首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent research reports that many populations of species showing a wide trophic niche (generalists) are made up of both generalist individuals and individuals with a narrow trophic niche (specialists), suggesting trophic specializations at an individual level. If true, foraging strategies should be associated with individual quality and fitness. Optimal foraging theory predicts that individuals will select the most favourable habitats for feeding. In addition, the “landscape heterogeneity hypothesis” predicts a higher number of species in more diverse landscapes. Thus, it can be predicted that individuals with a wider realized trophic niche should have foraging territories with greater habitat diversity, suggesting that foraging strategies, territory quality and habitat diversity are inter-correlated. This was tested for a population of common kestrels Falco tinnunculus. Diet diversity, territory occupancy (as a measure of territory quality) and habitat diversity of territories were measured over an 8-year period. Our results show that: 1) territory quality was quadratically correlated with habitat diversity, with the best territories being the least and most diverse; 2) diet diversity was not correlated with territory quality; and 3) diet diversity was negatively correlated with landscape heterogeneity. Our study suggests that niche generalist foraging strategies are based on an active search for different prey species within or between habitats rather than on the selection of territories with high habitat diversity.  相似文献   

2.
Density‐dependent breeding performance due to habitat heterogeneity has been shown to regulate populations of territorial species, since the progressive occupation of low quality territories as breeding density increases may cause a decline in the mean per capita fecundity of a population while variation in fecundity increases. Although the preemptive use of sites may relegate low quality individuals to sites of progressively lower suitability, few studies on density dependence have tried to separate the effects of territory quality from individual quality, and none have simultaneously considered the effects of heterospecific competitors. Using two long‐term monitored populations, we assessed the relative contribution of habitat heterogeneity and bird quality (in terms of age) on the productivity of sympatric golden Aquila chrysaetos and Bonelli's eagles Hieraaetus fasciatus under different scenarios of intra‐ and inter‐specific competition. Productivity (number of offspring fledged) varied among territories and average annual productivity was negatively related to its variability in both species and populations, thus giving some support to the habitat heterogeneity hypothesis. However, the effect of habitat heterogeneity on productivity became non‐significant when parental age and local density estimators were included in multivariate analyses. Therefore, temporal changes in bird quality (age) combined with intra‐ and interspecific competition explained variability in territory productivity rather than habitat heterogeneity among territories per se. The recruitment of subadult breeders, a surrogate of mortality in eagles, strongly varied among territories. Habitat heterogeneity in productivity may thus arise not because sites differ in suitability for reproduction but because of differences in factors affecting survival. Territories associated with high mortality risks have a higher probability of being occupied by young birds, whose lower quality, interacting with the density competitors, leads to a reduction of productivity. Site‐dependent variability in adult survival and interspecific competition may be extensive, but so far largely overlooked, factors to be seriously considered for the site‐dependent population regulation framework.  相似文献   

3.
Bonelli's Eagle Hieraaetus fasciatus is one of the most endangered birds of prey in Europe. Despite mounting interest and research, several questions regarding the conservation implications of territory occupancy and site-dependent population regulation remain insufficiently explored for this species. Here, we report on a 12-year study of the territorial structure of a Bonelli's Eagle population in southeastern Spain. No signals of population decline were found in the breeding population, as mean annual productivity was stable and the presence of mixed-age pairs in the population decreased with the years. However, the average proportion of subadults occupying territories was larger than that observed in other Spanish populations. Contrary to the predictions of a despotic distribution model, we found no significant relationship between occupancy rates and breeding parameters. Our results showed significant variations in productivity attributable to differences in the quality of individuals (i.e. mixed versus adult pairs), but no variability among territories per se (i.e. caused by habitat heterogeneity). Moreover, coexistence with intraguild species did not have any significant effect on productivity, although the proximity of Eagle Owls Bubo bubo affected the occupation rate of territories. Finally, our population does not appear to experience site-dependent population regulation, as a positive relation between mean annual productivity and density was found. The threat posed by changes in land use in the study area leads us to suggest that strict protection of current territories is necessary to ensure population persistence, and we suggest that a significant population increase is only likely if new or deserted territories become available.  相似文献   

