首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of marine bivalve species among genera and higher taxa takes the form of the classic hollow curve, wherein few lineages are species rich and many are species poor. The distribution of species among genera (S/G ratio) varies with latitude, with temperate S/G's falling within the null expectation, and tropical and polar S/G's exceeding it. Here, we test several hypotheses for this polar overdominance in the species richness of small numbers of genera. We find a significant positive correlation between the latitudinal range of a genus and its species richness, both globally and within regions. Genus age and species richness are also positively related, but this relationship breaks down when the analysis is limited to genera endemic to climate zones or with narrow latitudinal ranges. The data suggest a link between speciation and range-expansion, with genera expanding out of the tropical latitudinal bins tending to speciate more prolifically, both globally and regionally. These genera contain more species within climate zones than taxa endemic to that zone. Range expansion thus appears to be fundamentally coupled with speciation, producing the skewed distribution of species among genera, both globally and regionally, whereas clade longevity is achieved through extinction -- resistance conferred by broad geographical ranges.  相似文献   

2.
Microevolutionary studies and natural history suggest that host-specialization has promoted the high diversity of tropical sponge-dwelling snapping shrimps (Decapoda, Alpheidae, Synalpheus ). Yet the taxonomic difficulty of this genus has precluded rigorous tests of this hypothesis. S. rathbunae Coutiére is among the most abundant invertebrates inhabiting the framework of sponges and dead coral that forms the floor of Caribbean coral reefs. Even within a small area S. rathbunae exhibits the apparently wide variation in size, color, and morphology that has long frustrated efforts to identify and define species boundaries within this large (> 100 described species) genus. Here I show that sympatric populations of this nominal species occupying different sponge hosts display clear, concordant differences in allozyme genotypes and in multivariate morphometries, confirming that the populations represent three distinct biological species. Moreover, careful field sampling revealed that the three S. rathbunce taxa and the closely related S. filidigitus Armstrong showed almost no overlap in the species of hosts occupied. Interestingly, while there was significant differentiation between Belizean and Panamanian populations of the one taxon that occurred at both sites (∼1500 km apart), these populations were recognizable as conspecific using both genetic and morphological characters. These results show that (1) diversity of Synalpheus , which is already among the most species-rich crustacean genera, is probably several times higher than currendy recognized, and (2) species of sponge-dwelling Synalpheus are highly host-specific, with related species distinctly segregated among hosts. Together with previous evidence of host race differentiation within shrimp species, these results suggest a primary role for resource specialization in the origin and/or maintenance of this group's characteristically high diversity.  相似文献   

3.
Abstract. There has been much debate concerning the relative influence on biodiversity of historical vs. current ecological factors. Although both are important, we suggest that historical influences might be greater at higher taxonomic level, since one is looking further back into evolutionary history than at lower taxonomic level. Although we are unable to separate ecological from historical effects in the present global study on scarabaeine dung beetles, we are able to demonstrate differences in correlations between major environmental influences (climatic area, numbers of dung types) and major components of diversity (taxon richness, taxon diversity, functional composition) at different taxonomic levels (tribe, genus, species). Current global variation in taxon richness is correlated strongly to current biogeographical variation in the area of suitable climate at all three taxonomic levels. However, generic and species richness is correlated most strongly to climatic combinations which include tropical and warm summer rainfall climate types (I, II). In contrast, tribal richness is correlated most strongly to climatic combinations which include both warm summer rainfall and temperate climate types (II, VI, X). Regional variation in the number of available dung types shows a strong positive correlation to regional variation in taxon richness at higher tribal level but not at lower generic and species levels. Similarly, biogeographical differences in the number of available dung types show a strong negative correlation to dominance indices for taxon diversity at tribal level (distribution of generic numbers between tribes) but none at generic level (species numbers per genus). As functional diversification is linked closely to taxonomic diversification at tribal level, proportions of both ball‐rolling genera and ball‐rolling species also show strong negative correlations to the number of dung types available in each region. In conclusion, the presence of dung type correlations only at higher taxonomic level may reflect historical effects on scarabaeine taxon diversification, whereas differences in correlations to climate type with taxonomic level may reflect both current ecological and historical effects.  相似文献   

