首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Aim Classic island biogeographical theory predicts that reserves have to be large to conserve high biodiversity. Recent literature, however, suggests that habitat heterogeneity can counterbalance the effect of small reserve size. For savanna ungulates, body mass is said to drive habitat selection and facilitate species coexistence, where large species use a higher proportion of the landscape than smaller species, because a wider food quality tolerance allows them to use a higher diversity of habitat types. In this case, high habitat heterogeneity would facilitate diverse assemblages of different‐sized ungulates. Digestive physiology should further modify this relationship, because non‐ruminants have a wider diet tolerance than ruminants. We tested this hypothesis with an empirical dataset on distribution and habitat preference of different‐sized African grazers. Location Hluhluwe‐iMfolozi Park, Republic of South Africa. Methods We recorded herbivore dung and habitat type on 24 line transects varying between 4 and 11 km with a total length of 190 km to determine habitat selection and landscape distribution of six grazer species, three ruminants and three non‐ruminants. Results Larger ruminant grazers were more evenly distributed than smaller ruminants, had a more diverse use of habitats and used more low quality habitat. In contrast, non‐ruminant grazers were more evenly distributed than similar‐sized ruminants and body mass did not clearly influence diversity of habitat use and use of low quality habitat. Main conclusions We confirm that body mass influences diversity of habitat use of large herbivores but digestive strategy potentially modifies this relationship. Hence, habitat heterogeneity might facilitate herbivore diversity in savanna ecosystems and high heterogeneity might counterbalance the effects of fragmentation and declining reserve size. Concluding, processes that homogenize the landscape, such as fire (mis)management and artificial waterholes, might be as threatening to biodiversity as landscape fragmentation, especially for smaller ruminant herbivores.  相似文献   

2.
The mesowear method evaluates the wear patterns of herbivore cheek teeth by visually evaluating the facet development of the occlusal surfaces. It thus allows classification of most herbivorous ungulates into browsers, grazers or intermediate feeders, due to the fact that in grazers, tooth wear is characterized by a comparatively high degree of abrasion, most probably due to the presence of silicacious phytoliths in grasses, a higher amount of dust and grit adhering to their forage, or both. It has been suggested that excessive tooth wear could be a particularly limiting factor in the husbandry of captive large browsing species, and major tooth wear was demonstrated in captive as compared to free-ranging giraffe. If this increased tooth wear in captivity was an effect of feeding type and diets fed, then it would be expected that other browsing species are affected in a similar manner. In order to test this hypothesis, we investigated the dental mesowear pattern in captive individuals of 19 ruminant species and compared the results to data on free-ranging animals. Compared to free-ranging populations, captive browsers show a significantly more abrasion-dominated tooth wear signal. The reverse applies to captive grazers, which tend to show a less abrasion-dominated wear in captivity. Captive ruminants were generally more homogenous in their wear signature than free-ranging ruminants. If grit contamination in the natural habitat is a major cause of dental wear in grazers, then diets in captivity, although similar in botanical composition, most likely contain less abrasives due to feeding hygiene. If dental wear is one of the major factors limiting longevity, then captive grazers should achieve longer lifespans than both captive browsers and free-ranging grazers. In particular with respect to browsers, the results suggest that captive feeding regimes could be improved.  相似文献   

3.
Seasonal diets of goats, sheep and European hares (Lepus europaeus) were examined using microhistological analysis of feces collected when these herbivores grazed together in a typical Mediterranean shrubland. Approximately half of the total diet content of goats was shrubs (mainly kermes oak, Quercus coccifera), while that of hares was grasses (mostly brush grass, Chrysopogon gryllus). Sheep had a more balanced diet consisting mainly of grasses, forbs, and shrubs. Dietary overlap between goats and sheep was high throughout the year. In contrast, there was very low dietary overlap between small ruminants and hares. Dietary diversity was high in spring and low in winter across all species, with sheep in general displaying higher dietary diversity across all seasons than goats and hares. Goats had intermediate and hares had low dietary diversity across all seasons. Communal grazing by small ruminants and hares ensures that there is a more uniform use of the available forage resources than if a single herbivore is left to graze an area.  相似文献   

