首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.

Background

The caudal brainstem plays an important role in short-term satiation and in the control of meal termination. Meal-related stimuli sensed by the gastrointestinal (GI) tract are transmitted to the area postrema (AP) via the bloodstream, or to the nucleus tractus solitarii (NTS) via the vagus nerve. Little is known about the encoding of macronutrient-specific signals in the caudal brainstem. We hypothesized that sucrose and casein peptone activate spatially distinct sub-populations of NTS neurons and thus characterized the latter using statistical three-dimensional modeling.

Methodology/Principal Findings

Using immunolabeling of the proto-oncogene Fos as a marker of neuronal activity, in combination with a statistical three-dimensional modeling approach, we have shown that NTS neurons activated by sucrose or peptone gavage occupy distinct, although partially overlapping, positions. Specifically, when compared to their homologues in peptone-treated mice, three-dimensional models calculated from neuronal density maps following sucrose gavage showed that Fos-positive neurons occupy a more lateral position at the rostral end of the NTS, and a more dorsal position at the caudal end.

Conclusion/Significance

To our knowledge, this is the first time that subpopulations of NTS neurons have be distinguished according to the spatial organization of their functional response. Such neuronal activity patterns may be of particular relevance to understanding the mechanisms that support the central encoding of signals related to the presence of macronutrients in the GI tract during digestion. Finally, this finding also illustrates the usefulness of statistical three-dimensional modeling to functional neuroanatomical studies.  相似文献   

3.

Background

Pancreatic polypeptide (PP) is a potent anti-obesity agent known to inhibit food intake in the absence of nausea, but the mechanism behind this process is unknown.

Methodology/Principal Findings

Here we demonstrate that in response to i.p. injection of PP in wild type but not in Y4 receptor knockout mice, immunostaining for the neuronal activation marker c-Fos is induced specifically in neurons of the nucleus tractus solitarius and the area postrema in the brainstem, notably in cells also showing immunostaining for tyrosine hydroxylase. Importantly, strong c-Fos activation is also detected in the arcuate nucleus of the hypothalamus (ARC), particularly in neurons that co-express alpha melanocyte stimulating hormone (α-MSH), the anorexigenic product of the proopiomelanocortin (POMC) gene. Interestingly, other hypothalamic regions such as the paraventricular nucleus, the ventromedial nucleus and the lateral hypothalamic area also show c-Fos induction after PP injection. In addition to c-Fos activation, PP injection up-regulates POMC mRNA expression in the ARC as detected by in situ hybridization. These effects are a direct consequence of local Y4 signaling, since hypothalamus-specific conditional Y4 receptor knockout abolishes PP-induced ARC c-Fos activation and blocks the PP-induced increase in POMC mRNA expression. Additionally, the hypophagic effect of i.p. PP seen in wild type mice is completely absent in melanocortin 4 receptor knockout mice.

Conclusions/Significance

Taken together, these findings show that PP reduces food intake predominantly via stimulation of the anorexigenic α-MSH signaling pathway, and that this effect is mediated by direct action on local Y4 receptors within the ARC, highlighting a potential novel avenue for the treatment of obesity.  相似文献   

4.
Shi M  Liu Z  Lv Y  Zheng M  Du F  Zhao G  Huang Y  Chen J  Han H  Ding Y 《PloS one》2011,6(1):e14570

Background

A collection of in vitro evidence has demonstrated that Notch signaling plays a key role in the growth of neurites in differentiated neurons. However, the effects of Notch signaling on axon outgrowth in an in vivo condition remain largely unknown.

Methodology/Principal Findings

In this study, the neural tubes of HH10-11 chick embryos were in ovo electroporated with various Notch transgenes of activating or inhibiting Notch signaling, and then their effects on commissural axon outgrowth across the floor plate midline in the chick developing central nerve system were investigated. Our results showed that forced expression of Notch intracellular domain, constitutively active form of RBPJ, or full-length Hes1 in the rostral hindbrain, diencephalon and spinal cord at stage HH10-11 significantly inhibited commissural axon outgrowth. On the other hand, inhibition of Notch signaling by ectopically expressing a dominant-negative form of RBPJ promoted commissural axonal growth along the circumferential axis. Further results revealed that these Notch signaling-mediated axon outgrowth defects may be not due to the alteration of axon guidance since commissural axon marker TAG1 was present in the axons in floor plate midline, and also not result from the changes in cell fate determination of commissural neurons since the expression of postmitotic neuron marker Tuj1 and specific commissural markers TAG1 and Pax7 was unchanged.

