首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Incorporation of the herpes simplex virus 1 (HSV-1) portal vertex into the capsid requires interaction with a 12-amino-acid hydrophobic domain within capsid scaffold proteins. The goal of this work was to identify domains and residues in the UL6-encoded portal protein pUL6 critical to the interaction with scaffold proteins. We show that whereas the wild-type portal and scaffold proteins readily coimmunoprecipitated with one another in the absence of other viral proteins, truncation beyond the first 18 or last 36 amino acids of the portal protein precluded this coimmunoprecipitation. The coimmunoprecipitation was also precluded by mutation of conserved tryptophan (W) residues to alanine (A) at positions 27, 90, 127, 163, 241, 262, 532, and 596 of UL6. All of these W-to-A mutations precluded the rescue of a viral deletion mutant lacking UL6, except W163A, which supported replication poorly, and W596A, which fully rescued replication. A recombinant virus bearing the W596A mutation replicated and packaged DNA normally, and scaffold proteins readily coimmunoprecipitated with portal protein from lysates of infected cells. Thus, viral functions compensated for the W596A mutation''s detrimental effects on the portal-scaffold interaction seen during transient expression of portal and scaffold proteins. In contrast, the W27A mutation precluded portal-scaffold interactions in infected cell lysates, reduced the solubility of pUL6, decreased incorporation of the portal into capsids, and abrogated viral-DNA cleavage and packaging.Immature herpesvirus capsids or procapsids consist of two shells: an inner shell, or scaffold, and an outer shell that is roughly spherical and largely composed of the major capsid protein VP5 (24, 38).The capsid scaffold consists of a mixture of the UL26.5 and UL26 gene products, with the UL26.5 gene product (pUL26.5, ICP35, or VP22a) being the most abundant (1, 12, 20, 21, 32, 38). The UL26.5 open reading frame shares its coding frame and C terminus with the UL26 gene but initiates at codon 307 of UL26 (17). The extreme C termini of both VP22a and the UL26-encoded protein (pUL26) interact with the N terminus of VP5 (7, 14, 26, 40, 41). Capsid assembly likely initiates when the portal binds VP5/VP22a and/or VP5/pUL26 complexes (22, 25). The addition of more of these complexes to growing capsid shells eventually produces a closed sphere bearing a single portal. pUL26 within the scaffold contains a protease that cleaves itself between amino acids 247 and 248, separating pUL26 into an N-terminal protease domain called VP24 and a C-terminal domain termed VP21 (4, 5, 8, 9, 28, 42). The protease also cleaves 25 amino acids from pUL26 and VP22a to release VP5 (5, 8, 9). VP21 and VP22a are replaced with DNA when the DNA is packaged (12, 29).When capsids undergo maturation, the outer protein shell angularizes to become icosahedral (13). One fivefold-symmetrical vertex in the angularized outer capsid shell is biochemically distinct from the other 11 and is called the portal vertex because it serves as the channel through which DNA is inserted as it is packaged (23). In herpes simplex virus (HSV), the portal vertex is composed of 12 copies of the portal protein encoded by UL6 (2, 23, 39). We and others have shown that interactions between scaffold and portal proteins are critical for incorporation of the portal into the capsid (15, 33, 44, 45). Twelve amino acids of scaffold proteins are sufficient to interact with the portal protein, and tyrosine and proline resides within this domain are critical for the interaction with scaffold proteins and incorporation of the portal into capsids (45).One goal of the current study was to map domains and residues within the UL6-encoded portal protein that mediate interaction with scaffold proteins. We show that the portal-scaffold interaction requires all but the first 18 and last 36 amino acids of pUL6, as well as several tryptophan residues positioned throughout the portal protein.  相似文献   

3.
4.
Herpes simplex virus 1 nucleocapsids bud through the inner nuclear membrane (INM) into the perinuclear space to obtain a primary viral envelope. This process requires a protein complex at the INM composed of the UL31 and UL34 gene products. While it is clear that the viral kinase encoded by the US3 gene regulates the localization of pUL31/pUL34 within the INM, the molecular mechanism by which this is accomplished remains enigmatic. Here, we have determined the following. (i) The N terminus of pUL31 is indispensable for the protein''s normal function and contains up to six serines that are phosphorylated by the US3 kinase during infection. (ii) Phosphorylation at these six serines was not essential for a productive infection but was required for optimal viral growth kinetics. (iii) In the presence of active US3 kinase, changing the serines to alanine caused the pUL31/pUL34 complex to aggregate at the nuclear rim and caused some virions to accumulate aberrantly in herniations of the nuclear membrane, much as in cells infected with a US3 kinase-dead mutant. (iv) The replacement of the six serines of pUL31 with glutamic acid largely restored the smooth distribution of pUL34/pUL31 at the nuclear membrane and precluded the accumulation of virions in herniations whether or not US3 kinase was active but also precluded the optimal primary envelopment of nucleocapsids. These observations indicate that the phosphorylation of pUL31 by pUS3 represents an important regulatory event in the virion egress pathway that can account for much of pUS3''s role in nuclear egress. The data also suggest