首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Factors potentially contributing to the lower incidence of Lyme borreliosis (LB) in the far-western than in the northeastern United States include tick host-seeking behavior resulting in fewer human tick encounters, lower densities of Borrelia burgdorferi-infected vector ticks in peridomestic environments, and genetic variation among B. burgdorferi spirochetes to which humans are exposed. We determined the population structure of B. burgdorferi in over 200 infected nymphs of the primary bridging vector to humans, Ixodes pacificus, collected in Mendocino County, CA. This was accomplished by sequence typing the spirochete lipoprotein ospC and the 16S-23S rRNA intergenic spacer (IGS). Thirteen ospC alleles belonging to 12 genotypes were found in California, and the two most abundant, ospC genotypes H3 and E3, have not been detected in ticks in the Northeast. The most prevalent ospC and IGS biallelic profile in the population, found in about 22% of ticks, was a new B. burgdorferi strain defined by ospC genotype H3. Eight of the most common ospC genotypes in the northeastern United States, including genotypes I and K that are associated with disseminated human infections, were absent in Mendocino County nymphs. ospC H3 was associated with hardwood-dominated habitats where western gray squirrels, the reservoir host, are commonly infected with LB spirochetes. The differences in B. burgdorferi population structure in California ticks compared to the Northeast emphasize the need for a greater understanding of the genetic diversity of spirochetes infecting California LB patients.In the United States, Lyme borreliosis (LB) is the most commonly reported vector-borne illness and is caused by infection with the spirochete Borrelia burgdorferi (3, 9, 52). The signs and symptoms of LB can include a rash, erythema migrans, fever, fatigue, arthritis, carditis, and neurological manifestations (50, 51). The black-legged tick, Ixodes scapularis, and the western black-legged tick, Ixodes pacificus, are the primary vectors of B. burgdorferi to humans in the United States, with the former in the northeastern and north-central parts of the country and the latter in the Far West (9, 10). These ticks perpetuate enzootic transmission cycles together with a vertebrate reservoir host such as the white-footed mouse, Peromyscus leucopus, in the Northeast and Midwest (24, 35), or the western gray squirrel, Sciurus griseus, in California (31, 46).B. burgdorferi is a spirochete species with a largely clonal population structure (14, 16) comprising several different strains or lineages (8). The polymorphic ospC gene of B. burgdorferi encodes a surface lipoprotein that increases expression within the tick during blood feeding (47) and is required for initial infection of mammalian hosts (25, 55). To date, approximately 20 North American ospC genotypes have been described (40, 45, 49, 56). At least four, and possibly up to nine, of these genotypes are associated with B. burgdorferi invasiveness in humans (1, 15, 17, 49, 57). Restriction fragment length polymorphism (RFLP) and, subsequently, sequence analysis of the 16S-23S rRNA intergenic spacer (IGS) are used as molecular typing tools to investigate genotypic variation in B. burgdorferi (2, 36, 38, 44, 44, 57). The locus maintains a high level of variation between related species, and this variation reflects the heterogeneity found at the genomic level of the organism (37). The IGS and ospC loci appear to be linked (2, 8, 26, 45, 57), but the studies to date have not been representative of the full range of diversity of B. burgdorferi in North America.Previous studies in the northeastern and midwestern United States have utilized IGS and ospC genotyping to elucidate B. burgdorferi evolution, host strain specificity, vector-reservoir associations, and disease risk to humans. In California, only six ospC and five IGS genotypes have been described heretofore in samples from LB patients or I. pacificus ticks (40, 49, 56) compared to approximately 20 ospC and IGS genotypes identified in ticks, vertebrate hosts, or humans from the Northeast and Midwest (8, 40, 45, 49, 56). Here, we employ sequence analysis of both the ospC gene and IGS region to describe the population structure of B. burgdorferi in more than 200 infected I. pacificus nymphs from Mendocino County, CA, where the incidence of LB is among the highest in the state (11). Further, we compare the Mendocino County spirochete population to populations found in the Northeast.  相似文献   

2.
