiding future research in this important ecosystem and will also provide new insights into the maintenance mechanisms underpinning other mountain systems.  相似文献   

11.
Global commitments to halt biodiversity decline mean that it is essential to monitor species'' extinction risk. However, the work required to assess extinction risk is intensive. We demonstrate an alternative approach to monitoring extinction risk, based on the response of species to external conditions. Using retrospective International Union for Conservation of Nature Red List assessments, we classify transitions in the extinction risk of 497 mammalian carnivores and ungulates between 1975 and 2013. Species that moved to lower Red List categories, or remained Least Concern, were classified as ‘lower risk''; species that stayed in a threatened category, or moved to a higher category of risk, were classified as ‘higher risk''. Twenty-four predictor variables were used to predict transitions, including intrinsic traits (species biology) and external conditions (human pressure, distribution state and conservation interventions). The model correctly classified up to 90% of all transitions and revealed complex interactions between variables, such as protected areas (PAs) versus human impact. The most important predictors were: past extinction risk, PA extent, geographical range size, body size, taxonomic family and human impact. Our results suggest that monitoring a targeted set of metrics would efficiently identify species facing a higher risk, and could guide the allocation of resources between monitoring species'' extinction risk and monitoring external conditions.  相似文献   

12.
Rapid anthropogenic climate change is driving threatened biodiversity one step closer to extinction. Effects on native biodiversity are determined by an interplay between species' exposure to climate change and their specific ecological and life-history characteristics that render them even more susceptible. Impacts on biodiversity have already been reported, however, a systematic risk evaluation of threatened marine populations is lacking. Here, we employ a trait-based approach to assess the risk of 90 threatened marine Mediterranean species to climate change, combining species' exposure to increased sea temperature and intrinsic vulnerability. One-quarter of the threatened marine biodiversity of the Mediterranean Sea is predicted to be under elevated levels of climate risk, with various traits identified as key vulnerability traits. High-risk taxa including sea turtles, marine mammals, Anthozoa and Chondrichthyes are highlighted. Climate risk, vulnerability and exposure hotspots are distributed along the Western Mediterranean, Alboran, Aegean, and Adriatic Seas. At each Mediterranean marine ecoregion, 21%–31% of their threatened species have high climate risk. All Mediterranean marine protected areas host threatened species with high risk to climate change, with 90% having a minimum of 4 up to 19 species of high climate risk, making the objective of a climate-smart conservation strategy a crucial task for immediate planning and action. Our findings aspire to offer new insights for systematic, spatially strategic planning and prioritization of vulnerable marine life in the face of accelerating climate change.  相似文献   

13.
Mountain regions contain extraordinary biodiversity. The environmental heterogeneity and glacial cycles often accelerate speciation and adaptation of montane species, but how these processes influence the genomic differentiation of these species is largely unknown. Using a novel chromosome-level genome and population genomic comparisons, we study allopatric divergence and selection in an iconic bird living in a tropical mountain region in New Guinea, Archbold''s bowerbird (Amblyornis papuensis). Our results show that the two populations inhabiting the eastern and western Central Range became isolated ca 11 800 years ago, probably because the suitable habitats for this cold-tolerating bird decreased when the climate got warmer. Our genomic scans detect that genes in highly divergent genomic regions are over-represented in developmental processes, which is probably associated with the observed differences in body size between the populations. Overall, our results suggest that environmental differences between the eastern and western Central Range probably drive adaptive divergence between them.  相似文献   

14.
Many of the world''s languages face serious risk of extinction. Efforts to prevent this cultural loss are severely constrained by a poor understanding of the geographical patterns and drivers of extinction risk. We quantify the global distribution of language extinction risk—represented by small range and speaker population sizes and rapid declines in the number of speakers—and identify the underlying environmental and socioeconomic drivers. We show that both small range and speaker population sizes are associated with rapid declines in speaker numbers, causing 25% of existing languages to be threatened based on criteria used for species. Language range and population sizes are small in tropical and arctic regions, particularly in areas with high rainfall, high topographic heterogeneity and/or rapidly growing human populations. By contrast, recent speaker declines have mainly occurred at high latitudes and are strongly linked to high economic growth. Threatened languages are numerous in the tropics, the Himalayas and northwestern North America. These results indicate that small-population languages remaining in economically developed regions are seriously threatened by continued speaker declines. However, risks of future language losses are especially high in the tropics and in the Himalayas, as these regions harbour many small-population languages and are undergoing rapid economic growth.  相似文献   