that the dynamics of pUL31 phosphorylation modulate both the primary envelopment and the subsequent fusion of the nascent virion envelope with the outer nuclear membrane.The UL31 and UL34 proteins of herpes simplex virus 1 (HSV-1) form a complex that accumulates at the inner nuclear membrane (INM) of infected cells (26, 27). This complex is essential for the budding of nucleocapsids through the INM into the perinuclear space (26, 28). pUL34 is a type 2 integral membrane protein with a 247-amino-acid nucleoplasmic domain that binds pUL31 and holds the latter in close approximation to the INM (16, 19, 26, 31, 36, 37). Both proteins become incorporated into nascent virions, indicating that they directly or indirectly interact with nucleocapsids during the budding event (27). Interestingly, the coexpression of the pseudorabies virus homologs of HSV pUL31 and pUL34 are sufficient to induce budding from the INM in the absence of other viral proteins (13).The most prominent model of nuclear egress proposes that the step following primary envelopment involves the fusion of the perinuclear virion envelope with the outer nuclear membrane (ONM), allowing subsequent steps in which the deenveloped capsid engages budding sites in the Golgi or trans-Golgi network (20, 32). The US3 protein is a promiscuous kinase that phosphorylates pUL31, pUL34, and several other viral and cellular components (1, 2, 5, 11, 15, 21-23, 25). In the absence of pUS3 kinase activity, (i) virions accumulate within distensions of the perinuclear space that herniate into the nucleoplasm (14, 27, 29), (ii) the pUL31/pUL34 complex is mislocalized at the nuclear rim from a smooth pattern to discrete foci that accumulate adjacent to nuclear membrane herniations (12, 14, 27, 29), and (iii) the onset of infectious virus production is delayed (21, 29).Aberrant accumulations of perinuclear virions similar to those observed in cells infected with US3 kinase-dead viruses have been observed in cells infected with viruses lacking the capacity to produce glycoproteins H and B (gH and gB, respectively) (8). Because these proteins are required for fusion with the plasma membrane or endocytic vesicles during HSV entry (3, 4, 9, 10, 18, 30, 33), it has been proposed that the accumulation of perinuclear virions in the absence of gH and gB reflects a failure in the apparatus that normally mediates the fusion between the nascent virion envelope and the ONM (8). By extension of this hypothesis, pUS3 might act to trigger or otherwise regulate this perinuclear fusion event.The substrate(s) of the pUS3 kinase responsible for the altered localization of the pUL31/pUL34 complex and the aberrant accumulation of perinuclear virions were heretofore unknown. In one study to identify such a substrate, it was determined that precluding the phosphorylation of pUL34 was not responsible for the nuclear egress defects induced by the absence of pUS3 or its kinase activity (29). The current study was therefore undertaken to investigate the hypothesis that the pUS3-mediated phosphorylation of pUL31 is critical to regulate nuclear egress. The presented evidence indicates that aspects of the US3 kinase-dead phenotype, including the retention of virions in the perinuclear space, the mislocalization of the pUL31/pUL34 complex, and the delayed onset of virus replication, can be replicated by precluding pUL31 phosphorylation in the presence or absence of pUS3 kinase activity. The data also suggest that the dynamic phosphorylation of pUL31 is important during the primary envelopment of nucleocapsids.  相似文献   

5.
6.
The UL17 and UL25 proteins (pUL17 and pUL25, respectively) of herpes simplex virus 1 are located at the external surface of capsids and are essential for DNA packaging and DNA retention in the capsid, respectively. The current studies were undertaken to determine whether DNA packaging or capsid assembly affected the pUL17/pUL25 interaction. We found that pUL17 and pUL25 coimmunoprecipitated from cells infected with wild-type virus, whereas the major capsid protein VP5 (encoded by the UL19 gene) did not coimmunoprecipitate with these proteins under stringent conditions. In addition, pUL17 (i) coimmunoprecipitated with pUL25 in the absence of other viral proteins, (ii) coimmunoprecipitated with pUL25 from lysates of infected cells in the presence or absence of VP5, (iii) did not coimmunoprecipitate efficiently with pUL25 in the absence of the triplex protein VP23 (encoded by the UL18 gene), (iv) required pUL25 for proper solubilization and localization within the viral replication compartment, (v) was essential for the sole nuclear localization of pUL25, and (vi) required capsid proteins VP5 and VP23 for nuclear localization and normal levels of immunoreactivity in an indirect immunofluorescence assay. Proper localization of pUL25 in infected cell nuclei required pUL17, pUL32, and the major capsid proteins VP5 and VP23, but not the DNA packaging protein pUL15. The data suggest that VP23 or triplexes augment the pUL17/pUL25 interaction and that VP23 and VP5 induce conformational changes in pUL17 and pUL25, exposing epitopes that are otherwise partially masked in infected cells. These conformational changes can occur in the absence of DNA packaging. The data indicate that the pUL17/pUL25 complex requires multiple viral proteins and functions for proper localization and biochemical behavior in the infected cell.Immature herpes simplex virus (HSV) capsids, like those of all herpesviruses, consist of two protein shells. The outer shell comprises 150 hexons, each composed of six copies of VP5, and 11 pentons, each containing five copies of VP5 (23, 