4.
Polyploidization is a major source of diversification among plants, particularly during cladogenesis, but most evidence involves herbaceous temperate species. The prevalence of polyploidy among woody taxa is largely unknown, especially among tropical groups. In this study, we examined genome size variation globally and at several taxonomic levels within the Fagaceae. This family has diversified in the northern temperate zone (Quercus) and at least twice in the Asian tropics (Lithocarpus and Castanopsis), allowing us to examine genomic size evolution across a broad latitudinal range. We compared nuclear DNA contents from 78 species in six genera, including new measurements for 171 individuals from 47 Chinese species using standard flow cytometry methods. No evidence suggests that polyploidization or whole genome duplication has occurred in the family. Genome size varied among genera, but limited variation was present in each genus and species. In general, tropical species had larger genomes than temperate species, but the ancestral state cannot be determined given current evidence. Partial duplication does seem to occur among species as within genus variation was larger than within species variation. A review of the literature suggests that genome size and even chromosome structure is highly conserved among woody plants and trees. We propose that ploidy level and genome size are conserved among trees because they participate in diverse syngameons. This behavior would provide similar benefits to polyploidization but avoid exclusion from the syngameon. This conservatism in genome size and structure should enhance ongoing whole genome studies.  相似文献   

5.
The major biogeographic structure and affinities of the Australian chondrichthyan fauna were investigated at both interregional and intraregional scales and comparisons made with adjacent bioregions. Faunal lists were compiled from six geographical regions with species from these regions assigned to distributional classes and broad habitat categories. Australian species were further classified on provincial and bathomic structure following bioregionalization outputs from regional marine planning. About 40% of the world's chondrichthyan fauna occurs in Indo-Australasia (482 species) of which 323 species are found in Australian seas. The tropical Australian component, of which c. 46% of taxa are regional endemics, is most similar to faunas of Indonesia, New Guinea and New Caledonia. The temperate Australian component is most similar to New Zealand and Antarctica with about half of its species endemic. Highest levels of Australian endemism exist in bathomes of the outer continental shelf and upper slope. A relatively high proportion of regional endemism (57% of species) on the slope in the poorly surveyed but species-rich Solanderian unit is probably due to high levels of large-scale habitat complexity in the Coral Sea. The richness of demersal assemblages on the continental shelf and slope appears to be largely related to the spatial complexity of the region and the level of exploration. Much lower diversity off Antarctica is consistent with the pattern in teleosts. The complex chondrichthyan fauna of Australia is confirmed as being amongst the richest of the mega-diverse Indo-West Pacific Ocean. Species-level compositions of regional faunas across Indo-Australasia differ markedly because of moderate to high levels of intraregional speciation. Faunal assemblages in Australian marine provinces and bathomes differ from each other, supporting a broader pattern for fishes that underpins a marine planning framework for the region.  相似文献   

6.
Crane flies (Limoniidae; Limoniinae) were sampled at national parks and protected areas across central to northern Thailand to observe patterns of species richness and faunal turnover in the Indo-Burma biodiversity hotspot. Prior to sampling, the crane fly fauna of this region was poorly known and no taxonomic keys existed for specimen identification. Utilizing a multi-access taxonomic key to the Limoniinae genera of the Oriental Region designed for this project, identification of collected specimens revealed a crane fly fauna displaying higher richness than inventories from temperate regions. Sixty-six morphospecies from 29 genera/subgenera were collected using a combination of light trapping and Malaise trapping. Richness estimators projected that a total of 70–81 species are to be collected with future sampling, with mountainous northern Thailand projected to have the highest richness. The faunas of Central and Northern Thailand were different, with the north generally composed of more temperate genera and the south composed of more tropical genera. The increased diversity in northern Thailand was significantly influenced by landscape topology. Sampling that spread across two mountain ranges displayed faunas that were divided into both high elevation (>1,000 m) and lower elevation (<1,000 m) faunas. This change in community assemblage across elevation illustrates faunas that were more alike at similar elevations between mountain ranges than they were within national parks.  相似文献   