The restriction-modification (R-M) systems of many bacteria present a barrier to the stable introduction of foreign DNA. The Lyme disease spirochete Borrelia burgdorferi has two plasmid-borne putative R-M genes, bbe02 and bbq67, whose presence limits transformation by shuttle vector DNA from Escherichia coli. We show that both the bbe02 and bbq67 loci in recipient B. burgdorferi limit transformation with shuttle vector DNA from E. coli, irrespective of its dam, dcm, or hsd methylation status. However, plasmid DNA purified from B. burgdorferi transformed naïve B. burgdorferi much more efficiently than plasmid DNA from E. coli, particularly when the bbe02 and bbq67 genotypes of the B. burgdorferi DNA source matched those of the recipient. We detected adenine methylation of plasmid DNA prepared from B. burgdorferi that carried bbe02 and bbq67. These results indicate that the bbe02 and bbq67 loci of B. burgdorferi encode distinct R-M enzymes that methylate endogenous DNA and cleave foreign DNA lacking the same sequence-specific modification. Our findings have basic implications for horizontal gene transfer among B. burgdorferi strains with distinct plasmid contents. Further characterization and identification of the nucleotide sequences recognized by BBE02 and BBQ67 will facilitate efficient genetic manipulation of this pathogenic spirochete.Borrelia burgdorferi sensu lato is a zoonotic pathogen whose natural infectious cycle alternates between a tick vector and rodent or bird reservoir hosts (1, 7, 8, 14, 32, 33, 36). Transmission of B. burgdorferi to humans occurs through the bite of an infected tick and can lead to Lyme disease, which is a major public health concern in areas of North America and Europe where B. burgdorferi is endemic (8, 53).The genomic structure of the spirochete B. burgdorferi is unique, consisting of a linear chromosome of approximately 900 kb and more than 20 linear (lp) and circular (cp) plasmids, ranging in size from ∼5 kb to 56 kb, in the type strain B31 (9, 10, 11, 19, 42). The plasmids of B. burgdorferi are present at unit copy number relative to the chromosome (22), and some are relatively unstable during in vitro propagation (52, 57). The loss of linear plasmids lp25, lp28-1, and lp36 by strain B31 was found to correlate with the loss of infectivity in mice (20, 31, 45, 56), leading to the identification of genes carried on these plasmids that are dispensable in vitro but required in vivo during an experimental infectious cycle (21, 26, 35, 44, 47). The loss of two linear plasmids, lp25 and lp56, was shown to correlate with enhanced shuttle vector transformation, suggesting that specific lp25 and lp56 gene products present a barrier to stable introduction of foreign DNA (34). Further studies linked the transformation phenotype of B. burgdorferi strain B31 with the bbe02 and bbq67 genes on lp25 and lp56, respectively, and the putative restriction-modification (R-M) enzymes that they encode (11, 27, 29, 34). The recent demonstration by Chen and colleagues of enhanced transformation of B. burgdorferi following in vitro methylation of DNA (13) further supports the hypothesis that these B. burgdorferi plasmids encode R-M enzymes that degrade foreign DNA lacking the appropriate modification.The barrier to foreign DNA presented by the bbe02 and bbq67 loci of B. burgdorferi implies that genomic DNA should be modified in spirochetes carrying these plasmid genes. To test this hypothesis, we compared the transformation of B. burgdorferi with shuttle vector DNA isolated from either Escherichia coli or B. burgdorferi, as outlined in Fig. Fig.1.1. We also examined whether and how the presence of putative R-M genes in either the donor or recipient B. burgdorferi strain influenced transformation. Finally, we analyzed the type of modification present on DNA isolated from B. burgdorferi with different plasmid or gene contents. Our data indicate that the bbe02 and bbq67 loci of B. burgdorferi encode enzymes that both methylate endogenous DNA and restrict foreign DNA lacking these modifications. These findings have basic implications regarding horizontal gene transfer among B. burgdorferi strains with distinct plasmid contents. These results also help elucidate the molecular mechanisms underlying the relative inefficiency of genetic transformation of B. burgdorferi and suggest ways in which genetic manipulation of this pathogenic spirochete could be enhanced.Open in a separate windowFIG. 1.Shuttle vector transformations. Schematic representation of the various DNA sources, strains and methods used to assess the contributions of bbe02 and bbq67 to the restriction-modification (R-M) systems of B. burgdorferi.  相似文献   

3.
4.