Conclusions/Significance

We first used an in vivo system to provide evidence that forced Notch signaling negatively regulates commissural axon outgrowth.  相似文献   

5.

Background

Fetal Alcohol Spectrum Disorders (FASD) are a collection of disorders resulting from fetal ethanol exposure, which causes a wide range of physical, neurological and behavioral deficits including heightened susceptibility for alcoholism and addictive disorders. While a number of mechanisms have been proposed for how ethanol exposure disrupts brain development, with selective groups of neurons undergoing reduced proliferation, dysfunction and death, the induction of a new neurotransmitter phenotype by ethanol exposure has not yet been reported.

Principal Findings

The effects of embryonic and larval ethanol exposure on brain development were visually monitored using transgenic zebrafish expressing cell-specific green fluorescent protein (GFP) marker genes. Specific subsets of GFP-expressing neurons were highly sensitive to ethanol exposure, but only during defined developmental windows. In the med12 mutant, which affects the Mediator co-activator complex component Med12, exposure to lower concentrations of ethanol was sufficient to reduce GFP expression in transgenic embryos. In transgenic embryos and larva containing GFP driven by an oxytocin-like (oxtl) promoter, ethanol exposure dramatically up-regulated GFP expression in a small group of hindbrain neurons, while having no effect on expression in the neuroendocrine preoptic area.

Conclusions

Alcohol exposure during limited embryonic periods impedes the development of specific, identifiable groups of neurons, and the med12 mutation sensitizes these neurons to the deleterious effects of ethanol. In contrast, ethanol exposure induces oxtl expression in the hindbrain, a finding with profound implications for understanding alcoholism and other addictive disorders.  相似文献   

6.
7.

Background

Human embryonic stem cells (hESC) provide a unique model to study early events in human development. The hESC-derived cells can potentially be used to replace or restore different tissues including neuronal that have been damaged by disease or injury.

Methodology and Principal Findings

The cells of two different hESC lines were converted to neural rosettes using adherent and chemically defined conditions. The progenitor cells were exposed to retinoic acid (RA) or to human recombinant basic fibroblast growth factor (bFGF) in the late phase of the rosette formation. Exposing the progenitor cells to RA suppressed differentiation to rostral forebrain dopamine neural lineage and promoted that of spinal neural tissue including motor neurons. The functional characteristics of these differentiated neuronal precursors under both, rostral (bFGF) and caudalizing (RA) signals were confirmed by patch clamp analysis.

Conclusions/Significance

These findings suggest that our differentiation protocol has the capacity to generate region-specific and electrophysiologically active neurons under in vitro conditions without embryoid body formation, co-culture with stromal cells and without presence of cells of mesodermal or endodermal lineages.  相似文献   

8.
9.

Background

Mice expressing fluorescent proteins in neurons are one of the most powerful tools in modern neuroscience research and are increasingly being used for in vivo studies of neurodegeneration. However, these mice are often used under the assumption that the fluorescent proteins present are biologically inert.

Methodology/Principal Findings

Here, we show that thy1-driven expression of yellow fluorescent protein (YFP) in neurons triggers multiple cell stress responses at both the mRNA and protein levels in vivo. The presence of YFP in neurons also subtly altered neuronal morphology and modified the time-course of dying-back neurodegeneration in experimental axonopathy, but not in Wallerian degeneration triggered by nerve injury.

Conclusions/Significance

We conclude that fluorescent protein expressed in thy1-YFP mice is not biologically inert, modifies molecular and cellular characteristics of neurons in vivo, and has diverse and unpredictable effects on neurodegeneration pathways.  相似文献   

10.
11.

Background and purpose

TRPV1 is expressed in sensory neurons and vascular smooth muscle cells, contributing to both pain perception and tissue blood distribution. Local desensitization of TRPV1 in sensory neurons by prolonged, high dose stimulation is re-engaged in clinical practice to achieve analgesia, but the effects of such treatments on the vascular TRPV1 are not known.

Experimental approach

Newborn rats were injected with capsaicin for five days. Sensory activation was measured by eye wiping tests and plasma extravasation. Isolated, pressurized skeletal muscle arterioles were used to characterize TRPV1 mediated vascular responses, while expression of TRPV1 was detected by immunohistochemistry.