7.
In order to differentiate between mechanisms of species coexistence, we examined the relative importance of local biotic neighbourhood, abiotic habitat factors and species differences as factors influencing the survival of 2330 spatially mapped tropical tree seedlings of 15 species of Myristicaceae in two separate analyses in which individuals were identified first to species and then to genus. Using likelihood methods, we selected the most parsimonious candidate models as predictors of 3 year seedling survival in both sets of analyses. We found evidence for differential effects of abiotic niche and neighbourhood processes on individual survival between analyses at the genus and species levels. Niche partitioning (defined as an interaction of taxonomic identity and abiotic neighbourhood) was significant in analyses at the genus level, but did not differentiate among species in models of individual seedling survival. By contrast, conspecific and congeneric seedling and adult density were retained in the minimum adequate models of seedling survival at species and genus levels, respectively. We conclude that abiotic niche effects express differences in seedling survival among genera but not among species, and that, within genera, community and/or local variation in adult and seedling abundance drives variation in seedling survival. These data suggest that different mechanisms of coexistence among tropical tree taxa may function at different taxonomic or phylogenetic scales. This perspective helps to reconcile perceived differences of importance in the various non-mutually exclusive mechanisms of species coexistence in hyper-diverse tropical forests.  相似文献   

8.
A brief general characteristic and review of distribution of the subfamily Ceutorhynchinae over zoogeographical realms are given, with an emphasis on the distribution within the Holarctic and Palaearctic. The potential of exploiting landscapes of all natural zones of the Holarctic by a low-rank taxon is exemplified by the Holarctic Ceutorhynchus cochleariae (Gyll.) species-group comprising ca. 20 species evenly distributed between the Palaearctic and Nearctic. Although neighboring with the powerful centers of tropical biota, the Holarctic fauna of the subfamily Ceutorhynchinae is formed mostly of endemic and subendemic genera which are especially abundant in the Palaearctic. This region possesses the most diversified generic and species composition of the fauna consisting of predominantly endemic and subendemic genera (in the Mediterranean and Saharo-Gobian regions, also of the highly diversified tribe Oxyonychini) up to its southern border. The existence of characteristic transitional faunas in the zones of contact of the Holarctic fauna with the faunas of the tropical regions in East Asia and Mexico is shown. These transitional faunas include a considerable number of endemic taxa of the genus and species groups. A conspicuous feature of the Palaearctic ceutorhynchine fauna is the rather numerous complex of the upland and high-latitude species.  相似文献   

9.
Abstract:  Trilobites, a dominant component of marine faunas during the Cambrian and Ordovician and which survived until the end of the Permian (542–251 Ma) have been used in many macroevolutionary analyses. Here, we use a discovery curve to document the sampling history of trilobites, which we consider a proxy for Palaeozoic faunas in general. At higher taxonomic ranks, orders, suborders and superfamilies, the fossil record has been completely sampled, while the family rank also shows a high level of sampling completeness, having reached an asymptote in 1970. Importantly, this levelling-off occurred even though worker effort continued to increase. However, at genus level the sampling record is incomplete, indicating that families should not be used as a proxy for genera. There is little variation among the different subsets of generic data, with the sampling history of different stratigraphic periods and among different orders being very similar. However, there is noticeable variation among geographical regions, caused by variations in worker effort, and this could cause problems when comparing speciation and diversity patterns across faunal provinces. The role of synonyms on sampling history has had little effect.  相似文献   