29, 47). One vertex of fivefold symmetry is composed of 12 copies of the protein encoded by the UL6 gene and serves as the portal through which DNA is inserted (22, 39). The pentons and hexons are linked together by 320 triplexes composed of two copies of the UL18 gene product, VP23, and one copy of the UL38 gene product, VP19C (23). Each triplex arrangement has two arms contacting neighboring VP5 subunits (47). The internal shell of the capsid consists primarily of more than 1,200 copies of the scaffold protein ICP35 (VP22a) and a smaller number of protease molecules encoded by the UL26 open reading frame, which self-cleaves to form VP24 and VP21 derived from the amino and carboxyl termini, respectively (11, 12, 19, 25; reviewed in reference 31). The outer shell is virtually identical in the three capsid types found in HSV-infected cells, termed types A, B, and C (5, 6, 7, 29, 43, 48). It is believed that all three are derived from the immature procapsid (21, 38). Type C capsids contain DNA in place of the internal shell, type B capsids contain both shells, and type A capsids consist only of the outer shell (15, 16). Cleavage of viral DNA to produce type C capsids requires not only the portal protein, but all of the major capsid proteins and the products of the UL15, UL17, UL28, UL32, and UL33 genes (2, 4, 10, 18, 26, 28, 35, 46). Only C capsids go on to become infectious virions (27).The outer capsid shell contains minor capsid proteins encoded by the UL25 and UL17 open reading frames (1, 17, 20). These proteins are located on the external surface of the viral capsid (24, 36, 44) and are believed to form a heterodimer arranged as a linear structure, termed the C capsid-specific complex (CCSC), located between pentons and hexons (41). This is consistent with the observation that levels of pUL25 are increased in C capsids as opposed to in B capsids (30). On the other hand, other studies have indicated that at least some UL17 and UL25 proteins (pUL17 and pUL25, respectively) associate with all capsid types, and pUL17 can associate with enveloped light particles, which lack capsid and capsid proteins but contain a number of viral tegument proteins (28, 36, 37). How the UL17 and UL25 proteins attach to capsids is not currently known, although the structure of the CCSC suggests extensive contact with triplexes (41). It is also unclear when pUL17 and pUL25 become incorporated into the capsid during the assembly pathway. Less pUL25 associates with pUL17(−) capsids, suggesting that the two proteins bind capsids either cooperatively or sequentially, although this could also be consequential to the fact that less pUL25 associates with capsids lacking DNA (30, 36).Both pUL25 and pUL17 are necessary for proper nucleocapsid assembly, but their respective deletion generates different phenotypes. Deletion of pUL17 precludes DNA packaging and induces capsid aggregation in the nuclei of infected cells, suggesting a critical early function (28, 34), whereas deletion of pUL25 precludes correct cleavage or retention of full-length cleaved DNA within the capsid (8, 20, 32), thus suggesting a critical function later in the assembly pathway.The current studies were undertaken to determine how pUL17 and pUL25 associate with capsids by studying their interaction and localization in the presence and absence of other capsid proteins.  相似文献   

7.
8.
9.
10.
11.
12.
UL31 and UL34 of herpes simplex virus type 1 form a complex necessary for nucleocapsid budding at the inner nuclear membrane (INM). Previous examination by immunogold electron microscopy and electron tomography showed that pUL31, pUL34, and glycoproteins D and M are recruited to perinuclear virions and densely staining regions of the INM where nucleocapsids bud into the perinuclear space. We now show by quantitative immunogold electron microscopy coupled with analysis of variance that gD-specific immunoreactivity is significantly reduced at both the INM and outer nuclear membrane (ONM) of cells infected with a UL34 null virus. While the amount of gM associated with the nuclear membrane (NM) was only slightly (P = 0.027) reduced in cells infected with the UL34 null virus, enrichment of gM in the INM at the expense of that in the ONM was greatly dependent on UL34 (P < 0.0001). pUL34 also interacted directly or indirectly with immature forms of gD (species expected to reside in the endoplasmic reticulum or nuclear membrane) in lysates of infected cells and with the cytosolic tail of gD fused to glutathione S-transferase in rabbit reticulocyte lysates, suggesting a role for the pUL34/gD interaction in recruiting gD to the NM. The effects of UL34 on gD and gM localization were not a consequence of decreased total expression of gD and gM, as determined by flow cytometry. Separately, pUL31 was dispensable for targeting gD and gM to the two leaflets of the NM but was required for (i) the proper INM-versus-ONM ratio of gD and gM in infected cells and (ii) the presence of electron-dense regions in the INM, representing nucleocapsid budding sites. We conclude that in addition to their roles in nucleocapsid envelopment and lamina alteration, UL31 and UL34 play separate but related roles in recruiting appropriate components to nucleocapsid budding sites at the INM.Herpesvirus virions comprise a nucleocapsid containing genomic viral DNA, a proteinaceous tegument layer surrounding the nucleocapsid, and a virion envelope surrounding the tegument. The envelope of extracellular herpes simplex virus (HSV) virions contains glycoproteins gB, gC, gD, gE, gI, gG, gH, gK, gL, and gM (23, 51).As viewed by electron microscopy, nascent virions form as the