Pathogens lacking the enzymatic pathways for de novo purine biosynthesis are required to salvage purines and pyrimidines from the host environment for synthesis of DNA and RNA. Two key enzymes in purine salvage pathways are IMP dehydrogenase (GuaB) and GMP synthase (GuaA), encoded by the guaB and guaA genes, respectively. While these genes are typically found on the chromosome in most bacterial pathogens, the guaAB operon of Borrelia burgdorferi is present on plasmid cp26, which also harbors a number of genes critical for B. burgdorferi viability. Using molecular genetics and an experimental model of the tick-mouse infection cycle, we demonstrate that the enzymatic activities encoded by the guaAB operon are essential for B. burgdorferi mouse infectivity and provide a growth advantage to spirochetes in the tick. These data indicate that the GuaA and GuaB proteins are critical for the survival of B. burgdorferi in the infection cycle and highlight a potential difference in the requirements for purine salvage in the disparate mammalian and tick environments.Purine metabolism is critical for the growth and virulence in mammals of many bacterial pathogens (11, 26, 29, 33, 51). Borrelia burgdorferi, the infectious agent of Lyme borreliosis, lacks the genes encoding the enzymes required for de novo nucleotide synthesis (8, 12) and therefore must rely on salvage of purines and pyrimidines from its hosts for nucleic acid biosynthesis (21, 35). Furthermore, B. burgdorferi lacks the genes encoding key enzymes required for a classic purine salvage pathway, including hpt (hypoxanthine-guanine phosphoribosyltransferase), purA (adenylosuccinate synthase), purB (adenylosuccinate lyase), and the locus encoding a ribonucleotide reductase (4, 8, 12, 35, 66). Despite the absence of a ribonucleotide reductase, an enzyme critical for the generation of deoxynucleotides through enzymatic reduction of ribonucleotides (32), a novel purine salvage pathway that involves salvage of deoxynucleosides from the host and interconversion of purine bases to deoxynucleosides by BB0426, a deoxyribosyl transferase, has recently been demonstrated for B. burgdorferi (23) (Fig. (Fig.11).Open in a separate windowFIG. 1.Pivotal role of the GuaAB proteins in the purine salvage pathway of B. burgdorferi. A novel pathway for purine salvage has recently been elucidated for B. burgdorferi (23). Extracellular adenine and hypoxanthine are salvaged by B. burgdorferi from mammalian and tick host environments (61). Following transport, adenine can be converted to hypoxanthine by adenine deaminase (BBK17) (21). This pathway proposes two possible fates for hypoxanthine, as follows. (i) Hypoxanthine is converted to IMP by a putative xanthine-guanine phosphoribosyl transferase (BB0103), IMP is converted to XMP by IMPDH (GuaB or BBB17), and XMP is converted to GMP by GMP synthase (GuaA or BBB18), resulting in guanine nucleotides for RNA synthesis. (ii) Direct transport of deoxynucleosides appears to provide a source of deoxyribose for interconversion of hypoxanthine to deoxyinosine by a deoxyribosyl transferase (BB0426) (23). dIMP is generated by a putative deoxynucleotide kinase (BB0239). GuaB converts dIMP to dXMP, and GuaA converts dXMP to dGMP, providing guanine deoxynucleotides for DNA synthesis (23). Salvage of free guanine nucleosides and guanine deoxynucleosides, when they are available in the host environment, may allow B. burgdorferi to circumvent the GuaAB requirement for GMP and dGMP biosynthesis. The dashed arrows indicate dephosphorylation of nucleotide monophosphate or deoxynucleotide monophosphate prior to transport by the spirochete and rephosphorylation of nucleoside and deoxynucleoside to nucleotide triphosphate and deoxynucleotide triphosphate, respectively, for RNA and DNA synthesis. NMP, nucleotide monophosphate; N, nucleoside; dN, deoxynucleoside; dNMP, deoxynucleotide monophosphate; OM, outer membrane; IM, inner membrane.In its infection cycle, B. burgdorferi passages between two disparate environments with potentially distinct purine availabilities, the tick vector and a mammalian host. Hypoxanthine is the most abundant purine in mammalian blood (17), and it is available for salvage by B. burgdorferi during the blood meal of an infected tick and during the spirochete''s transient presence in the mammalian bloodstream. Despite the absence of the hpt gene, we and others have shown that B. burgdorferi is able to transport and incorporate low levels of hypoxanthine (23, 35). During mammalian infection B. burgdorferi resides in various tissues, including the skin, heart, bladder, and joints. Adenine has been shown to be ubiquitous in mammalian tissues (61) and therefore is available for salvage by B. burgdorferi. Guanine is present at low levels in mammalian blood and tissues (17, 61); however, the amount may not be sufficient for survival of the spirochete.The limiting step in guanine nucleotide biosynthesis from adenine and hypoxanthine is the conversion of IMP to XMP, which is catalyzed by IMP dehydrogenase (IMPDH) (65). Guanine nucleotides are essential for DNA and RNA synthesis, signal transduction, and cell cycle control; thus, IMPDH activity is critical for the survival of most organisms (60). The enzymes required for the final two steps of guanine nucleotide biosynthesis, IMPDH and GMP synthase, are encoded by the guaB and guaA genes, respectively. The guaA and guaB genes and the corresponding activities of their protein products are conserved in B. burgdorferi (28, 67). These genes are typically carried on the chromosomes of bacterial species. However, in B. burgdorferi, the guaAB operon resides on a 26-kbp circular plasmid, cp26, and it shares an approximately 185-bp intergenic region with, and is transcribed divergently from, the essential virulence gene ospC (8, 12, 28, 50, 54, 62). The cp26 plasmid has been shown to harbor numerous genes important for B. burgdorferi survival in vivo and in vitro, including ospC (16, 34, 50, 53, 56) and resT (7), as well as BBB26 and BBB27 (20). Because of these critical functions, this plasmid is the only plasmid of the approximately 21 B. burgdorferi plasmids that is present in all natural isolates and has never been shown to be lost during in vitro culture (2, 7, 18, 20, 44, 52).Here we establish that the enzymatic activities of GuaA and GuaB are critical for the survival of B. burgdorferi in the infectious cycle and highlight a potential difference in this spirochete''s requirement for purine salvage in the disparate mammalian and tick environments.  相似文献   

5.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

6.