4.
Data from captive animals indicated that browsing (BR) ruminants have larger fecal particles—indicative of lesser chewing efficiency—than grazers (GR). To answer whether this reflects fundamental differences between the animal groups, or different reactions of basically similar organisms to diets fed in captivity, we compared mean fecal particle size (MPS) in a GR and a BR ruminant (aurox Bos primigenius taurus, giraffe Giraffa camelopardalis) and a GR and a BR hindgut fermenter (Przewalski's horse Equus ferus przewalskii, lowland tapir Tapirus terrestris), both from captivity and from the wild. As would be expected owing to a proportion of finely ground, pelleted feeds in captive diets, MPS was smaller in captive than free‐ranging GR. In contrast, MPS was drastically higher in captive than in free‐ranging BR of either digestion type. Thus, the difference in MPS between GR and BR was much more pronounced among captive than free‐ranging animals. The results indicate that BR teeth have adapted to their natural diet so that in the wild, they achieve a particle size reduction similar to that of GR. However, although GR teeth seem equally adapted to food ingested in captivity, the BR teeth seem less well suited to efficiently chew captive diets. In the case of ruminants, less efficient particle size reduction could contribute to potential clinical problems like “rumen blockage” and bezoar formation. Comparisons of MPS between free‐ranging and captive animals might offer indications for the physical suitability of zoo diets. Zoo Biol 27:70–77, 2008. © 2007 Wiley‐Liss, Inc.  相似文献   

5.
This study investigates, for the first time (to our knowledge) for any animal group, the evolution of phylogenetic differences in fibre digestibility across a wide range of feeds that differ in potential fibre digestibility (fibre to lignin ratio) in ruminants. Data, collated from the literature, were analysed using a linear mixed model that allows for different sources of random variability, covariates and fixed effects, as well as controlling for phylogenetic relatedness. This approach overcomes the problem of defining boundaries to separate different ruminant feeding styles (browsers, mixed feeders and grazers) by using two covariates that describe the browser-grazer continuum (proportion of grass and proportion of browse in the natural diet of a species). The results indicate that closely related species are more likely to have similar values of fibre digestibility than species that are more distant in the phylogenetic tree. Body mass did not have any significant effect on fibre digestibility. Fibre digestibility is estimated to increase with the proportion of grass and to decrease with the proportion of browse in the natural diet that characterizes the species. We applied an evolutionary model to infer rates of evolution and ancestral states of fibre digestibility; the model indicates that the rate of evolution of fibre digestibility accelerated across time. We suggest that this could be caused by a combination of increasing competition among ruminant species and adaptation to diets rich in fibre, both related to climatically driven environmental changes in the past few million years.  相似文献   

6.
The extensive early Pliocene mammalian assemblages at Langebaanweg hold the potential to provide important information about paleoenvironments of the southwestern tip of Africa, an area that today consititutes the Fynbos Biome. We here add to a growing body of literature on the paleoenviornments of the site with an examination of dental microwear textures of bovids from the Varswater Formation. Microwear texture analysis is a new, automated and repeatable approach that measures whole surfaces in three dimensions without observer error. A study of extant ruminants indicates that grazers have more anisotropic microwear surface textures, whereas browsers have more complex microwear surface textures. Fossil bovids recovered from the Muishond Fontein Pelletal Phosphorite Member vary in their microwear textures, with some taxa falling within the extant browser range, some closer to extant grazers, and others in between. These results are consistent with scenarios suggesting mosaic habitats including fynbos vegetation, some (probably C3) grasses, and woodland elements when these fossils were accumulated.  相似文献   

7.
The molar proportions of seven individual VFA's were determined at select sites along the gastrointestinal tract of sixteen species of East African wild ruminants. The resulting data were statistically analyzed for species effect, and for effects due to major feeding groups (browsers, grazers, fresh grass grazers, etc.) and for body weight groups (5-750 kg animals). Present data suggest that body weight, rather than diet, is the more influential factor in reticulo-rumen fermentation rate, and in the molar proportion of fatty acids present. The molar proportions of VFA's observed in the mid and hindgut of these wild ruminants appeared more responsive to diet and body weight of the animal than did foregut VFA values.  相似文献   