nucleocapsid buds through densely staining regions of the nuclear membrane (NM) (21, 41). Electron tomograms of HSV perinuclear virions compared to those of extracellular virions infer that the former contain glycoproteins of considerably less glycosylation and a relatively sparse tegument layer compared to their counterparts in mature extracellular virions (6). The lower levels of glycosylation in HSV perinuclear virions are consistent with the fact that the lumen of the perinuclear space is continuous with that of the endoplasmic reticulum. Thus, the polysaccharide moieties of virion glycoproteins become fully processed as virions access Golgi enzymes during their egress to the extracellular space. Although the full proteome of the nascent perinuclear virion is unknown, immunogold studies have shown that they contain at least pUL31, pUL34, pUS3, gB, gC, gD, gH, gM, and the VP16 and pUL11 tegument proteins in addition to the proteins that comprise the viral capsid (4, 5, 15, 25, 37, 40, 47, 50, 55).The UL31 and UL34 gene products of HSV-1 (pUL31 and pUL34, respectively) form a complex that localizes at the inner and outer NMs (INM and ONM, respectively) of infected cells (40). Both proteins are essential for nucleocapsid envelopment at the INM and become incorporated into nascent virions when nucleocapsids bud through the INM into the perinuclear space (39, 40, 42). The proteins and their essential role in nucleocapsid envelopment are conserved in all herpesvirus subfamilies (14, 20, 32, 45). pUL31 of HSV-1 is a mostly hydrophobic phosphoprotein that is held in close approximation to the nucleoplasmic face of the INM by interaction with pUL34, an integral membrane protein of type II orientation (33, 40, 46, 56). The first 248 amino acids of pUL34 are predicted to reside in the nucleoplasm or cytoplasm, depending on whether the protein localizes in the INM or ONM, respectively. This is followed by an approximately 22-amino acid transmembrane domain with up to 5 amino acids residing in the perinuclear space or lumen of the endoplasmic reticulum.In the most prominent model of herpesvirion egress, the envelope of the perinuclear virion fuses with the ONM, releasing the deenveloped nucleocapsid into the cytoplasm, where it subsequently buds into cytoplasmic membranous organelles such as the Golgi or trans-Golgi network (34, 49). This model is supported by the observation that pUL31 and pUL34 are located in the perinuclear virion but not extracellular virions (18, 40). Thus, these proteins are lost from the virion upon fusion of the virion envelope with the ONM. Also supporting this egress model is the observation that deletion of both gB and gH causes virions to accumulate aberrantly in the perinuclear space (15). The involvement of gH and gB is potentially satisfying because these proteins comprise essential components of the machinery that mediates fusion of the virion envelope with the plasma or endosomal membranes during the initiation of infection (9, 12, 16, 44, 52). Moreover, expression of a combination of gB, gD, gH, and gL is sufficient to mediate fusion of cell membranes, whereas coexpression with gM or gK inhibits this fusion (3, 8, 11). Although the mechanism of fusion is unclear, gD is known to bind viral receptors on cell surfaces, and the structure of gB indicates features reminiscent of other viral fusion proteins (24, 35, 48). gD has been shown to interact with gB and gH at least transiently, suggesting that these interactions may be important for the fusion reaction (1, 2). Thus, fusion between the nascent and mature virion envelopes with target membranes may share mechanistic similarities.On the other hand, it is likely that the two fusion events are mechanistically distinct because (i) single deletion of either gH or gB precludes viral entry and cell/cell fusion but does not cause nascent virions to accumulate in the perinuclear space (9, 16, 31, 43) and (ii) the activity of a viral kinase encoded by US3 is dispensable for entry but believed to promote fusion of the perinuclear virion and ONM (28, 40). Moreover, the lack of glycoproteins from the pseudorabies virus perinuclear virion suggests that fusion is mediated by an entirely different mechanism in this system (26).The current study focuses on how glycoproteins are incorporated into the nascent virion. We show that optimal recruitment of gD to both leaflets of the NM and gM to the INM requires pUL34 and pUL31. We also show that immature gD interacts with pUL34, suggesting a mechanism by which pUL34 might recruit gD to the NM.  相似文献   

13.
Varicella-zoster virus (VZV) causes varicella and herpes zoster, diseases characterized by distinct cutaneous rashes. Dendritic cells (DC) are essential for inducing antiviral immune responses; however, the contribution of DC subsets to immune control during natural cutaneous VZV infection has not been investigated. Immunostaining showed that compared to normal skin, the proportion of cells expressing DC-SIGN (a dermal DC marker) or DC-LAMP and CD83 (mature DC markers) were not significantly altered in infected skin. In contrast, the frequency of Langerhans cells was significantly decreased in VZV-infected skin, whereas there was an influx of plasmacytoid DC, a potent secretor of type I interferon (IFN). Langerhans cells and plasmacytoid DC in infected skin were closely associated with VZV antigen-positive cells, and some Langerhans cells and plasmacytoid DC were VZV antigen positive. To extend these in vivo observations, both plasmacytoid DC (PDC) isolated from human blood and Langerhans cells derived from MUTZ-3 cells were shown to be permissive to VZV