10.
1. Differences among communities in taxonomic composition – beta diversity – are frequently expected to result from taxon‐specific responses to spatial variation in ecological conditions, through niche partitioning. Such process‐derived patterns are in sharp contrast to arguments from neutral theory, where taxa are ecologically equivalent and beta diversity results primarily from dispersal limitation. 2. Here, we compared beta diversity among assemblages of damselflies (Odonata: Zygoptera), for which previous experiments have shown that niche differences maintain genera within a community, but patterns of relative abundance for species within each genus are shaped primarily by neutral dynamics. 3. Using null‐model and ordination‐based methods, we find that both genera and (in contrast to neutral theory) species assemblage composition vary across the landscape in a deterministic fashion, shaped by environmental and spatial factors. 4. While the observed patterns in species composition conflict with theory, we suggest that this a result of weak ecological filters acting to produce spatial variation in assemblages of ecologically similar species undergoing ecological drift within communities. Such patterns are especially likely in systems of relatively weak dispersers like damselflies.  相似文献   

11.
This study tests if the biogeographical affinities of genera are relevant for explaining elevational plant diversity patterns in Nepal. We used simultaneous autoregressive (SAR) models to investigate the explanatory power of several predictors in explaining the diversity-elevation relationships shown in genera with different biogeographical affinities. Delta akaike information criterion (ΔAIC) was used for multi-model inferences and selections. Our results showed that both the total and tropical genus diversity peaked below the mid-point of the elevational gradient, whereas that of temperate genera had a nearly symmetrical, unimodal relationship with elevation. The proportion of temperate genera increased markedly with elevation, while that of tropical genera declined. Compared to tropical genera, temperate genera had wider elevational ranges and were observed at higher elevations. Water-related variables, rather than mid-domain effects (MDE), were the most significant predictors of elevational patterns of tropical genus diversity. The temperate genus diversity was influenced by energy availability, but only in quadratic terms of the models. Though climatic factors and mid-domain effects jointly explained most of the variation in the diversity of temperate genera with elevation, the former played stronger roles. Total genus diversity was most strongly influenced by climate and the floristic overlap of tropical and temperate floras, while the influences of mid-domain effects were relatively weak. The influences of water-related and energy-related variables may vary with biogeographical affinities. The elevational patterns may be most closely related to climatic factors, while MDE may somewhat modify the patterns. Caution is needed when investigating the causal factors underlying diversity patterns for large taxonomic groups composed of taxa of different biogeographical affinities. Right-skewed diversity-elevation patterns may be produced by the differential response of taxa with varying biogeographical affinities to climatic factors and MDE.  相似文献   

12.

Background and Aims

The sedge genus Carex, the most diversified angiosperm genus of the northern temperate zone, is renowned for its holocentric chromosomes and karyotype variability. The genus exhibits high variation in chromosome numbers both among and within species. Despite the possibility that this chromosome evolution may play a role in the high species diversity of Carex, population-level patterns of molecular and cytogenetic differentiation in the genus have not been extensively studied.

Methods

Microsatellite variation (11 loci, 461 individuals) and chromosomal diversity (82 individuals) were investigated in 22 Midwestern populations of the North American sedge Carex scoparia and two Northeastern populations.

Key Results

Among Midwestern populations, geographic distance is the most important predictor of genetic differentiation. Within populations, inbreeding is high and chromosome variation explains a significant component of genetic differentiation. Infrequent dispersal among populations separated by >100 km explains an important component of molecular genetic and cytogenetic diversity within populations. However, karyotype variation and correlation between genetic and chromosomal variation persist within populations even when putative migrants based on genetic data are excluded.

Conclusions

These findings demonstrate dispersal and genetic connectivity among widespread populations that differ in chromosome numbers, explaining the phenomenon of genetic coherence in this karyotypically diverse sedge species. More generally, the study suggests that traditional sedge taxonomic boundaries demarcate good species even when those species encompass a high range of chromosomal diversity. This finding is important evidence as we work to document the limits and drivers of biodiversity in one of the world''s largest angiosperm genera.  相似文献   