8.
The purpose of this review is to give some perspective of the factors that influence feeding behaviors and the ability of herbivores to adapt to diets. The most important of these are digestibility, ability to select feed, and achievement of a nutritionally adequate intake. Plant morphology, observed feeding behavior, body size, and gut architecture and size impinge upon these factors. Feeding behavior and dietary specializations are associated with adaptations of gut and mouth parts as well as body size. Parallel and overlapping behaviors occur among herbivores and particularly between ruminants and nonruminants. The conventional classifications of grazers, browsers, and selective feeders are blurred by these evolutionary developments. © 1996 Wiley-Liss, Inc.  相似文献   

9.
As a result of pioneering work of Hofmann (1973, 1989), nutritional ecologists classify ruminants into three feeding-type categories: browsers (concentrate feeders), grazers, and intermediate or mixed feeders. Hofmann proposed that these feeding types result from evolutionary adaptations in the anatomy of the digestive system and that one consequence is shorter retention of the digesta in the rumen of browsers, and thus a decreased efficiency of fiber digestion relative to that of grazers. We examined the hypotheses that (1) fiber digestion of browsers is lower than that of grazers, (2) salivary gland size is larger in all browsers than in grazers, (3) the browser's larger salivary glands produce larger volumes of thin serous saliva than those of grazers, and (4) thus, browsers have higher liquid passage rates than do grazers. We found that the extent of fiber digestion is not significantly different between browsers and grazers, although fiber digestion is positively related to herbivore size. In general, salivary gland size is approximately 4 times larger in browsers than grazers, but some browsers (e.g., greater kudu) have small, grazer-sized salivary glands. Resting (non-feeding or ruminating) saliva flow rates of mule deer (browser) and domestic sheep and cattle (grazers) were not significantly different from each other. Finally, ruminal liquid flow rates were not different between feeding types. We conclude that many of Hofmann's nutritional and physiological interpretations of anatomical differences amongst ruminants are not supportable.  相似文献   

10.
Aim Anthropogenic fires are a major component of the ecology of rangelands throughout the world. To assess the effects of these fires on the diversity patterns of herbivores, we related gradients in fire occurrence, climate and soil fertility to patterns in alpha and beta diversity of African ungulates. Location West Africa. Methods We used a survey‐based approach for ungulates in 37 protected areas in desert, savanna and rain forest habitats throughout West Africa, combined with satellite images of fire occurrence and digital maps of actual evapotranspiration and soil fertility. Alpha diversity was related to the environmental variables using conventional and spatial regression models. We investigated beta diversity using partial Mantel tests and ordination techniques, and by partitioning the variance in assemblage composition into environmental and spatial components. Results The species richness of grazers showed a quadratic relationship with actual evapotranspiration, whereas that of browsers and frugivores showed a linear relationship. However, in the multiple regression models fire occurrence was the only variable that significantly correlated with the species richness of grazers. Soil fertility was weakly related to overall beta diversity and the species richness of browsers, but was non‐significant in the multiple regression models. Fire occurrence was the most important variable explaining species composition of the overall species set and of grazers, whereas the assemblage composition of browsers and frugivores was explained mostly by actual evapotranspiration. Main conclusions In contrast to previous studies, our analyses show that moisture and nutrients alone fail to adequately predict the diversity patterns of grazing ungulates. Rather, the species richness and assemblage composition of grazers are largely governed by anthropogenic fires that modify the quality and structure of the grass sward. Diversity patterns of browsers and frugivores are markedly different from grazers and depend mainly on the availability of moisture, which is positively correlated with the availability of foliage and fruits. Our study highlights the importance of incorporating major human‐induced disturbances or habitat alterations into analyses of diversity patterns.  相似文献   

11.
The allometric relationships for the fermentation rate of dry matter, the total energy concentration of volatile fatty acids (VFAs), the energy supplied from VFA production and the mass of the digesta contents within the rumen or caecum and proximal colon (hindgut) were used to test whether the digestive strategies of grazing and browsing African ruminants differ. The wet and dry mass of the contents of the rumen and hindgut were allometrically related to body mass (BM). These relationships did not differ between browsing and grazing ruminants. The fermentation rates in the rumen were strongly allometric and the intercepts of the relationships did not differ between browsers and grazers. The fermentation rates in the hindgut were not allometrically related to BM and did not differ between ruminants with different feeding habits. Likewise, the total energy concentration of the VFAs in the rumen and hindgut showed no allometric scaling and did not differ between browsing and grazing ruminants. The energy supplied by VFA production in both the rumen and hindgut of African ruminants scaled at around 0.8 with BM. Only in the case of the energy supplied by VFAs in the rumen were there significantly different intercepts for browsing and grazing ruminants. The energy supplied by VFA production in the rumen was inadequate to meet the energy requirements for maintenance of browsers and small grazers. The retention time of digesta in the alimentary tract was positively related to BM although there was no difference in the allometric relationships for grazers and browsers. The results of these analyses suggest that, after controlling for the effects of body mass, there is little difference in digestive strategy between African ruminants with different morphological adaptations of the gut.  相似文献   