Key results

Capsaicin evoked sensory responses, such as eye wiping (3.6±2.5 versus 15.5±1.4 wipes, p<0.01) or plasma extravasation (evans blue accumulation 10±3 versus 33±7 µg/g, p<0.05) were reduced in desensitized rats. In accordance, the number of TRPV1 positive sensory neurons in the dorsal root ganglia was also decreased. However, TRPV1 expression in smooth muscle cells was not affected by the treatment. There were no differences in the diameter (192±27 versus 194±8 µm), endothelium mediated dilations (evoked by acetylcholine), norepinephrine mediated constrictions, myogenic response and in the capsaicin evoked constrictions of arterioles isolated from skeletal muscle.

Conclusion and implications

Systemic capsaicin treatment of juvenile rats evokes anatomical and functional disappearance of the TRPV1-expressing neuronal cells but does not affect the TRPV1-expressing cells of the arterioles, implicating different effects of TRPV1 stimulation on the viability of these cell types.  相似文献   

12.

Background

The descending noradrenergic (NAergic) system is one of the important endogenous analgesia systems. It has been suggested that noxious stimuli could activate descending NAergic system; nevertheless, the underlying neuronal circuit remains unclear. As NAergic neurons in the A7 catecholamine cell group (A7) are a part of the descending NAergic system and the lateral parabrachial nucleus (LPB) is an important brainstem structure that relays ascending nociceptive signal, we aimed to test whether LPB neurons have direct synaptic contact with NAergic A7 neurons.

Results

Stereotaxic injections of an anterograde tracer, biotinylated dextran-amine (BDA), were administered to LPB in rats. The BDA-labeled axonal terminals that have physical contacts with tyrosine hydroxylase-positive (presumed noadrenergic) neurons were identified in A7. Consistent with these morphological observations, the excitatory synaptic currents (EPSCs) were readily evoked in NAergic A7 neurons by extracellular stimulation of LPB. The EPSCs evoked by LPB stimulation were blocked by CNQX, a non-NMDA receptor blocker, and AP5, a selective NMDA receptor blocker, showing that LPB-A7 synaptic transmission is glutamatergic. Moreover, the amplitude of LPB-A7 EPSCs was significantly attenuated by DAMGO, a selective μ-opioid receptor agonist, which was associated with an increase in paired-pulse ratio.

Conclusions

Taken together, the above results showed direct synaptic connections between LPB and A7 catecholamine cell group, the function of which is subject to presynaptic modulation by μ-opioid receptors.  相似文献   

13.

Background

Vestibulo-ocular reflex (VOR) gain adaptation, a longstanding experimental model of cerebellar learning, utilizes sites of plasticity in both cerebellar cortex and brainstem. However, the mechanisms by which the activity of cortical Purkinje cells may guide synaptic plasticity in brainstem vestibular neurons are unclear. Theoretical analyses indicate that vestibular plasticity should depend upon the correlation between Purkinje cell and vestibular afferent inputs, so that, in gain-down learning for example, increased cortical activity should induce long-term depression (LTD) at vestibular synapses.

Methodology/Principal Findings

Here we expressed this correlational learning rule in its simplest form, as an anti-Hebbian, heterosynaptic spike-timing dependent plasticity interaction between excitatory (vestibular) and inhibitory (floccular) inputs converging on medial vestibular nucleus (MVN) neurons (input-spike-timing dependent plasticity, iSTDP). To test this rule, we stimulated vestibular afferents to evoke EPSCs in rat MVN neurons in vitro. Control EPSC recordings were followed by an induction protocol where membrane hyperpolarizing pulses, mimicking IPSPs evoked by flocculus inputs, were paired with single vestibular nerve stimuli. A robust LTD developed at vestibular synapses when the afferent EPSPs coincided with membrane hyperpolarisation, while EPSPs occurring before or after the simulated IPSPs induced no lasting change. Furthermore, the iSTDP rule also successfully predicted the effects of a complex protocol using EPSP trains designed to mimic classical conditioning.

Conclusions

These results, in strong support of theoretical predictions, suggest that the cerebellum alters the strength of vestibular synapses on MVN neurons through hetero-synaptic, anti-Hebbian iSTDP. Since the iSTDP rule does not depend on post-synaptic firing, it suggests a possible mechanism for VOR adaptation without compromising gaze-holding and VOR performance in vivo.  相似文献   

14.