7.
8.
9.
10.
A bioinformatic analysis of nearly 400 genomes indicates that the overwhelming majority of bacteria possess homologs of the Escherichia coli proteins FtsL, FtsB, and FtsQ, three proteins essential for cell division in that bacterium. These three bitopic membrane proteins form a subcomplex in vivo, independent of the other cell division proteins. Here we analyze the domains of E. coli FtsL that are involved in the interaction with other cell division proteins and important for the assembly of the divisome. We show that FtsL, as we have found previously with FtsB, packs an enormous amount of information in its sequence for interactions with proteins upstream and downstream in the assembly pathway. Given their size, it is likely that the sole function of the complex of these two proteins is to act as a scaffold for divisome assembly.The division of an Escherichia coli cell into two daughter cells requires a complex of proteins, the divisome, to coordinate the constriction of the three layers of the Gram-negative cell envelope. In E. coli, there are 10 proteins known to be essential for cell division; in the absence of any one of these proteins, cells continue to elongate and to replicate and segregate their chromosomes but fail to divide (29). Numerous additional nonessential proteins have been identified that localize to midcell and assist in cell division (7-9, 20, 25, 34, 56, 59).A localization dependency pathway has been determined for the 10 essential division proteins (FtsZ→FtsA/ZipA→FtsK→FtsQ→FtsL/FtsB→FtsW→FtsI→FtsN), suggesting that the divisome assembles in a hierarchical manner (29). Based on this pathway, a given protein depends on the presence of all upstream proteins (to the left) for its localization and that protein is then required for the localization of the downstream division proteins (to the right). While the localization dependency pathway of cell division proteins suggests that a sequence of interactions is necessary for divisome formation, recent work using a variety of techniques reveals that a more complex web of interactions among these proteins is necessary for a functionally stable complex (6, 10, 19, 23, 24, 30-32, 40). While numerous interactions have been identified between division proteins, further work is needed to define which domains are involved and which interactions are necessary for assembly of the divisome.One subcomplex of the divisome, composed of the bitopic membrane proteins FtsB, FtsL, and FtsQ, appears to be the bridge between the predominantly cytoplasmic cell division proteins and the predominantly periplasmic cell division proteins (10). FtsB, FtsL, and FtsQ share a similar topology: short amino-terminal cytoplasmic domains and larger carboxy-terminal periplasmic domains. This tripartite complex can be divided further into a subcomplex of FtsB and FtsL, which forms in the absence of FtsQ and interacts with the downstream division proteins FtsW and FtsI in the absence of FtsQ (30). The presence of an FtsB/FtsL/FtsQ subcomplex appears to be evolutionarily conserved, as there is evidence that the homologs of FtsB, FtsL, and FtsQ in the Gram-positive bacteria Bacillus subtilis and Streptococcus pneumoniae also assemble into complexes (18, 52, 55).The assembly of the FtsB/FtsL/FtsQ complex is important for the stabilization and localization of one or more of its component proteins in both E. coli and B. subtilis (11, 16, 18, 33). In E. coli, FtsB and FtsL are codependent for their stabilization and for localization to midcell, while FtsQ does not require either FtsB or FtsL for its stabilization or localization to midcell (11, 33). Both FtsL and FtsB require FtsQ for localization to midcell, and in the absence of FtsQ the levels of full-length FtsB are significantly reduced (11, 33). The observed reduction in full-length FtsB levels that occurs in the absence of FtsQ or FtsL results from the degradation of the FtsB C terminus (33). However, the C-terminally degraded FtsB generated upon depletion of FtsQ can still interact with and stabilize FtsL (33).While a portion of the FtsB C terminus is dispensable for interaction with FtsL and for the recruitment of the downstream division proteins FtsW and FtsI, it is required for interaction with FtsQ (33). Correspondingly, the FtsQ C terminus also appears to be important for interaction with FtsB and FtsL (32, 61). The interaction between FtsB and FtsL appears to be mediated by the predicted coiled-coil motifs within the periplasmic domains of the two proteins, although only the membrane-proximal half of the FtsB coiled coil is necessary for interaction with FtsL (10, 32, 33). Additionally, the transmembrane domains of FtsB and FtsL are important for their interaction with each other, while the cytoplasmic domain of FtsL is not necessary for interaction with FtsB, which has only a short 3-amino-acid cytoplasmic domain (10, 33).In this study, we focused on the interaction domains of FtsL. We find that, as with FtsB, the C terminus of FtsL is required for the interaction of FtsQ with the FtsB/FtsL subcomplex while the cytoplasmic domain of FtsL is involved in recruitment of the downstream division proteins. Finally, we provide a comprehensive analysis of the presence of FtsB, FtsL, and FtsQ homologs among bacteria and find that the proteins of this complex are likely more widely distributed among bacteria than was previously thought.  相似文献   

11.