4.
We examine the evolutionary stability of year-round residency in territorial populations, where breeding sites are a limiting resource. The model links individual life histories to the population-wide competition for territories and includes spatial variation in habitat quality as well as a potential parent-offspring conflict over territory ownership. The general form of the model makes it applicable to the evolution of dispersal, migration, partial migration, and delayed dispersal (offspring retention). We show that migration can be evolutionarily stable only if year-round residency in a given area would produce a sink population, where mortality exceeds reproduction. If this applies to a fraction of the breeding habitat only, partial migration is expected to evolve. In the context of delayed dispersal, habitat saturation has been argued to form an ecological constraint on independent breeding, which favors offspring retention and cooperative breeding. We show that habitat saturation must be considered as a dynamic outcome of birth, death, and dispersal rates in the population, rather than an externally determined constraint. Although delayed dispersal often associates with intense competition for territories, life-history traits have direct effects on stable dispersal strategies, which can often override the effect of habitat saturation. As an example, high survival of floaters selects against delayed dispersal, even though it increases the number of competitors for each breeding vacancy (the "habitat saturation factor"). High survival of territory owners, by contrast, generally favors natal philopatry. We also conclude that spatial variation in habitat quality only rarely selects for delayed dispersal. Within a population, however, offspring retention is more likely in high-quality territories.  相似文献   

5.
Habitat availability might be the most important determinant of success for a species reintroduction programme, making investigation of the quality and quantity of habitat needed to produce self‐sustaining populations a research priority for reintroduction ecologists. We used a stochastic model of population dynamics to predict whether attempts to improve existing breeding territories using artificial nest platforms improved the population growth rate and persistence of a reintroduced population of Northern Aplomado Falcons Falco femoralis septentrionalis in South Texas. We further assessed whether the creation of new territories, i.e. conversion of entire areas to suitable habitat and not simply the erection of nest platforms, would lead to a subsequent increase in the nesting population. Our model was able to reproduce several characteristics of the wild population and predicted the number of breeding pairs per year strikingly well (R2 = 0.97). Simulations revealed that the addition of nest platforms improved productivity such that the population would decline to extinction without them but is stable since their installation. Moreover, the model predicted that the increase in productivity due to nest platforms would cause the population to saturate available breeding territories, at which point the population would contain a moderate proportion of non‐territorial birds that could occupy territories if new ones become available. Population size would therefore be proportional to the increase in available territories. Our study demonstrates that artificial nest‐sites can be an effective tool for the management of reintroduced species.  相似文献   

6.
If individuals of the same population inhabit territories different in landscape structure and composition, experiencing habitat-specific demographic rates, then the landscape features become major determinants of the overall population characteristics. Few studies have tested how habitat-specific demography interacts with landscape heterogeneity to affect populations of territorial species. Here we report a 29-year study of an eagle owl (Bubo bubo) population in southern France. The aim of this study was to analyse how habitat heterogeneity could affect density and breeding performance. Mean productivity for the overall sample was 1.69±0.76 fledglings per breeding pair and, after controlling for year effect, significant differences between territories were detected for productivity. A positive correlation was found between the percentage of pairs producing 50% of the annual fledged young (an index of the distribution of fecundity among nesting territories) and the mean reproductive outputs, that is the heterogeneous structure of the population determined that most/all pairs contributed to the annual production of young during good years, but the opposite during poor years (i.e. fewer pairs produced the majority of fledglings). Mean reproductive output was positively affected by percentage of open country and diet richness. Although other factors different to territory quality could affect demography parameters (e.g. quality of breeders), our results clearly showed a significant correlation between landscape features and population productivity.  相似文献   