infection. In VZV-infected PDC cultures, significant induction of alpha IFN (IFN-α) did not occur, indicating the VZV inhibits the capacity of PDC to induce expression of this host defense cytokine. This study defines changes in the response of DC which occur during cutaneous VZV infection and implicates infection of DC subtypes in VZV pathogenesis.Varicella-zoster virus (VZV) is a highly species-specific human herpesvirus that causes the diseases varicella (chicken pox) and herpes zoster (shingles). Varicella results from the primary phase of infection and is characterized by a diffuse rash of vesiculopustular lesions that appear in crops and usually resolve within 1 to 2 weeks (7, 26). Primary infection is initiated by inoculation of mucosal sites, such as the upper respiratory tract and the conjunctiva, with infectious virus, usually contained within respiratory droplets (3, 23). Following inoculation, there is a 10- to 21-day incubation period during which VZV is transported to the regional lymph nodes; however, it remains unclear which cell types are responsible for transport of VZV during natural infection (3). It has been hypothesized that dendritic cells (DC) of the respiratory mucosa may be among the first cells to encounter VZV during primary infection and are capable of virus transport to the draining lymph nodes (1, 45). It is postulated that within lymph nodes, VZV undergoes a period of replication, resulting in a primary cell-associated viremia, during which time virus is transported to the reticuloendothelial organs, where it undergoes another period of replication that results in a secondary cell-associated viremia and virus transport to the skin (3, 23). However, VZV has recently been shown to have tropism for human tonsillar CD4+ T lymphocytes (37), and it has been demonstrated that these T lymphocytes express skin homing markers that may allow them to transport VZV directly from the lymph node to the skin during primary viremia (38). Once the virus reaches the skin, it infects cutaneous epithelial cells, resulting in distinctive vesiculopustular lesions.During the course of primary infection, VZV establishes a lifelong latent infection within the sensory ganglia, from which virus may reactivate years later to cause herpes zoster (22, 42, 53). VZV reactivation results in the production of new infectious virus and a characteristic vesiculopustular rash, which differs from that of varicella insofar as the distribution of the lesions is typically unilateral and covers only 1 to 2 dermatomes (8). In both primary and reactivated VZV infection of human skin, VZV antigens are detectable in the epidermis and dermis (2, 30, 46, 47, 49, 52), and although some studies have examined the immune infiltrate present in these lesions, most have focused on T lymphocytes, macrophages, and NK cells (40, 48, 50, 51, 58). The role of DC subsets in VZV infection in human skin has not been previously explored in vivo.Our laboratory provided the first evidence that VZV could productively infect human immature and mature monocyte-derived dendritic cells (MDDC) in vitro (1, 45), and Hu and Cohen (2005) showed that VZV ORF47 was critical for replication of virus in human immature DC but not mature DC (29). However, whether DC become directly infected during natural VZV skin infection and the impact VZV infection may have on DC subsets has yet to be elucidated. The two subsets of DC that are normally present in the skin and which may be involved in the pathogenesis of VZV infection are the Langerhans cells (LC) of the epidermis and dermal DC (DDC) (60). LC are present in an immature state in uninfected skin and in upper respiratory tract epithelium. Upon capture of foreign antigens, LC have the capacity to migrate from the periphery to the lymph nodes, where they seek interaction with T lymphocytes (60). Although the location of cutaneous DC suggests that they are a DC subset likely to be involved in the pathogenesis of VZV infection, other subsets of DC, such as the blood-derived myeloid DC (MDC) and plasmacytoid DC (PDC), are also potentially important in the pathogenesis of VZV infection. Of particular interest are PDC, since these cells are important in innate antiviral immune responses due to their ability to recruit to sites of inflammation and secrete high levels of alpha interferon (IFN-α) (6, 18, 56). PDC also participate in adaptive immune responses through their secretion of cytokines and chemokines that promote activation of effector cells, including NK cells, NKT cells, B lymphocytes, and T lymphocytes, and also through their capacity to present antigen to T lymphocytes (9, 63). Whether PDC and LC can be infected with VZV and their roles during infection have not been previously studied.In this study, we sought to identify and compare the subsets of DC present in human skin lesions following natural VZV infection and to assess DC permissiveness to VZV infection. We utilized immunohistochemical (IHC) and immunofluorescent (IFA) staining to characterize DC subsets within the skin of multiple patients with either varicella or herpes zoster, and identified profound changes in the frequency of LC and PDC as a consequence of cutaneous VZV infection. In addition, some LC and PDC costained with a range of VZV antigens indicative of productive infection. PDC isolated from human blood and LC derived from the MUTZ-3 cells were shown to be permissive to productive VZV infection in vitro. This study defines changes in the type and distribution of DC during natural cutaneous VZV infection and implicates infection of specific DC subsets in VZV pathogenesis.  相似文献   

14.
15.
16.
17.