Regulation of gene expression is critical for the ability of Borrelia burgdorferi to adapt to different environments during its natural infectious cycle. Reporter genes have been used successfully to study gene regulation in multiple organisms. We have introduced a lacZ gene into B. burgdorferi, and we show that B. burgdorferi produces a protein with detectable β-galactosidase activity in both liquid and solid media when lacZ is expressed from a constitutive promoter. Furthermore, when lacZ is expressed from the ospC promoter, β-galactosidase activity is detected only in B. burgdorferi clones that express ospC, and it accurately monitors endogenous gene expression. The addition of lacZ to the repertoire of genetic tools available for use in B. burgdorferi should contribute to a better understanding of how B. burgdorferi gene expression is regulated during the infectious cycle.Borrelia burgdorferi sensu lato, the pathogen that causes Lyme disease (7), alternates between two distinct environments, an arthropod vector and a vertebrate host. As B. burgdorferi moves from one milieu to the other, its ability to adapt and survive requires dramatic changes in gene expression. Many studies have shown that different B. burgdorferi gene products are upregulated or downregulated at specific times during the infectious cycle (19, 31) and in response to host and environmental signals (6, 8a, 15, 24, 25). Although it is clear that B. burgdorferi alters gene expression to adapt to different environments, the genetic tools for studying gene regulation in B. burgdorferi are limited.Within the last 2 decades, the complete genomic sequence of B. burgdorferi strain B31 was published (10, 14) and techniques for basic genetic manipulation of B. burgdorferi became available (5, 11, 13, 27-29, 36). A chloramphenicol acetyltransferase (CAT) gene was the first reporter gene that was fused to B. burgdorferi promoters for analysis of promoter strength (33). The development of luciferase (4) and multiple fluorescent proteins (9, 11, 30) as reporter systems in B. burgdorferi followed. Although these systems have value, there are limitations with each. β-Galactosidase, encoded by lacZ, has been used extensively as a convenient reporter gene in Escherichia coli and is still applicable to a broad range of organisms, both prokaryotic and eukaryotic, but has not yet been used with B. burgdorferi. β-Galactosidase activity can be monitored easily and quickly by simple colorimetric assays in both liquid and solid media, neither of which require expensive or specialized equipment. Additionally, a wide variety of substrates for β-galactosidase allow for different levels of sensitivity in either in vitro or in vivo detection formats (17). Having lacZ available as a genetic tool for B. burgdorferi would enhance investigation of the complex regulatory events that are integral to the spirochete''s infectious cycle. To this end, we developed lacZ as a reporter gene in B. burgdorferi and demonstrated its utility.  相似文献   

12.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

13.
14.
The genome of an Escherichia coli MC4100 strain with a λ placMu50 fusion revealed numerous regulatory differences from MG1655, including one that arose during laboratory storage. The 194 mutational differences between MC4100(MuLac) and other K-12 sequences were mostly allocated to specific lineages, indicating the considerable mutational divergence between K-12 strains.Strains of Escherichia coli K-12 commonly used in various laboratories were derived from a common ancestor, but different lineages have been exposed to various forms of mutagenesis, as well as recombinational crosses involving conjugation and transduction (1). Some K-12 strains were also recipients in crosses involving E. coli B donors, as happened with the common araD139 mutation from an E. coli B/r strain (7). Laboratories in earlier eras also used different culture and storage conditions, also potentially impacting genomic integrity, especially in the movement of insertion sequences and in polymorphisms arising during storage (20, 22). Here, we used genomics to analyze the chromosomal characteristics of a commonly used K-12 lineage with a history different from that of reference K-12 strains MG1655 and W3110 (13) and pieced together its derivation by using the origins of single-nucleotide polymorphisms (SNPs) and indels as markers.Strain MC4100 [genotype according to the E. coli Genetic Stock Center: F (araD139) Δ(argF-lac)169 λ e14 flhD5301 Δ(fruK-yeiR)725(fruA25) relA1 rpsL150(Strr) rbsR22 Δ(fimB-fimE)632(::IS1) deoC1] was obtained in a series of strain constructions (4) from an HfrC-derived MO strain of S. Brenner (genotype according to the E. coli Genetic Stock Center: F λ e14 relA1 rspL150 spoT1) (J. Beckwith, personal communication; 1, 6). Strain MC4100 has been widely adopted following studies involving lacZ reporter gene fusions in the Beckwith laboratory (4, 30, 31). MC4100 is an E. coli K-12 strain frequently used in fundamental studies of gene regulation and protein export (30) and bacterial growth and physiology, including cell division (33), DNA replication (16), metabolism (26), and stationary-phase regulation (18). MC4100 is also being used in systems biology approaches to defining E. coli (15) and as a starting strain in laboratory evolution experiments (21).The