Background

Multicellular organisms are characterized by a remarkable diversity of morphologically distinct and functionally specialized cell types. Transgenic techniques for the manipulation of gene expression in specific cellular populations are highly useful for elucidating the development and function of these cellular populations. Given notable similarities in developmental gene expression between pancreatic β-cells and serotonergic neurons, we examined the pattern of Cre-mediated recombination in the nervous system of a widely used mouse line, Pdx1-cre (formal designation, Tg(Ipf1-cre)89.1Dam), in which the expression of Cre recombinase is driven by regulatory elements upstream of the pdx1 (pancreatic-duodenal homeobox 1) gene.

Methods

Single (hemizygous) transgenic mice of the pdx1-creCre/0 genotype were bred to single (hemizygous) transgenic reporter mice (Z/EG and rosa26R lines). Recombination pattern was examined in offspring using whole-mount and sectioned histological preparations at e9.5, e10.5, e11.5, e16.5 and adult developmental stages.

Results

In addition to the previously reported pancreatic recombination, recombination in the developing nervous system and inner ear formation was observed. In the central nervous system, we observed a highly specific pattern of recombination in neuronal progenitors in the ventral brainstem and diencephalon. In the rostral brainstem (r1-r2), recombination occurred in newborn serotonergic neurons. In the caudal brainstem, recombination occurred in non-serotonergic cells. In the adult, this resulted in reporter expression in the vast majority of forebrain-projecting serotonergic neurons (located in the dorsal and median raphe nuclei) but in none of the spinal cord-projecting serotonergic neurons of the caudal raphe nuclei. In the adult caudal brainstem, reporter expression was widespread in the inferior olive nucleus. In the adult hypothalamus, recombination was observed in the arcuate nucleus and dorsomedial hypothalamus. Recombination was not observed in any other region of the central nervous system. Neuronal expression of endogenous pdx1 was not observed.

Conclusions

The Pdx1-cre mouse line, and the regulatory elements contained in the corresponding transgene, could be a valuable tool for targeted genetic manipulation of developing forebrain-projecting serotonergic neurons and several other unique neuronal sub-populations. These results suggest that investigators employing this mouse line for studies of pancreatic function should consider the possible contributions of central nervous system effects towards resulting phenotypes.
  相似文献   

15.

Background

Rapid eye movement sleep (REMS) is characterized by activation of the cortical and hippocampal electroencephalogram (EEG) and atonia of non-respiratory muscles with superimposed phasic activity or twitching, particularly of cranial muscles such as those of the eye, tongue, face and jaw. While phasic activity is a characteristic feature of REMS, the neural substrates driving this activity remain unresolved. Here we investigated the neural circuits underlying masseter (jaw) phasic activity during REMS. The trigeminal motor nucleus (Mo5), which controls masseter motor function, receives glutamatergic inputs mainly from the parvocellular reticular formation (PCRt), but also from the adjacent paramedian reticular area (PMnR). On the other hand, the Mo5 and PCRt do not receive direct input from the sublaterodorsal (SLD) nucleus, a brainstem region critical for REMS atonia of postural muscles. We hypothesized that the PCRt-PMnR, but not the SLD, regulates masseter phasic activity during REMS.

Methodology/Principal Findings

To test our hypothesis, we measured masseter electromyogram (EMG), neck muscle EMG, electrooculogram (EOG) and EEG in rats with cell-body specific lesions of the SLD, PMnR, and PCRt. Bilateral lesions of the PMnR and rostral PCRt (rPCRt), but not the caudal PCRt or SLD, reduced and eliminated REMS phasic activity of the masseter, respectively. Lesions of the PMnR and rPCRt did not, however, alter the neck EMG or EOG. To determine if rPCRt neurons use glutamate to control masseter phasic movements, we selectively blocked glutamate release by rPCRt neurons using a Cre-lox mouse system. Genetic disruption of glutamate neurotransmission by rPCRt neurons blocked masseter phasic activity during REMS.

Conclusions/Significance

These results indicate that (1) premotor glutamatergic neurons in the medullary rPCRt and PMnR are involved in generating phasic activity in the masseter muscles, but not phasic eye movements, during REMS; and (2) separate brainstem neural circuits control postural and cranial muscle phasic activity during REMS.  相似文献   

16.
17.

Background

During development, neuronal growth cones integrate diffusible and contact guidance cues that are conveyed to both actin and microtubule (MT) cytoskeletons and ensure axon outgrowth and pathfinding. Although several post-translational modifications of tubulin have been identified and despite their strong conservation among species, their physiological roles during development, especially in the nervous sytem, are still poorly understood.