The filovirus VP40 protein is capable of budding from mammalian cells in the form of virus-like particles (VLPs) that are morphologically indistinguishable from infectious virions. Ebola virus VP40 (eVP40) contains well-characterized overlapping L domains, which play a key role in mediating efficient virus egress. L domains represent only one component required for efficient budding and, therefore, there is a need to identify and characterize additional domains important for VP40 function. We demonstrate here that the 96LPLGVA101 sequence of eVP40 and the corresponding 84LPLGIM89 sequence of Marburg virus VP40 (mVP40) are critical for efficient release of VP40 VLPs. Indeed, deletion of these motifs essentially abolished the ability of eVP40 and mVP40 to bud as VLPs. To address the mechanism by which the 96LPLGVA101 motif of eVP40 contributes to egress, a series of point mutations were introduced into this motif. These mutants were then compared to the eVP40 wild type in a VLP budding assay to assess budding competency. Confocal microscopy and gel filtration analyses were performed to assess their pattern of intracellular localization and ability to oligomerize, respectively. Our results show that mutations disrupting the 96LPLGVA101 motif resulted in both altered patterns of intracellular localization and self-assembly compared to wild-type controls. Interestingly, coexpression of either Ebola virus GP-WT or mVP40-WT with eVP40-ΔLPLGVA failed to rescue the budding defective eVP40-ΔLPLGVA mutant into VLPs; however, coexpression of eVP40-WT with mVP40-ΔLPLGIM successfully rescued budding of mVP40-ΔLPLGIM into VLPs at mVP40-WT levels. In sum, our findings implicate the LPLGVA and LPLGIM motifs of eVP40 and mVP40, respectively, as being important for VP40 structure/stability and budding.Ebola and Marburg viruses are members of the family Filoviridae. Filoviruses are filamentous, negative-sense, single-stranded RNA viruses that cause lethal hemorrhagic fevers in both humans and nonhuman primates (5). Filoviruses encode seven viral proteins including: NP (major nucleoprotein), VP35 (phosphoprotein), VP40 (matrix protein), GP (glycoprotein), VP30 (minor nucleoprotein), VP24 (secondary matrix protein), and L (RNA-dependent RNA polymerase) (2, 5, 10, 12, 45). Numerous studies have shown that expression of Ebola virus VP40 (eVP40) alone in mammalian cells leads to the production of virus-like particles (VLPs) with filamentous morphology which is indistinguishable from infectious Ebola virus particles (12, 17, 18, 25, 26, 27, 30, 31, 34, 49). Like many enveloped viruses such as rhabdovirus (11) and arenaviruses (44), Ebola virus encodes late-assembly or L domains, which are sequences required for the membrane fission event that separates viral and cellular membranes to release nascent virion particles (1, 5, 7, 10, 12, 18, 25, 27, 34). Thus far, four classes of L domains have been identified which were defined by their conserved amino acid core sequences: the Pro-Thr/Ser-Ala-Pro (PT/SAP) motif (25, 27), the Pro-Pro-x-Tyr (PPxY) motif (11, 12, 18, 19, 41, 53), the Tyr-x-x-Leu (YxxL) motif (3, 15, 27, 37), and the Phe-Pro-Ile-Val (FPIV) motif (39). Both PTAP and the PPxY motifs are essential for efficient particle release for eVP40 (25, 27, 48, 49), whereas mVP40 contains only a PPxY motif. L domains are believed to act as docking sites for the recruitment of cellular proteins involved in endocytic trafficking and multivesicular body biogenesis to facilitate virus-cell separation (8, 13, 14, 16, 28, 29, 33, 36, 43, 50, 51).In addition to L domains, oligomerization, and plasma-membrane localization of VP40 are two functions of the protein that are critical for efficient budding of VLPs and virions. Specific sequences involved in self-assembly and membrane localization have yet to be defined precisely. However, recent reports have attempted to identify regions of VP40 that are important for its overall function in assembly and budding. For example, the amino acid region 212KLR214 located at the C-terminal region was found to be important for efficient release of eVP40 VLPs, with Leu213 being the most critical (30). Mutation of the 212KLR214 region resulted in altered patterns of cellular localization and oligomerization of eVP40 compared to those of the wild-type genotype (30). In addition, the proline at position 53 was also implicated as being essential for eVP40 VLP release and plasma-membrane localization (54).In a more recent study, a YPLGVG motif within the M protein of Nipah virus (NiV) was shown to be important for stability, membrane binding, and budding of NiV VLPs (35). Whether this NiV M motif represents a new class of L domain remains to be determined. However, it is clear that this YPLGVG motif of NiV M is important for budding, perhaps involving a novel mechanism (35). Our rationale for investigating the corresponding, conserved motifs present within the Ebola and Marburg virus VP40 proteins was based primarily on these findings with NiV. In addition, Ebola virus VP40 motif maps close to the hinge region separating the N- and C-terminal domains of VP40 (4). Thus, the 96LPLGVA101 motif of eVP40 is predicted to be important for the overall stability and function of VP40 during egress. Findings presented here indicate that disruption of these filovirus VP40 motifs results in a severe defect in VLP budding, due in part to impairment in overall VP40 structure, stability and/or intracellular localization.  相似文献   

18.