7.
Many threatened species in Europe have been expanding their distributions during recent decades owing to protection measures that overcome historical human activity that has limited their distributions. Range expansion has come about via two processes, natural expansion from existing range and reintroductions to new ranges. Reintroductions may prove to be a better way to establish populations because individuals are less subject to competitive relationships lowering breeding success than individuals expanding from existing populations. Whether this is true, however, remains uncertain. We compared success of breeding pairs of an expanding and a reintroduced population of spanish imperial eagles monitored for over 15 years in the south of Spain. We found significant differences in productivity between breeding pairs of each population. Newly established territories in reintroduction areas were almost three times more productive than new territories established as individuals expanded out from an existing population. We conclude that among these eagle populations reintroduced to new areas may fare as well or better than individuals expanding out form existing populations.  相似文献   

8.
Field studies of many vertebrates show that some individuals (floaters) do not defend territories even when there is space for them to do so. We show that the evolutionarily stable strategy (ESS) for the threshold territory quality at which floating takes place is that which maximizes the size of the floating population (but not the total population, breeding population, or reproductive output). The ESS is solved separately for two assumptions: whether individuals wait to occupy a single territory or multiple territories and whether queuing rules are strict or if all waiting individuals are equally likely to obtain the next territory. The four combinations of these assumptions all give the same evolutionarily stable population size of both floaters and breeders. At the ESS, only territories with expected lifetime reproductive success (LRS) exceeding 1 should be occupied, which introduces a limit to ideal habitat selection. The behavioral decision to float alters the shape of the density-dependent response, reduces the equilibrium population size, and affects the response of the population to habitat loss. Specifically, the floater: breeder ratio is directly related to average breeding habitat quality, and the floater population size will decrease more than the breeding population size if better than average quality habitat is lost.  相似文献   

9.
1. Spatial variation in habitat quality and its demographic consequences have important implications for the regulation of animal populations. Theoretically, habitat quality is typically viewed as a single gradient from 'poor' to 'good', but in wild populations it is possible that there are multiple environmental gradients that determine spatial variation in demography. 2. Understanding environmental gradients is important to gain mechanistic insights into important population processes, but also to understand how populations might respond to environmental change. Here, we explore habitat and elevation gradients and their implications for population persistence using detailed long-term data on 600 individuals of the Mauritius kestrel. These data allow us to statistically separate spatial variation in demography from variation arising out of individual or environmental quality and explore its relationships with habitat and topography. 3. Birds that breed earlier in the season have higher reproductive success, and we found that the timing of breeding varies significantly between territories. This variation is primarily driven by elevation, with birds breeding progressively later as elevation increases. 4. Pre-fledging survival from the egg to fledgling stage (independently of timing), and recruitment, also varied significantly between territories. This variation is driven by the habitat surrounding breeding sites with increasing agricultural encroachment causing survival and recruitment to decline. 5. Taken together, our results suggest that there are likely to be multiple environmental gradients affecting spatial variation in productivity in wild populations, and hence multiple and different routes through which environmental change might have consequences for population dynamics by modifying spatial processes.  相似文献   

10.
The evolution of group living has attracted considerable attention from behavioral ecologists working on a wide range of study species. However, theoretical research in this field has been largely focused on cooperative breeders. We extend this line of work to species that lack alloparental care (hereafter termed "noncooperative species") but that may benefit from grouping by jointly defending a common territory. We adopt a demographically explicit approach in which the rates of births and deaths as well as the dispersal decisions of individuals in the population determine the turnover rates of territories and the competition for breeding vacancies thus arising. Our results reveal that some of the factors thought to affect the evolution of cooperative breeding also affect the evolution of group living in noncooperative species. Specifically, high fecundity and low mortality of resident individuals both increase the degree of habitat saturation and make joining an established group more profitable for nonresidents (floaters). Moreover, if floaters can forcefully take over territories, the degree of habitat saturation also affects the chance that residents become targets of takeovers. In this situation, communal defense of territories becomes an important benefit that further promotes the evolution of group living.  相似文献   