15.
Around the world, many species are confined to “Sky Islands,” with different populations in isolated patches of montane habitat. How does this pattern arise? One scenario is that montane species were widespread in lowlands when climates were cooler, and were isolated by local extinction caused by warming conditions. This scenario implies that many montane species may be highly susceptible to anthropogenic warming. Here, we test this scenario in a montane lizard (Sceloporus jarrovii) from the Madrean Sky Islands of southeastern Arizona. We combined data from field surveys, climate, population genomics, and physiology. Overall, our results support the hypothesis that this species' current distribution is explained by local extinction caused by past climate change. However, our results for this species differ from simple expectations in several ways: (a) their absence at lower elevations is related to warm winter temperatures, not hot summer temperatures; (b) they appear to exclude a low‐elevation congener from higher elevations, not the converse; (c) they are apparently absent from many climatically suitable but low mountain ranges, seemingly “pushed off the top” by climates even warmer than those today; (d) despite the potential for dispersal among ranges during recent glacial periods (~18,000 years ago), populations in different ranges diverged ~4.5–0.5 million years ago and remained largely distinct; and (e) body temperatures are inversely related to climatic temperatures among sites. These results may have implications for many other Sky Island systems. More broadly, we suggest that Sky Island species may be relevant for predicting responses to future warming.  相似文献   

16.
Large‐scale multi‐species data on population changes of alpine or arctic species are largely lacking. At the same time, climate change has been argued to cause poleward and uphill range shifts and the concomitant predicted loss of habitat may have drastic effects on alpine and arctic species. Here we present a multi‐national bird indicator for the Fennoscandian mountain range in northern Europe (Finland, Sweden and Norway), based on 14 common species of montane tundra and subalpine birch forest. The data were collected at 262 alpine survey plots, mainly as a part of geographically representative national breeding bird monitoring schemes. The area sampled covers around 1/4 million km2, spanning 10 degrees of latitude and 1600 km in a northeast–southwest direction. During 2002–2012, nine of the 14 bird species declined significantly in numbers, in parallel to higher summer temperatures and precipitation during this period compared to the preceding 40 yr. The population trends were largely parallel in the three countries and similar among montane tundra and subalpine birch forest species. Long‐distance migrants declined less on average than residents and short‐distance migrants. Some potential causes of the current decline of alpine birds are discussed, but since montane bird population sizes may show strong natural annual variation due to several factors, longer time series are needed to verify the observed population trends. The present Fennoscandian monitoring systems, which from 2010 onwards include more than 400 montane survey plots, have the capacity to deliver a robust bird indicator in the climate‐sensitive mountainous regions of northernmost Europe for conservation purposes.  相似文献   

17.
Rapid climatic changes and increasing human influence at high elevations around the world will have profound impacts on mountain biodiversity. However, forecasts from statistical models (e.g. species distribution models) rarely consider that plant community changes could substantially lag behind climatic changes, hindering our ability to make temporally realistic projections for the coming century. Indeed, the magnitudes of lags, and the relative importance of the different factors giving rise to them, remain poorly understood. We review evidence for three types of lag: “dispersal lags” affecting plant species’ spread along elevational gradients, “establishment lags” following their arrival in recipient communities, and “extinction lags” of resident species. Variation in lags is explained by variation among species in physiological and demographic responses, by effects of altered biotic interactions, and by aspects of the physical environment. Of these, altered biotic interactions could contribute substantially to establishment and extinction lags, yet impacts of biotic interactions on range dynamics are poorly understood. We develop a mechanistic community model to illustrate how species turnover in future communities might lag behind simple expectations based on species’ range shifts with unlimited dispersal. The model shows a combined contribution of altered biotic interactions and dispersal lags to plant community turnover along an elevational gradient following climate warming. Our review and simulation support the view that accounting for disequilibrium range dynamics will be essential for realistic forecasts of patterns of biodiversity under climate change, with implications for the conservation of mountain species and the ecosystem functions they provide.  相似文献   

18.
Potential impacts of climatic change on European breeding birds   总被引:1,自引:0,他引:1  

Background

Climatic change is expected to lead to changes in species'' geographical ranges. Adaptation strategies for biodiversity conservation require quantitative estimates of the magnitude, direction and rates of these potential changes. Such estimates are of greatest value when they are made for large ensembles of species and for extensive (sub-continental or continental) regions.