genome of strain MC4100 has been previously compared to that of reference strain MG1655 by restriction mapping (14) and using microarrays based on the MG1655 sequence (25). There are substantial band differences between MG1655 and MC4100 as determined by pulsed-field electrophoresis (14), and several deletions have been defined by microarray analysis, followed by PCR analysis of the flanking regions (25). The microarrays did not reveal differences other than deletions, but there remain differences between MC4100 and MG1655 that are unexplained by the known genotypes. Differences in the positions of insertion sequences in MG1655 and MC4100 influence anaerobic gene regulation (29), and another far-reaching difference is the level of sigma factor σS in the two widely used strains (17). There also appear to be differences in central metabolism between the K-12 strains (26), and a recent unexpected finding was the presence of a spoT1 mutation in MC4100 not previously defined in its widely cited genotype (32). Clearly, a full genome sequence of MC4100 would greatly benefit the interpretation of a wide range of fundamental studies.The strain of MC4100 sequenced here contains an additional element, a λ placMu50 operon fusion (3) in the malEFG operon (24). According to citations, this transposable reporter construct has been used in more than 100 studies of gene regulation but has not been fully sequenced. λ placMu50 was introduced into MC4100 to generate MC4100(MuLac) strain BW2952, the ancestor strain in experimental evolution experiments, because mal expression is a useful marker for detecting an assortment of regulatory mutations in evolving cultures (9, 23).  相似文献   

15.
Tripartite efflux pumps found in Gram-negative bacteria are involved in antibiotic resistance and toxic-protein secretion. In this study, we show, using site-directed mutational analyses, that the conserved residues located in the tip region of the α-hairpin of the membrane fusion protein (MFP) AcrA play an essential role in the action of the tripartite efflux pump AcrAB-TolC. In addition, we provide in vivo functional data showing that both the length and the amino acid sequence of the α-hairpin of AcrA can be flexible for the formation of a functional AcrAB-TolC pump. Genetic-complementation experiments further indicated functional interrelationships between the AcrA hairpin tip region and the TolC aperture tip region. Our findings may offer a molecular basis for understanding the multidrug resistance of pathogenic bacteria.The tripartite efflux pumps that are found in Gram-negative bacteria have been implicated in their intrinsic resistance to diverse antibiotics, as well as their secretion of protein toxins (10, 12, 24, 31). The bacterial efflux pump is typically assembled from three essential components: an inner membrane transporter (IMT), an outer membrane factor (OMF), and a periplasmic membrane fusion protein (MFP) (10, 12, 24, 31). The IMT provides energy for transporters, like the resistance nodulation cell division (RND) type and the ATP-binding cassette (ABC) type (18). The OMF connects to the IMT in the periplasm, providing a continuous conduit to the external medium. This conduit uses the central channel, which is opened only when in complex with other components (11, 18). The third essential component of the pump is the MFP, which is an adapter protein for the direct interaction between the IMT and OMF in the periplasm (32). The MFP consists of four linearly arranged domains: the membrane-proximal (MP) domain, the β-barrel domain, the lipoyl domain, and the α-hairpin domain (1, 6, 16, 22, 30). The MFP α-hairpin domain is known to interact with OMF, while the other domains are related to interaction with the IMT (15, 22).The Escherichia coli AcrAB-TolC pump, comprised of RND-type IMT-AcrB, MFP-AcrA, and OMF-TolC, is the major contributor to the multidrug resistance phenotype of the bacteria (7, 8, 25). The AcrAB-TolC pump, together with its homolog, the Pseudomonas aeruginosa MexAB-OprM pump (7, 13), has primarily been studied in order to elucidate the molecular mechanisms underlying the actions of the tripartite efflux pumps. Whereas the crystal structures of these proteins have revealed that RND-type IMTs (AcrB and MexB) and OMFs (TolC and OprM) are homotrimeric in their functional states (1, 6, 11, 16, 22, 30), the oligomeric state of MFP remains a topic of debate, despite the presence of crystal structures (3, 5, 17, 18, 22, 27, 30).MacAB-TolC, which was identified as a macrolide-specific extrusion pump (9), has also been implicated in E. coli enterotoxin secretion (29). While MFP-MacA shares high sequence similarity with AcrA and MexA, IMT-MacB is a homodimeric ABC transporter that uses ATP hydrolysis as the driving force (9, 14). MacA forms hexamers, and the funnel-like hexameric structure of MacA is physiologically relevant for the formation of a functional MacAB-TolC pump (30). Although the α-hairpins from AcrA and MacA are commonly involved in the interaction with TolC (30, 32), the interaction mode between AcrA and TolC remains to be elucidated. In this study, we provide experimental evidence showing that the conserved amino acid residues in the AcrA hairpin tip region is important for the action of the AcrAB-TolC efflux pump and is functionally related to the TolC aperture tip region.  相似文献   

16.