11.
The social organization of a population is the consequence of the decisions made by individuals to maximize their fitness, so differences in social systems may arise from differences in ecological conditions. Here, we show how a long-lived species that used to breed monogamously, and at low densities, can change its mating system in response to habitat saturation. We found that a significant proportion of unpaired birds become potential breeders by entering high-quality territories, or by forming polyandrous trios as a strategy to increase their individual performance. However, productivity of territories was reduced when those occupied by breeding pairs changed to trios, suggesting that the third individual was costly. The decision of some individuals to enter into breeding trios as subordinates also had clear negative consequences to population demography. This unusual mating behaviour is thus compromising the conservation effort directed to this endangered species; management to encourage floaters to settle in other suitable but unoccupied areas may be beneficial.  相似文献   

12.
The group selection debate of the 1960s made it clear that evolution does not necessarily increase population performance. Individuals can be selected to have traits that diminish a common good and make population persistence difficult. At the extreme, the discrepancy between levels of selection is predicted to make traits evolve towards values at which a population can no longer persist (evolutionary suicide). Dispersal and prospecting are prime examples of traits that have a strong influence on population persistence under environmental and demographic stochasticity. Theory predicts that an ‘optimal’ dispersal strategy from a population point of view can differ considerably from that produced by individual‐level selection. Because dispersal is frequently risky or otherwise costly, individuals are often predicted to disperse less than would be ideal for population performance (persistence or size). We define this discrepancy as ‘inertia’ and examine current knowledge of its occurrence and effects on population dynamics in nature. We argue that inertia is potentially widespread but that a framework is currently lacking for predicting precisely the extent to which it has a real influence on population persistence. The opposite of inertia, ‘hypermobility’ (more dispersal by individuals than would maximize population performance) remains a possibility: it is known that highest dispersal rates do not lead to best expected population performance, and examples of such high dispersal evolving exist at least in the theoretical literature. We also show, by considering prospecting behaviour, that similar issues arise in species with advanced cognitive and learning abilities. Individual prospecting strategies and the information acquired during dispersal are known to influence the decisions and therefore the fate of individuals and, as a corollary, populations. Again, the willingness of individuals to sample environments might evolve to levels that are not optimal for populations. This conflict can take intriguing forms. For example, better cognitive abilities of individuals may not always lead to better population‐level performance. Simulation studies have found that ‘blind’ dispersal can lead to better connected metapopulations than cognitively more advanced habitat choice rules: the latter can lead to too many individuals sticking to nearby safe habitat. The study of the mismatch between individual and population fitness should not be a mere intellectual exercise. Population managers typically need to take a population‐level view of performance, which may necessitate human intervention if it differs from what is selected for. We conclude that our knowledge of inertia and hypermobility would advance faster if theoretical studies—without much additional effort—quantified the population consequences of the evolving traits and compared this with hypothetical (not selectively favoured) dispersal rules, and if empirical studies were similarly conducted with the differing levels of selection in mind.  相似文献   

13.
Theoretical studies indicate that a single population under an Allee effect will decline to extinction if reduced below a particular threshold, but the existence of multiple local populations connected by random dispersal improves persistence of the global population. An additional process that can facilitate persistence is the existence of habitat selection by dispersers. Using analytic and simulation models of population change, I found that when habitat patches exhibiting Allee effects are connected by dispersing individuals, habitat selection by these dispersers increases the likelihood that patches persist at high densities, relative to results expected by random settlement. Populations exhibiting habitat selection also attain equilibrium more quickly than randomly dispersing populations. These effects are particularly important when Allee effects are large and more than two patches exist. Integrating habitat selection into population dynamics may help address why some studies have failed to find extinction thresholds in populations, despite well-known Allee effects in many species.  相似文献   