12.
Abstract: Decades of research have produced substantial data on elk (Cervus elaphus) diets in winter, when foraging conditions are most likely to affect population dynamics. Using data from 72 studies conducted in western North America between 1938 and 2002, we collated data on elk diets and environmental variables. We used these data to quantify diet selection by elk and to test whether variation in elk diets is associated with habitat type, winter severity, period of winter, human hunting, and study method. Graminoids (grasses and grass-like plants such as sedges) dominated elk diets and consistently occurred at a higher proportion in the diet than in elk foraging habitats, indicating preference. Forbs commonly made up ≤5% of the diet, with no evidence for preference; we conclude that forb use is largely incidental to grazing for graminoids. Browse was consumed in proportion to its availability, implying that the amount of browse in the diet was primarily determined by habitat use rather than selection. Comparing the diets of elk and sympatric ruminants, elk consistently selected graminoids more strongly than sympatric ruminants with the exception of bison (Bison bison), suggesting that elk are not environmentally forced to adopt the graminoid-biased diet that they normally select. The proportion of open meadows and grasslands on winter ranges was strongly and positively associated with graminoid consumption by elk. The proportion of graminoids in the diet was significantly lower in elk experiencing severe winter conditions or predation risk from human hunting. The period of winter (early, middle, and late) had only small effects on elk diets, as did the method by which the diet was determined. Overall, variation in elk diets is well-explained by a consistent tendency to select graminoids if available, modified by winter habitat type, predation risk, and winter severity, which can constrain habitat selection and access to grazing opportunities. To fully understand variation in foraging behavior, biologists should recognize these broad patterns when interpreting resource selection data. Managers should recognize that inconspicuous behavioral responses to environmental stimuli can alter the diet in ways that probably carry nutritional consequences.  相似文献   

13.
Members of the Bovini genus are classified as grazers. Smaller species of ruminants are not expected to be able to digest particularly fibrous diets and are more often classified as intermediate feeders or browsers. Anoas (Bubalus spp.) are interesting in this respect as they are the smallest representatives of the Bovini, being only 10–20% of the body weight of other species of the same genus. A feeding trial was carried out with four lowland anoas (Bubalus depressicornis) at London Zoo, investigating diet digestibility by total fecal collection and passage rates by the simultaneous administration of a fluid (Co‐EDTA) and a particle (Cr‐mordanted fibre <2 mm) marker. The diet consisted of legume hay, dairy cow pellets, browse, fruits, and vegetables. The achieved digestibility coefficients averaged 70±4% for dry matter and 57±7% for cell walls (NDF). Mean retention times for the total gastrointestinal tract were 25±4.1 hr for fluid and 39±6.7 hr for particles, respectively. The ratio of forestomach particle:fluid retention was 2.14±0.40. Additional information regarding anoa diets in captivity was collected through a survey targeting all institutions that have anoas in their collection currently. Suitability of the provided diet was evaluated using the ratio of unstructured:structured feeds (unstructured feeds pellets, grains, produce; structured feeds=roughage, browse) on a dry matter basis and an assumed complete consumption of offered unstructured diet items, with only the remaining intake capacity being met by structured items. The use of this ratio reliably predicted one facility that reported chronic diet‐related problems. As other ruminants, anoas should receive a diet with restricted amounts of concentrates and fruits. The comparatively high fibre digestibility and the high selective particle retention in the forestomach suggest a classification of an intermediate/grazing ruminant. Zoo Biol 24:125–134, 2005. © 2005 Wiley‐Liss, Inc.  相似文献   