13.
Strong correlations between species diversity and climate have been widely observed, but the mechanism underlying this relationship is unclear. Here, we explored the causes of the richness–climate relationships among passerine birds in China by integrating tropical conservatism and diversification rate hypotheses using path models. We found that assemblages with higher species richness southwest of the Salween–Mekong–Pearl River Divide are phylogenetically overdispersed and have shorter mean root distances (MRDs), while species-rich regions northeast of this divide (e.g., north Hengduan Mountains–south Qinling Mountains) are phylogenetically clustered and have longer MRDs. The results of the path analyses showed that the direct effect of climatic factors on species richness was stronger than their indirect effects on species richness via phylogenetic relatedness, indicating that neither tropical conservatism nor diversification rate hypotheses can well explain the richness–climate relationship among passerines in China. However, when path analyses were conducted within subregions separately, we found that the tropical conservatism hypothesis was well supported in the southwestern Salween–Mekong–Pearl River Divide, while the diversification rate hypothesis could explain the richness–climate relationship well in the northeastern divide. We conclude that the diversity patterns of passerines in different subregions of the Eastern Himalayas-Mountains of Southwest China may be shaped by different evolutionary processes related to geological and climatic histories, which explains why the tropical conservatism or diversification rate hypothesis alone cannot fully explain the richness–climate relationships.  相似文献   

14.
Aim Spatial variation in the diversity of fleas parasitic on small mammals was examined to answer three questions. (1) Is the diversity of flea assemblages repeatable among populations of the same host species? (2) Does similarity in the composition of flea assemblages among populations of the same host species decay with geographical distance, with decreasing similarity in the composition of local host faunas, or with both? (3) Does the diversity of flea assemblages correlate with climatic variables? Location The study used previously published data on 69 species of small mammals and their fleas from 24 different regions of the Holarctic. Methods The diversity of flea assemblages was measured as both species richness and the average taxonomic distinctness of their component species. Similarity between flea assemblages was measured using both the Jaccard and Morisita–Horn indices, whereas similarity in the composition of host faunas between regions (host ‘faunal’ distance) was quantified using the Jaccard index. Where appropriate, a correction was made for the potentially confounding influence of phylogeny using the independent contrasts method. Results Flea species richness varied less within than among host species, and is thus a repeatable host species character; the same was not true of the taxonomic distinctness of flea assemblages. In almost all host species found in at least five regions, similarity in flea assemblages decreased with increases in either or both geographical and faunal distance. In most host species, the diversity of flea assemblages correlated with one or more climatic variable, in particular mean winter temperature. Main conclusions Spatial variation in flea diversity among populations of the same mammal species is constrained by the fact that it appears to be a species character, but is also driven by local climatic conditions. The results highlight how ecological processes interact with co‐evolutionary history to determine local parasite biodiversity.  相似文献   

15.
Aim Spatial turnover of species, or beta diversity, varies in relation to geographical distance and environmental conditions, as well as spatial scale. We evaluated the explanatory power of distance, climate and topography on beta diversity of mammalian faunas of North America in relation to latitude. Location North America north of Mexico. Methods The study area was divided into 313 equal‐area quadrats (241 × 241 km). Faunal data for all continental mammals were compiled for these quadrats, which were divided among five latitudinal zones. These zones were comparable in terms of latitudinal and longitudinal span, climatic gradients and elevational gradients. We used the natural logarithm of the Jaccard index (lnJ) to measure species turnover between pairs of quadrats within each latitudinal zone. The slope of lnJ in relation to distance was compared among latitudinal zones. We used partial regression to partition the variance in lnJ into the components uniquely explained by distance and by environmental differences, as well as jointly by distance and environmental differences. Results Mammalian faunas of North America differ more from each other at lower latitudes than at higher latitudes. Regression models of lnJ in relation to distance, climatic difference and topographic difference for each zone demonstrated that these variables have high explanatory power that diminishes with latitude. Beta diversity is higher for zones with higher mean annual temperature, lower seasonality of temperature and greater topographic complexity. For each latitudinal zone, distance and environmental differences explain a greater proportion of the variance in lnJ than distance, climate or topography does separately. Main conclusions The latitudinal gradient in beta diversity of North American mammals corresponds to a macroclimatic gradient of decreasing mean annual temperature and increasing seasonality of temperature from south to north. Most of the variance in spatial turnover is explained by distance and environmental differences jointly rather than distance, climate or topography separately. The high predictive power of geographical distance, climatic conditions and topography on spatial turnover could result from the direct effects of physical limiting factors or from ecological and evolutionary processes that are also influenced by the geographical template.  相似文献   