Hantaviruses infect endothelial cells and cause 2 vascular permeability-based diseases. Pathogenic hantaviruses enhance the permeability of endothelial cells in response to vascular endothelial growth factor (VEGF). However, the mechanism by which hantaviruses hyperpermeabilize endothelial cells has not been defined. The paracellular permeability of endothelial cells is uniquely determined by the homophilic assembly of vascular endothelial cadherin (VE-cadherin) within adherens junctions, which is regulated by VEGF receptor-2 (VEGFR2) responses. Here, we investigated VEGFR2 phosphorylation and the internalization of VE-cadherin within endothelial cells infected by pathogenic Andes virus (ANDV) and Hantaan virus (HTNV) and nonpathogenic Tula virus (TULV) hantaviruses. We found that VEGF addition to ANDV- and HTNV-infected endothelial cells results in the hyperphosphorylation of VEGFR2, while TULV infection failed to increase VEGFR2 phosphorylation. Concomitant with the VEGFR2 hyperphosphorylation, VE-cadherin was internalized to intracellular vesicles within ANDV- or HTNV-, but not TULV-, infected endothelial cells. Addition of angiopoietin-1 (Ang-1) or sphingosine-1-phosphate (S1P) to ANDV- or HTNV-infected cells blocked VE-cadherin internalization in response to VEGF. These findings are consistent with the ability of Ang-1 and S1P to inhibit hantavirus-induced endothelial cell permeability. Our results suggest that pathogenic hantaviruses disrupt fluid barrier properties of endothelial cell adherens junctions by enhancing VEGFR2-VE-cadherin pathway responses which increase paracellular permeability. These results provide a pathway-specific mechanism for the enhanced permeability of hantavirus-infected endothelial cells and suggest that stabilizing VE-cadherin within adherens junctions is a primary target for regulating endothelial cell permeability during pathogenic hantavirus infection.Hantaviruses cause 2 human diseases: hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) (50). HPS and HFRS are multifactorial in nature and cause thrombocytopenia, immune and endothelial cell responses, and hypoxia, which contribute to disease (7, 11, 31, 42, 62). Although these syndromes sound quite different, they share common components which involve the ability of hantaviruses to infect endothelial cells and induce capillary permeability. Edema, which results from capillary leakage of fluid into tissues and organs, is a common finding in both HPS and HFRS patients (4, 7, 11, 31, 42, 62). In fact, both diseases can present with renal or pulmonary sequelae, and the renal or pulmonary focus of hantavirus diseases is likely to result from hantavirus infection of endothelial cells within vast glomerular and pulmonary capillary beds (4, 7, 11, 31, 42, 62). All hantaviruses predominantly infect endothelial cells which line capillaries (31, 42, 44, 61, 62), and endothelial cells have a primary role in maintaining fluid barrier functions of the vasculature (1, 12, 55). Although hantaviruses do not lyse endothelial cells (44, 61), this primary cellular target underlies hantavirus-induced changes in capillary integrity. As a result, understanding altered endothelial cell responses following hantavirus infection is fundamental to defining the mechanism of permeability induced by pathogenic hantaviruses (1, 12, 55).Pathogenic, but not nonpathogenic, hantaviruses use β3 integrins on the surface of endothelial cells and platelets for attachment (19, 21, 23, 39, 46), and β3 integrins play prominent roles in regulating vascular integrity (3, 6, 8, 24, 48). Pathogenic hantaviruses bind to basal, inactive conformations of β3 integrins (35, 46, 53) and days after infection inhibit β3 integrin-directed endothelial cell migration (20, 46). This may be the result of cell-associated virus (19, 20, 22) which keeps β3 in an inactive state but could also occur through additional regulatory processes that have yet to be defined. Interestingly, the nonpathogenic hantaviruses Prospect Hill virus (PHV) and Tula virus (TULV) fail to alter β3 integrin functions, and their entry is consistent with the use of discrete α5β1 integrins (21, 23, 36).On endothelial cells, αvβ3 integrins normally regulate permeabilizing effects of vascular endothelial growth factor receptor-2 (VEGFR2) (3, 24, 48, 51). VEGF was initially identified as an edema-causing vascular permeability factor (VPF) that is 50,000 times more potent than histamine in directing fluid across capillaries (12, 14). VEGF is responsible for disassembling adherens junctions between endothelial cells to permit cellular movement, wound repair, and angiogenesis (8, 10, 12, 13, 17, 26, 57). Extracellular domains of β3 integrins and VEGFR2 reportedly form a coprecipitable complex (3), and knocking out β3 causes capillary permeability that is augmented by VEGF addition (24, 47, 48). Pathogenic hantaviruses inhibit β3 integrin functions days after infection and similarly enhance the permeability of endothelial cells in response to VEGF (22).Adherens junctions form the primary fluid barrier of endothelial cells, and VEGFR2 responses control adherens junction disassembly (10, 17, 34, 57, 63). Vascular endothelial cadherin (VE-cadherin) is an endothelial cell-specific adherens junction protein and the primary determinant of paracellular permeability within the vascular endothelium (30, 33, 34). Activation of VEGFR2, another endothelial cell-specific protein, triggers signaling responses resulting in VE-cadherin disassembly and endocytosis, which increases the permeability of endothelial cell junctions (10, 12, 17, 34). VEGF is induced by hypoxic conditions and released by endothelial cells, platelets, and immune cells (2, 15, 38, 52). VEGF acts locally on endothelial cells through the autocrine or paracrine activation of VEGFR2, and the disassembly of endothelial cell adherens junctions increases the availability of nutrients to tissues and facilitates leukocyte trafficking and diapedesis (10, 12, 17, 55). The importance of endothelial cell barrier integrity is often in conflict with requirements for endothelial cells to move in order to permit angiogenesis and repair or cell and fluid egress, and as a result, VEGF-induced VE-cadherin responses are tightly controlled (10, 17, 18, 32, 33, 59). This limits capillary permeability while dynamically responding to a variety of endothelial cell-specific factors and conditions. However, if unregulated, this process can result in localized capillary permeability and edema (2, 9, 10, 12, 14, 17, 29, 60).Interestingly, tissue edema and hypoxia are common findings in both HPS and HFRS patients (11, 31, 62), and the ability of pathogenic hantaviruses to infect human endothelial cells provides a means for hantaviruses to directly alter normal VEGF-VE-cadherin regulation. In fact, the permeability of endothelial cells infected by pathogenic Andes virus (ANDV) or Hantaan virus (HTNV) is dramatically enhanced in response to VEGF addition (22). This response is absent from endothelial cells comparably infected with the nonpathogenic TULV and suggests that enhanced VEGF-induced endothelial cell permeability is a common underlying response of both HPS- and HFRS-causing hantaviruses (22). In these studies, we comparatively investigate responses of human endothelial cells infected with pathogenic ANDV and HTNV, as well as nonpathogenic TULV.  相似文献   

19.