14.
The measurement of passage rate is important for the concept of ruminant diversification. While supporters of Hofmann's 1989 feeding type classification claim that browsing ruminants have faster passage rates than grazing ruminants, other researchers consider the passage rate to depend on body size alone. To date, no convincing comparison of ruminant passage rates has been put forward. For comparative purposes, we suggest the use of the "selectivity factor", which is an expression of how much longer particles of a defined size (<2 mm) are retained in the ruminant digestive tract than fluids. From the limited data available, it seems that grazing ruminants display selectivity factors between 1.56 and 3.80, whereas browsers have a much narrower range of 1.14-1.80. This suggests that browsers are not able to selectively retain particles as long as grazers. Intake of browsers, on the other hand, may not be limited by physical fill of the forestomach to the same degree as in grazers. This result can explain several observations on the digestive physiology of browsers, some of which have been linked to a rumen bypass mechanism. We propose that the ability for selective particle retention is a key factor for understanding the physiological consequences of ruminant diversification.  相似文献   

15.
Wikström SA  Hillebrand H 《Oecologia》2012,168(1):175-186
Increased biological diversity due to invasion by non-indigenous species (NIS) is a global phenomenon with potential effects on trophic interactions and ecosystem processes in the invaded habitat. We assessed the effects of resource availability and invasion of three non-indigenous invertebrate grazers (two crustaceans and a snail) on secondary production, relative dominance of NIS grazers and resource depletion in experimental freshwater mesocosms. The relative dominance of NIS grazers increased with increasing initial resource availability, although the effect was largest for one of the three species. The effect was due to the fact that all the included non-indigenous grazers were able to expand their populations quickly in response to resource addition. For the most dominating species, the increased grazer diversity due to invasion in turn resulted in higher production of grazer biomass and a more efficient depletion of the periphyton resource. The effect was largest at high initial resource availability, where NIS dominance was most pronounced. Our results show that an invasion-induced increase in species diversity can increase resource depletion and consequently production, but that the effect depends on identity of the introduced species. The results also suggest that properties of the recipient system, such as resource availability, can modulate ecosystem effects of NIS by affecting invader success and dominance.  相似文献   

16.
Aim The hair of grazers provides an isotopic record of environmental and nutritional signals. Here, we assess the effect of altitude on the carbon and nitrogen isotope composition of the hair of ruminant grazers and its relation to grassland vegetation, to evaluate the use of hair isotope data for ecosystem reconstruction, animal nutritional ecology and biogeochemical studies in montane environments. Location European Alps. Methods We sampled grassland vegetation (pure C3) and the hair of ruminants along an altitudinal gradient (400–2500 m), and analysed their isotope composition (δ13C and δ15N). Results were compared with published effects of altitude on 13C in C3 plants at the species level and on 15N at the community level. The study was complemented with a comparison of diet and hair isotope composition in ruminants held in confinement. Results δ13C of hair increased (c. 1.1‰ km−1) and δ15N decreased (c. 1.1‰ km−1) with altitude. The same changes occurred in local grassland vegetation, and in regional to global grassland data sets. Offsets between hair and vegetation 13C or 15N (‘diet–hair shift’) were independent of altitude. Sheep (Ovis aries) and cattle (Bos taurus) exhibited a 13C shift near +3‰, but that of goats (Capra hircus) was larger (+4.2‰) in alpine environments and in confinement. The diet–hair shift for 15N was more variable (+2.1 to +3.6‰). Main conclusions Grazer hair provides a faithful spatially and temporally integrated record of grassland isotope composition, useful for ecosystem and environment reconstruction. The effect of altitude on hair 15N is important for studies of trophic relationships: an altitude shift of 2000 m produced the same effect in hair 15N as would a shift from an animal tissue‐based to a plant‐based diet. The similarity of altitude effects on δ13C of individual plant species, vegetation and hair indicates that the effect of altitude on species‐level ‘intrinsic water use efficiency’ scales up linearly to the community and landscape level.  相似文献   