16.
The World fauna of the tribe Eupitheciini is the most species-rich in the family Geometridae. This tribe includes about 1900 species (almost 3000 species-group names) from 47 genera; about one third of the genera (15) are monotypic. The generic diversity of Eupitheciini is the highest in the Australian (38 genera, 11 of them endemic) and Oriental regions (32 genera, 4 endemic) and the lowest in the Neotropical Region (possibly one genus only). The faunas of different biogeographic regions can be arranged in following order by their species richness: the Palaearctic (487 species), Oriental (397), Neotropical (346), Australian (251), Afrotropical (198), and Nearctic Regions (166 species). Eupithecia is the most species-rich genus in the family Geometridae and the entire order Lepidoptera, and one of the largest genera in the whole World fauna of insects. The greatest number of species of this genus is recorded in the Palaearctic Region (466 species), where Eupithecia accounts for about 95% of the tribe Eupitheciini. The mainland of the Oriental Region (especially the Himalayas) is also very species-rich; however the proportion of the Eupithecia representatives decreases towards Malaysia, Sundaland, and the Australian Region (about 2% of the tribe). The Eupitheciini faunas have the greatest similarity at the generic level between the Oriental and Australian Regions (the Jaccard and Sørensen coefficient values being 0.62 and 0.77, respectively). The Palaearctic fauna is more similar to the Afrotropical and Oriental faunas at the genus-group level. On the whole, the fauna of the Nearctic Region is similar to that the West Palaearctic, with the exception of the fact that representatives of the genera Gymnoscelis and Chloroclystis are absent in North America, although two endemic genera Nasusina and Prorella are present. At the genus-group level, the Nearctic fauna of Eupitheciini is more similar to the Neotropical (the Jaccard and Sørensen coefficients 0.20 and 0.33, respectively) than to the Palaearctic fauna (0.17 and 0.29). The number of synonymies is very high in the tribe Eupitheciini because of the homogeneity of this group, whose species are difficult to identify without the use of elaborate anatomical techniques. Modern revisions, catalogues, surveys, and atlases on Eupitheciini are absent for many countries and large geographic regions. Revisions of pugs of the tribe Eupitheciini for some biogeographic regions are extremely difficult because of fragmentation of entomological collections including the type specimens of many species-group taxa. A large fraction of synonyms is characteristic of parts of the World with the best known faunas: Europe (64% of synonyms) and North America (39%). On the contrary, the lowest levels of synonymy are typical of the less known faunas of the regions situated at the equatorial latitudes, namely the Neotropical (9%) and Afrotropical (8%) ones.  相似文献   

17.
The concept of taxonomic sufficiency (identifying organisms only to a level of taxonomic resolution sufficient to satisfy the objectives of a study) has received little attention in ecological studies of terrestrial invertebrate assemblages. Here we critically evaluate three approaches to taxonomic sufficiency: the use of morphospecies, genera and functional groups. The objective was to compare estimates of richness (α diversity) and turnover (β diversity) of ant assemblages generated by these data with estimates produced using data for ant species. Ground-active ants were sampled using pitfall trapping within three habitat types: a eucalypt plantation, woodland regrowth patches and the surrounding grassland at a study site in the upper Hunter Valley, New South Wales. Comparisons of assemblage richness and turnover among taxonomic data sets and habitats and after different data transformations used univariate (simple correlation and ANOVA ) and multivariate (Mantel tests, ANOSIM and SSHMDS ) techniques. Our study found: (i) morphospecies and genus richness was highly correlated with species richness over the study area; (ii) ordination scatterplots using species, morphospecies and genus data revealed similar patterns of site separation for the three habitats; (iii) the results were very similar using untransformed, log transformed and binary data; (iv) functional group ordinations separated all three habitat types for untransformed abundance data; and (v) estimates of species turnover were highly correlated with estimates of morphospecies and genus turnover. These results are discussed in relation to future monitoring of ant community structure.  相似文献   