14.
ABSTRACT One of the largest known populations of the federally endangered southwestern willow flycatcher (Empidonax traillii extimus) occurs at Roosevelt Lake, Arizona, USA. Modifications to Roosevelt Dam, completed in 1996, raised the height of the dam and resulted in a high probability of willow flycatcher habitat inundation within the reservoir's conservation pool. We collected habitat measurements and monitored 922 willow flycatcher nests from 1996 to 2006 to investigate effects of inundation on willow flycatcher habitat and subsequent changes in nest success, productivity, and distribution. Inundation of willow flycatcher habitat at Roosevelt Lake occurred in 2005, changing the location and amount of suitable breeding habitat and significantly altering habitat structure (e.g., thinner vegetation, more canopy gaps) of formally occupied nest sites. The willow flycatcher population at Roosevelt Lake decreased 47% from 209 territories in 2004 to 111 territories in 2006 in response to habitat changes. Willow flycatchers made fewer nesting attempts and nest success rates were significantly lower during inundation (2005 and 2006: 45%) than preinundation (1996–2004: 57%). Combined, these factors negatively affected the population's productivity during inundation. Although inundation caused extensive vegetation die-off, we did observe regeneration of vegetation in some areas at Roosevelt Lake in 2006. The Roosevelt Lake population remains one of the largest willow flycatcher populations in the state and territory numbers remain high enough that the population may not suffer long-term effects if sufficient suitable habitat continues to exist during the cycle of inundation and regeneration. Reservoir managers may be able to develop dam management guidelines that reduce damage to habitat, encourage habitat growth, and mimic the dynamic nature of unaltered riparian habitat. These guidelines can be implemented, as appropriate, at reservoirs throughout the willow flycatcher's range.  相似文献   

15.
This article presents a theory of territoriality that integrates optimal foraging and conflict resolution through negotiation. Using a spatially explicit model of a sit-and-wait forager, we show that when resources are scarce, there is a conflict between foragers: there is not enough space for all individuals to have optimal home ranges. We propose that a division of space that solves this conflict over resources is the outcome of a negotiation between foragers. We name this outcome the socially stable territories (SST). Using game theory we show that in a homogenous patch occupied by two interacting foragers, both individuals receive identical energy yields at the socially stable territories; that is, there is economic equity. Economic inequity can arise in a heterogeneous patch or from asymmetries in fighting abilities between the foragers. Opportunity costs play a role in reducing economic inequity. When the asymmetry in fighting abilities is very large, a negotiated division of space is not possible and the forager with lowest fighting ability may be evicted from the habitat patch. A comparison between territories and overlapping home ranges shows that energy yields from territories are generally higher. We discuss why there are instances in which individuals nevertheless overlap home ranges.  相似文献   

16.
We report on an 11‐year study of floater interference in a population of Spanish Imperial Eagles Aquila adalberti. We analysed changes over the years in the productivity of 15 territories to test predictions of two hypotheses of density‐dependent productivity in relation to the presence of floaters (birds without territories). According to the ‘interference' hypothesis, the frequency of intrusion by floaters increases with density, resulting in a decrease in productivity. Thus, in a high‐density population a negative relationship between floater intrusions and productivity of the territory is expected. In contrast, under the ‘habitat heterogeneity' hypothesis, as density increases a higher proportion of individuals is forced to occupy lower quality habitats. Support of this hypothesis requires that floaters detect differences in quality among territories and preferentially visit the better quality territories. Consequently, a positive relationship between floater intrusions and productivity is expected. Results showed that floaters tended to visit their natal area at the beginning of the breeding season. Among floater Eagles, males made significantly more intrusions per day than did females, but females stayed in the natal population for longer each year than males. Floater intrusions and productivity were highly positively correlated, supporting the ‘habitat heterogeneity' hypothesis; individuals were apparently able to assess the quality of a territory and, at the frequencies observed, their interference with the breeding pair had no obvious negative effect on productivity.  相似文献   

17.
Territorial behaviour can only be adaptive if its costs are outweighed by its benefits. Territorial individuals incur costs by defending their territories against intruders. Usually these intruders are assumed to be non-territorial floaters attempting to take over the whole territory or neighbours trying to extend the borders of their own territory. We instead investigate how costs and benefits of territorial behaviour are affected by neighbours which invade to steal resources on a territory.We show analytically that in the absence of defence intrusion into neighbouring territories always pays and that even if territories are defended intrusion levels can still be high. Using a more detailed simulation model we find that territory defence usually disappears from the population even if owners have a strong advantage over intruders in terms of fighting costs or foraging efficiency. Defence and thus territoriality can only be evolutionarily stable if fighting costs for the intruder relative to the productivity of the territory are very high or if crossing the borders between territories carries additional costs.Our results show that stealing of resources by neighbours can have a considerable effect on the evolutionary stability of territory defence and thus territoriality itself. A more mechanistic model of territorial behaviour is needed to incorporate these kinds of mechanisms into a general theory on the evolution of territoriality.  相似文献   