Varicella-zoster virus (VZV) causes varicella (chicken pox) and establishes latency in ganglia, from where it reactivates to cause herpes zoster (shingles), which is often followed by postherpetic neuralgia (PHN), causing severe neuropathic pain that can last for years after the rash. Despite the major impact of herpes zoster and PHN on quality of life, the nature and kinetics of the virus-immune cell interactions that result in ganglion damage have not been defined. We obtained rare material consisting of seven sensory ganglia from three donors who had suffered from herpes zoster between 1 and 4.5 months before death but who had not died from herpes zoster. We performed immunostaining to investigate the site of VZV infection and to phenotype immune cells in these ganglia. VZV antigen was localized almost exclusively to neurons, and in at least one case it persisted long after resolution of the rash. The large immune infiltrate consisted of noncytolytic CD8+ T cells, with lesser numbers of CD4+ T cells, B cells, NK cells, and macrophages and no dendritic cells. VZV antigen-positive neurons did not express detectable major histocompatibility complex (MHC) class I, nor did CD8+ T cells surround infected neurons, suggesting that mechanisms of immune control may not be dependent on direct contact. This is the first report defining the nature of the immune response in ganglia following herpes zoster and provides evidence for persistence of non-latency-associated viral antigen and inflammation beyond rash resolution.Varicella-zoster virus (VZV) is a highly species-specific human alphaherpesvirus that infects a majority of the world''s population. VZV causes two clinically significant diseases; varicella (chicken pox) and herpes zoster (shingles) (5, 8, 19). Varicella is characterized by widespread cutaneous vesicular lesions and is a consequence of primary VZV infection in VZV-naïve individuals. While varicella is a relatively mild disease in immunocompetent children, it can cause significant morbidity in healthy adults and is frequently life threatening in immunocompromised individuals (3, 4, 22). The innate and adaptive immune responses act to eliminate replicating virus during varicella, but not all virus is cleared during this time, with some presumed to access nerve axons in the skin, enabling transport to neurons in sensory ganglia, where the virus is able to establish a lifelong latent infection (5, 8, 12, 13, 20, 32). An alternative possibility is that virus is transported to ganglia via hematogenous spread (36). The ability of VZV to establish latency in the host is critical to the success of this virus as a human pathogen.VZV reactivation from latency (herpes zoster) causes serious disease in older and immunocompromised individuals and is characterized by vesicular skin rash in a dermatomal distribution with preceding and concomitant pain (7, 10, 21, 68). During reactivation, sensory ganglia are sites of viral replication, where an intense inflammatory response is induced and widespread necrosis of glial cells and neurons ensues (14, 19, 27, 71, 72). Before the appearance of the zoster rash, VZV travels along the affected sensory nerves to the skin, where it produces the characteristic rash (10, 53) and neural and dermoepidermal inflammation. Clinically, herpes zoster is associated with severe, acute pain, as well as often prolonged severe pain, or postherpetic neuralgia (PHN), that often requires follow-up medical care for months or even years after the initial attack (29, 62, 73). PHN is estimated to occur in 40% of herpes zoster cases in individuals older than 50 years and 75% of adults older than 75 years (15, 43, 56). It is estimated that 1 million or more individuals are afflicted by herpes zoster each year in the United States (54). Herpes zoster pain, and especially PHN, can be disabling and can have a major negative impact on patients'' quality of life (15). In the coming years, the number of individuals suffering from herpes zoster is predicted to rise, concomitant with the increasing number of patients who are elderly or who are receiving immunosuppressive therapies for cancer or transplantation.New antiviral drugs and a vaccine for herpes zoster have been only partially successful, indicating the need for continuing studies of VZV immunopathogenesis to understand the reasons for this partial success and to provide the foundation for developing new immunotherapeutics and vaccines (38, 39, 65). Antiviral therapy, while effective against the rash and pain of acute herpes zoster, appears at best to prevent only 50% of PHN (16, 23, 24, 45, 75, 76). The zoster vaccine was demonstrated to prevent 51% of herpes zoster and 60% of postherpetic neuralgia in patients over the age of 60, although it appeared to be less effective against zoster in the older age group (54). Remarkably, despite the importance of ganglionic infection to the pathogenesis of herpes zoster and PHN, there have been no reports defining the immune response in human ganglia following natural VZV reactivation. Until now, the lack of available ganglia from patients following an episode of herpes zoster has limited these studies. We have overcome this hurdle by obtaining rare naturally infected human ganglia at autopsy from three donors who, near the time of death, had evidence of herpes zoster but who did not die from herpes zoster. The aim of this study was to undertake a comprehensive immunohistological examination of human ganglia following herpes zoster. Specifically, we utilized immunohistochemical (IHC) and immunofluorescent (IF) staining to characterize the infiltrating immune cell subsets and to assess the presence of VZV antigen within ganglia following herpes zoster. This study provides the first detailed examination of the types and distribution of immune cells present following natural VZV reactivation in human ganglia and provides new insights into the immunological mechanisms that may be important in controlling virus infection following the reactivation of a human herpesvirus infection in human ganglia in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号