18.
Elevational variation in species richness is ubiquitous and important for conservation, but remains poorly explained. Numerous studies have documented higher species richness at mid-elevations, but none have addressed the underlying evolutionary and biogeographic processes that ultimately explain this pattern (i.e. speciation, extinction and dispersal). Here, we address the evolutionary causes of the mid-elevational diversity hump in the most species-rich clade of salamanders, the tropical bolitoglossine plethodontids. We present a new phylogeny for the group based on DNA sequences from all 13 genera and 137 species. Using this phylogeny, we find no relationship between rates of diversification of clades and their elevational distribution, and no evidence for a rapid 'species pump' in tropical montane regions. Instead, we find a strong relationship between the number of species in each elevational zone and the estimated time when each elevational band was first colonized. Mid-elevation habitats were colonized early in the phylogenetic history of bolitoglossines, and given similar rates of diversification across elevations, more species have accumulated in the elevational zones that were inhabited the longest. This pattern may be widespread and suggests that mid-elevation habitats may not only harbour more species, but may also contain more phylogenetic diversity than other habitats within a region.  相似文献   

19.
浙江楠为商品材“金丝楠木”的原植物之一,天然分布区窄,属国家二级保护渐危种,在全球气候变化背景下,研究其天然种群所在森林群落的结构特征及其多样性具有重要意义.本研究以浙江楠天然分布区内13个典型种群为对象,研究其所在群落的群落结构特征、物种多样性和叶片表型变异特征.结果表明: 浙江楠天然种群所在群落的结构复杂,物种多样性较高,13个群落的16块样地内共有维管束植物87科162属235种,其中种子植物79科151属221种;重度干扰导致浙江开化、浙江临安等群落的乔木层物种多样性指数显著低于其他群落,而中度干扰提高了福建建宁群落灌木层物种多样性,轻度干扰则利于浙江楠种群自然更新.叶片表型作为楠木属植物重要的分类依据,叶片表型性状在种群间、种群内均存在丰富变异,平均变异系数为17.2%,变异幅度为10.4%~27.5%.种群间的变异(53.6%)大于种群内的变异(17.0%),平均表型分化系数为75.1%,种群间变异是浙江楠叶片表型变异的主要来源.基于欧式距离(10 cm)将13个天然种群划分为两大类群,但变异呈随机性.  相似文献   

20.
王军  赵超 《生物多样性》2022,30(12):22128-225
菌食性管蓟马是土壤动物的重要组分, 它们在生物多样性保护与利用、植物保护、动物地理等领域具有重要的研究价值, 但在我国其分类和物种多样性研究仍有较大不足, 大尺度分布格局形成原因也不清楚。本文基于对我国大部分地区广泛的野外采集调查和国内外多家研究机构馆藏标本的检视, 整理了我国菌食性管蓟马物种名录和地理分布信息, 总结了我国菌食性管蓟马的分类研究现状与简史, 分析了菌食性管蓟马物种多样性的分布格局并探讨了该格局形成原因。目前我国记录菌食性管蓟马237种, 其中管蓟马亚科39属156种, 灵管蓟马亚科22属81种; 竹管蓟马属(Bamboosiella)、剪管蓟马属(Psalidothrips)、网管蓟马属(Apelaunothrips)和全管蓟马属(Holothrips)是物种较多的属, 包含物种数均超过10种; 中国特有73种; 广东、台湾、海南和云南是物种最丰富的省份, 均超过60种, 这些省份都具热带和亚热带气候特征, 适合其生存; 相对多度分析结果表明在热带和亚热带地区森林凋落物层菌食性管蓟马是土壤动物的常见类群; 气温、降水量、食物等是限制其分布的主要因素。本结果丰富了土壤生物多样性的研究内容, 为菌食性管蓟马多样性大尺度空间格局研究提供了数据支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号