18.
Migratory animals are comprised of a complex series of interconnected breeding and nonbreeding populations. Because individuals in any given population can arrive from a variety of sites the previous season, predicting how different populations will respond to environmental change can be challenging. In this study, we develop a population model composed of a network of breeding and wintering sites to show how habitat loss affects patterns of connectivity and species abundance. When the costs of migration are evenly distributed, habitat loss at a single site can increase the degree of connectivity (mixing) within the entire network, which then acts to buffer global populations from declines. However, the degree to which populations are buffered depends on where habitat loss occurs within the network: a site that has the potential to receive individuals from multiple populations in the opposite season will lead to smaller declines than a site that is more isolated. In other cases when there are equal costs of migration to two or more sites in the opposite season, habitat loss can result in some populations becoming segregated (disconnected) from the rest of the network. The geographic structure of the network can have a significant influence on relative population sizes of sites in the same season and can also affect the overall degree of mixing in the network, even when sites are of equal intrinsic quality. When a migratory network is widely spaced and migration costs are high, an equivalent habitat loss will lead to a larger decline in global population size than will occur in a network where the overall costs of migration are low. Our model provides an important foundation to test predictions related to habitat loss in real-world migratory networks and demonstrates that migratory networks will likely produce different dynamics from traditional metapopulations. Our results provide strong evidence that estimating population connectivity is a prerequisite for successfully predicting changes in migratory populations.  相似文献   

19.
The ecological niche of a species determines whether a species can persist and reproduce in a patch or not. The niche of a species is often described using habitat suitability models and indices. Accordingly, one may expect tight links between demography, phenotypes of individuals, population size, and habitat suitability. However, such links are not always found. Here, we study the relationship between a habitat suitability index that is commonly used for conservation assessments and metrics describing the performance at the level of populations and individuals. Using data from a metapopulation of a pond-breeding amphibian, the Great Crested Newt (Triturus cristatus), we show that habitat suitability predicts population size but not body condition. Ponds with higher suitability had a higher population size of newts, whereas population size correlated negatively with body condition of individuals. Our results are in line with previous studies showing no straightforward relationship between habitat suitability and body condition (a measure of individual performance) and the performance of populations. We suggest that a population size-dependent reduction of body condition may be a regulatory mechanism in newt populations.  相似文献   

20.
1. The habitat heterogeneity (HHH) and individual adjustment (IAH) hypotheses are commonly proposed to explain a decrease in reproduction rate with increasing population density. Higher numbers of low-quality territories with low reproductive success as density increases lead to a decrease in reproduction under the HHH, while more competition at high density decreases reproduction across all territories under the IAH. 2. We analyse the influence of density and habitat heterogeneity on reproductive success in eight populations of long-lived territorial birds of prey belonging to four species. Sufficient reliability in distinguishing between population-wide, site-specific and individual quality effects on reproduction was granted through the minimal duration of 20 years of all data sets and the ability to control for individual quality in five of them. 3. Density increased in five populations but reproduction did not decrease in these. Territory occupancy as a surrogate of territory quality correlated positively with reproductive success but only significantly so in large data sets with more than 100 territories. 4. Reproductive success was always best explained by measures of territory quality in multivariate models. Direct or delayed (t-1) population density entered very few of the best models. Mixed models controlling for individual quality showed an increasing reproductive performance in older individuals and in those laying earlier, but measures of territory quality were also always retained in the best models. 5. We find strong support for the habitat heterogeneity hypothesis but weak support for the individual adjustment hypothesis. Both individual and site characteristics are crucial for reproductive performance in long-lived birds. Proportional occupancy of territories enables recognition of high-quality territories as preferential conservation targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号