17.
Mature glycoprotein spikes are inserted in the Lassa virus envelope and consist of the distal subunit GP-1, the transmembrane-spanning subunit GP-2, and the signal peptide, which originate from the precursor glycoprotein pre-GP-C by proteolytic processing. In this study, we analyzed the oligomeric structure of the viral surface glycoprotein. Chemical cross-linking studies of mature glycoprotein spikes from purified virus revealed the formation of trimers. Interestingly, sucrose density gradient analysis of cellularly expressed glycoprotein showed that in contrast to trimeric mature glycoprotein complexes, the noncleaved glycoprotein forms monomers and oligomers spanning a wide size range, indicating that maturation cleavage of GP by the cellular subtilase SKI-1/S1P is critical for formation of the correct oligomeric state. To shed light on a potential relation between cholesterol and GP trimer stability, we performed cholesterol depletion experiments. Although depletion of cholesterol had no effect on trimerization of the glycoprotein spike complex, our studies revealed that the cholesterol content of the viral envelope is important for the infectivity of Lassa virus. Analyses of the distribution of viral proteins in cholesterol-rich detergent-resistant membrane areas showed that Lassa virus buds from membrane areas other than those responsible for impaired infectivity due to cholesterol depletion of lipid rafts. Thus, derivation of the viral envelope from cholesterol-rich membrane areas is not a prerequisite for the impact of cholesterol on virus infectivity.Lassa virus (LASV) is a member of the family Arenaviridae, of which Lymphocytic choriomeningitis virus (LCMV) is the prototype. Arenaviruses comprise more than 20 species, divided into the Old World and New World virus complexes (19). The Old World arenaviruses include the human pathogenic LASV strains, Lujo virus, which was first identified in late 2008 and is associated with an unprecedented high case fatality rate in humans, the nonhuman pathogenic Ippy, Mobala, and Mopeia viruses, and the recently described Kodoko virus (10, 30, 49). The New World virus complex contains, among others, the South American hemorrhagic fever-causing viruses Junín virus, Machupo virus, Guanarito virus, Sabiá virus, and the recently discovered Chapare virus (22).Arenaviruses contain a bisegmented single-stranded RNA genome encoding the polymerase L, matrix protein Z, nucleoprotein NP, and glycoprotein GP. The bipartite ribonucleoprotein of LASV is surrounded by a lipid envelope derived from the plasma membrane of the host cell. The matrix protein Z has been identified as a major budding factor, which lines the interior of the viral lipid membrane, in which GP spikes are inserted (61, 75). The glycoprotein is synthesized as precursor protein pre-GP-C and is cotranslationally cleaved by signal peptidase into GP-C and the signal peptide, which exhibits unusual length, stability, and topology (3, 27, 28, 33, 70, 87). Moreover, the arenaviral signal peptide functions as trans-acting maturation factor (2, 26, 33). After processing by signal peptidase, GP-C of both New World and Old World arenaviruses is cleaved by the cellular subtilase subtilisin kexin isozyme-1/site-1 protease (SKI-1/S1P) into the distal subunit GP-1 and the membrane-anchored subunit GP-2 within the secretory pathway (5, 52, 63). For LCMV, it has been shown that GP-1 subunits are linked to each other by disulfide bonds and are noncovalently connected to GP-2 subunits (14, 24, 31). GP-1 is responsible for binding to the host cell receptor, while GP-2 mediates fusion between the virus envelope and the endosomal membrane at low pH due to a bipartite fusion peptide near the amino terminus (24, 36, 44). Sequence analysis of the LCMV GP-2 ectodomain revealed two heptad repeats that most likely form amphipathic helices important for this process (34, 86).In general, viral class I fusion proteins have triplets of α-helical structures in common, which contain heptad repeats (47, 73). In contrast, class II fusion proteins are characterized by β-sheets that form dimers in the prefusion status and trimers in the postfusion status (43). The class III fusion proteins are trimers that, unlike class I fusion proteins, were not proteolytically processed N-terminally of the fusion peptide, resulting in a fusion-active membrane-anchored subunit (39, 62). Previous studies with LCMV described a tetrameric organization of the glycoprotein spikes (14), while more recent data using a bacterially expressed truncated ectodomain of the LCMV GP-2 subunit pointed toward a trimeric spike structure (31). Due to these conflicting data regarding the oligomerization status of LCMV GP, it remains unclear to which class of fusion proteins the arenaviral glycoproteins belong.The