Methodology/Findings

Here, we have dissected the role of a post-translational modification of the last amino acid of the α-tubulin on axonal growth by analyzing the phenotype of precerebellar neurons in Tubulin tyrosin ligase knock-out mice (TTL −/−) through in vivo, ex vivo and in vitro analyses. TTL −/− neurons are devoid of tyrosinated tubulin. Their pathway shows defects in vivo, ex vivo, in hindbrains open-book preparations or in vitro, in a collagen matrix. Their axons still orient toward tropic cues, but they emit supernumerary branches and their growth cones are enlarged and exhibit an emission of mis-oriented filopodia. Further analysis of the TTL −/− growth cone intracellular organization also reveals that the respective localization of actin and MT filaments is disturbed, with a decrease in the distal accumulation of Myosin IIB, as well as a concomitant Rac1 over-activation in the hindbrain. Pharmacological inhibition of Rac1 over-activation in TTL −/− neurons can rescue Myosin IIB localization.

Conclusions/Significance

In the growth cone, we propose that tubulin tyrosination takes part in the relative arrangement of actin and MT cytoskeletons, in the regulation of small GTPases activity, and consequently, in the proper morphogenesis, organization and pathfinding of the growth cone during development.  相似文献   

18.

Introduction

Complement activation is thought to contribute to the pathogenesis of age-related macular degeneration (AMD), which may be mediated in part by para-inflammatory processes. We aimed to investigate the expression and localization of C3, a crucial component of the complement system, in the retina during the course of aging.

Methods

SD rats were born and reared in low-light conditions, and euthanized at post-natal (P) days 100, 450, or 750. Expression of C3, IBA1, and Ccl- and Cxcl- chemokines was assessed by qPCR, and in situ hybridization. Thickness of the ONL was assessed in retinal sections as a measure of photoreceptor loss, and counts were made of C3-expressing monocytes.

Results

C3 expression increased significantly at P750, and correlated with thinning of the ONL, at P750, and up-regulation of GFAP. In situ hybridization showed that C3 was expressed by microglia/monocytes, mainly from within the retinal vasculature, and occasionally the ONL. The number of C3-expressing microglia increased significantly by P750, and coincided spatiotemporally with thinning of the ONL, and up-regulation of Ccl- and Cxcl- chemokines.

Conclusions

Our data suggest that recruited microglia/monocytes contribute to activation of complement in the aging retina, through local expression of C3 mRNA. C3 expression coincides with age-related thinning of the ONL at P750, although it is unclear whether the C3-expressing monocytes are a cause or consequence. These findings provide evidence of activation of complement during natural aging, and may have relevance to cellular events underling the pathogenesis of age-related retinal diseases.  相似文献   

19.

Background

Abelson-interacting protein 1 (Abi-1) plays an important role for dendritic branching and synapse formation in the central nervous system. It is localized at the postsynaptic density (PSD) and rapidly translocates to the nucleus upon synaptic stimulation. At PSDs Abi-1 is in a complex with several other proteins including WASP/WAVE or cortactin thereby regulating the actin cytoskeleton via the Arp 2/3 complex.

Principal Findings

We identified heterogeneous nuclear ribonucleoprotein K (hnRNPK), a 65 kDa ssDNA/RNA-binding-protein that is involved in multiple intracellular signaling cascades, as a binding partner of Abi-1 at postsynaptic sites. The interaction with the Abi-1 SH3 domain is mediated by the hnRNPK-interaction (KI) domain. We further show that during brain development, hnRNPK expression becomes more and more restricted to granule cells of the cerebellum and hippocampal neurons where it localizes in the cell nucleus as well as in the spine/dendritic compartment. The downregulation of hnRNPK in cultured hippocampal neurons by RNAi results in an enlarged dendritic tree and a significant increase in filopodia formation. This is accompanied by a decrease in the number of mature synapses. Both effects therefore mimic the neuronal morphology after downregulation of Abi-1 mRNA in neurons.

Conclusions

Our findings demonstrate a novel interplay between hnRNPK and Abi-1 in the nucleus and at synaptic sites and show obvious similarities regarding both protein knockdown phenotypes. This indicates that hnRNPK and Abi-1 act synergistic in a multiprotein complex that regulates the crucial balance between filopodia formation and synaptic maturation in neurons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号