17.
Although foregut fermentation is often equated with rumination in the literature, functional ruminants (ruminants, camelids) differ fundamentally from non-ruminant foregut fermenters (e.g. macropods, hippos, peccaries). They combine foregut fermentation with a sorting mechanism that allows them to remasticate large particles and clear their foregut quickly of digested particles; thus, they do not only achieve high degrees of particle size reduction but also comparatively high food intakes. Regurgitation and remastication of stomach contents have been described sporadically in several non-ruminant, non-primate herbivores. However, this so-called 'merycism' apparently does not occur as consistently as in ruminants. Here, to our knowledge we report, for the first time, regurgitation and remastication in 23 free-ranging individuals of a primate species, the foregut-fermenting proboscis monkey (Nasalis larvatus). In one male that was observed continuously during 169 days, the behaviour was observed on 11 different days occurring mostly in the morning, and was associated with significantly higher proportions of daily feeding time than on days when it was not observed. This observation is consistent with the concept that intensified mastication allows higher food intake without compromising digestive efficiency, and represents an expansion of the known physiological primate repertoire that converges with a strategy usually associated with ruminants only.  相似文献   

18.
Abstract Grazing on transplants of a grass, a forb and a tree was examined in low-diversity grassland and more diverse heath in Australia's Snowy Mountains. Transplants were surrounded by 2 mm mesh netting. In one grassland plot, grazers (probably soil invertebrates) attacked 40–90% of tree and forb seedlings but no grass seedlings. In heath, which had about half the grass cover of grassland, grazers consumed grasses but not trees or forbs. The results suggest that grazers can depress diversity in grassland by attacking species other than grass. In heath, they may promote diversity by attacking only grass and releasing other species from competition.  相似文献   

19.
Ruminant livestock have the ability to produce high-quality human food from feedstuffs of little or no value for humans. Balanced essential amino acid composition of meat and milk from ruminants makes those protein sources valuable adjuncts to human diets. It is anticipated that there will be increasing demand for ruminant proteins in the future. Increasing productivity per animal dilutes out the nutritional and environmental costs of maintenance and rearing dairy animals up to production. A number of nutritional strategies improve production per animal such as ration balancing in smallholder operations and small grain supplements to ruminants fed high-forage diets. Greenhouse gas emission intensity is reduced by increased productivity per animal; recent research has developed at least one effective inhibitor of methane production in the rumen. There is widespread over-feeding of protein to dairy cattle; milk and component yields can be maintained, and sometimes even increased, at lower protein intake. Group feeding dairy cows according to production and feeding diets higher in rumen-undegraded protein can improve milk and protein yield. Supplementing rumen-protected essential amino acids will also improve N efficiency in some cases. Better N utilization reduces urinary N, which is the most environmentally unstable form of excretory N. Employing nutritional models to more accurately meet animal requirements improves nutrient efficiency. Although smallholder enterprises, which are concentrated in tropical and semi-tropical regions of developing countries, are subject to different economic pressures, nutritional biology is similar at all production levels. Rather than milk volume, nutritional strategies should maximize milk component yield, which is proportional to market value as well as food value when milk nutrients are consumed directly by farmers and their families. Moving away from Holsteins toward smaller breeds such as Jerseys, Holstein-Jersey crosses or locally adapted breeds (e.g. Vechur) would also reduce lactose production and improve metabolic, environmental and economic efficiencies. Forages containing condensed tannins or polyphenol oxidase enzymes have reduced rumen protein degradation; ruminants capture this protein more efficiently for meat and milk. Although these forages generally have lower yields and persistence, genetic modification would allow insertion of these traits into more widely cultivated forages. Ruminants will retain their niches because of their ability to produce valuable human food from low value feedstuffs. Employing these emerging strategies will allow improved productive efficiency of ruminants in both developing and developed countries.  相似文献   

20.
Using cranioskeletal measurements, several studies have generated evidence that grazing ruminants have a more pronounced mastication apparatus, in terms of muscle insertion areas and protuberances, than browsing ruminants, with the resulting hypothesis that grazers should have larger, heavier chewing muscles than browsers. However, the only investigation of this so far [Axmacher and Hofmann (J Zool 215:463-473, 1988)] did not find differences between ruminant feeding types in the masseter muscle mass of 22 species. Here, we expand the dataset to 48 ruminant species. Regardless of phylogenetic control in the statistical treatment, there was a significant positive correlation of body mass and masseter mass, and also a significant association between percent grass in the natural diet and masseter mass. The results support the concept that ruminant species that ingest more grass have relatively larger masseter muscles, possibly indicating an increased requirement to overcome the resistance of grass forage. The comparative chewing resistance of different forage classes may represent a rewarding field of ecophysiological research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号