Methodology/Principal Findings

For six climate scenarios for 2070–99 changes have been estimated for 431 European breeding bird species using models relating species'' distributions in Europe to climate. Mean range centroid potentially shifted 258–882 km in a direction between 341° (NNW) and 45° (NE), depending upon the climate scenario considered. Potential future range extent averaged 72–89% of the present range, and overlapped the present range by an average of 31–53% of the extent of the present range. Even if potential range changes were realised, the average number of species breeding per 50×50 km grid square would decrease by 6·8–23·2%. Many species endemic or near-endemic to Europe have little or no overlap between their present and potential future ranges; such species face an enhanced extinction risk as a consequence of climatic change.

Conclusions/Significance

Although many human activities exert pressures upon wildlife, the magnitude of the potential impacts estimated for European breeding birds emphasises the importance of climatic change. The development of adaptation strategies for biodiversity conservation in the face of climatic change is an urgent need; such strategies must take into account quantitative evidence of potential climatic change impacts such as is presented here.  相似文献   

19.
Climate change is contributing to the widespread redistribution, and increasingly the loss, of species. Geographical range shifts among many species were detected rapidly after predictions of the potential importance of climate change were specified 35 years ago: species are shifting their ranges towards the poles and often to higher elevations in mountainous areas. Early tests of these predictions were largely qualitative, though extraordinarily rapid and broadly based, and statistical tests distinguishing between climate change and other global change drivers provided quantitative evidence that climate change had already begun to cause species’ geographical ranges to shift. I review two mechanisms enabling this process, namely development of approaches for accounting for dispersal that contributes to range expansion, and identification of factors that alter persistence and lead to range loss. Dispersal in the context of range expansion depends on an array of processes, like population growth rates in novel environments, rates of individual species movements to new locations, and how quickly areas of climatically tolerable habitat shift. These factors can be tied together in well-understood mathematical frameworks or modelled statistically, leading to better prediction of extinction risk as climate changes. Yet, species'' increasing exposures to novel climate conditions can exceed their tolerances and raise the likelihood of local extinction and consequent range losses. Such losses are the consequence of processes acting on individuals, driven by factors, such as the growing frequency and severity of extreme weather, that contribute local extinction risks for populations and species. Many mechanisms can govern how species respond to climate change, and rapid progress in global change research creates many opportunities to inform policy and improve conservation outcomes in the early stages of the sixth mass extinction.  相似文献   

20.
Global climate is rapidly changing and while many studies have investigated the potential impacts of this on the distribution of montane plant species and communities, few have focused on those with oceanic montane affinities. In Europe, highly sensitive bryophyte species reach their optimum occurrence, highest diversity and abundance in the north-west hyperoceanic regions, while a number of montane vascular plant species occur here at the edge of their range. This study evaluates the potential impact of climate change on the distribution of these species and assesses the implications for EU Habitats Directive-protected oceanic montane plant communities. We applied an ensemble of species distribution modelling techniques, using atlas data of 30 vascular plant and bryophyte species, to calculate range changes under projected future climate change. The future effectiveness of the protected area network to conserve these species was evaluated using gap analysis. We found that the majority of these montane species are projected to lose suitable climate space, primarily at lower altitudes, or that areas of suitable climate will principally shift northwards. In particular, rare oceanic montane bryophytes have poor dispersal capacity and are likely to be especially vulnerable to contractions in their current climate space. Significantly different projected range change responses were found between 1) oceanic montane bryophytes and vascular plants; 2) species belonging to different montane plant communities; 3) species categorised according to different biomes and eastern limit classifications. The inclusion of topographical variables in addition to climate, significantly improved the statistical and spatial performance of models. The current protected area network is projected to become less effective, especially for specialised arctic-montane species, posing a challenge to conserving oceanic montane plant communities. Conservation management plans need significantly greater focus on potential climate change impacts, including models with higher-resolution species distribution and environmental data, to aid these communities'' long-term survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号