state of oligomerization and the correct conformation of viral glycoproteins are crucial for membrane fusion during virus entry. The early steps of infection have been shown for several viruses to be dependent on the cholesterol content of the participating membranes (i.e., either the virus envelope or the host cell membrane) (4, 9, 15, 20, 21, 23, 40, 42, 53, 56, 76, 78, 79). In fact, it has been shown previously that entry of both LASV and LCMV is susceptible to cholesterol depletion of the target host cell membrane using methyl-β-cyclodextrin (MβCD) treatment (64, 71). Moreover, cholesterol not only plays an important role in the early steps during entry in the viral life cycle but also is critical in the virus assembly and release process. Several viruses of various families, including influenza virus, human immunodeficiency virus type 1 (HIV-1), measles virus, and Ebola virus, use the ordered environment of lipid raft microdomains. Due to their high levels of glycosphingolipids and cholesterol, these domains are characterized by insolubility in nonionic detergents under cold conditions (60, 72). Recent observations have suggested that budding of the New World arenavirus Junin virus occurs from detergent-soluble membrane areas (1). Assembly and release from distinct membrane microdomains that are detergent soluble have also been described for vesicular stomatitis virus (VSV) (12, 38, 68). At present, however, it is not known whether LASV requires cholesterol in its viral envelope for successful virus entry or whether specific membrane microdomains are important for LASV assembly and release.In this study, we first investigated the oligomeric state of the premature and mature LASV glycoprotein complexes. Since it has been shown for several membrane proteins that the oligomerization and conformation are dependent on cholesterol (58, 59, 76, 78), we further analyzed the dependence of the cholesterol content of the virus envelope on glycoprotein oligomerization and virus infectivity. Finally, we characterized the lipid membrane areas from which LASV is released.  相似文献   

18.
The nanATEK-yhcH, yjhATS, and yjhBC operons in Escherichia coli are coregulated by environmental N-acetylneuraminic acid, the most prevalent sialic acid in nature. Here we show that YjhS (NanS) is a probable 9-O-acetyl N-acetylneuraminic acid esterase required for E. coli to grow on this alternative sialic acid, which is commonly found in mammalian host mucosal sites.The coregulated nanATEK-yhcH, yjhATS, and yjhBC operons involved in sialic acid catabolism in Escherichia coli are thought to be induced by the most common sialic acid, N-acetylneuraminic acid (Neu5Ac), through reversible inactivation of the NanR repressor encoded by nanR mapping immediately upstream of nanA (15, 27, 28; http://vetmed.illinois.edu/path/sialobiology/). Sialic acids are a family of over 40 naturally occurring 9-carbon keto sugar acids found mainly in metazoans of the deuterostome (starfish to human) developmental lineage and in some, mostly pathogenic, bacteria, where sialic acids expressed at the microbial cell surface inhibit host innate immunity (27). By contrast, most bacterial commensals and pathogens catabolize sialic acids as sole carbon and nitrogen sources, indicating exploitation of the sialic acid-rich host mucosal environment by a wide range of species (2, 27, 28). Interestingly, in vivo experimental evidence further indicates that sialic acid catabolism functions directly (nutrition) or indirectly (surface decoration and cell signaling) in host-microbe commensal and pathogenic interactions in organisms such as E. coli, Haemophilus influenzae, Pasteurella multocida, Salmonella enterica serovar Typhi, Streptococcus pneumoniae, Vibrio vulnificus, and Vibrio cholerae (1, 3, 5, 6, 10, 14, 23, 24, 26, 29). The animal species used for these studies include rodent models and natural hosts such as cattle and turkeys. The structural diversity of sialic acids at the terminal positions on glycoconjugates (glycoproteins and glycolipids) of mucosal surfaces of these hosts requires sialidases, acetyl esterases, and probably other enzymes that convert alternative or at least minor sialic acids to the more digestible Neu5Ac form (8, 9). We have previously demonstrated that E. coli has an epicurean propensity for metabolizing alternative sialic acids (30, 31). In the current communication, we show that YjhS is required for growth of E. coli on 9-O-acetyl-N-acetylneuraminic acid (Neu5,9Ac2).Because most sialic acids are bound to other sugars, including other sialic acids, as part of the oligosaccharide chains on glycoconjugates, either microbial or endogenous (host) sialidases (NanH, or N-acylneuraminate hydrolases) are needed to release free sugar, which is then transported by NanT in E. coli (15, 16, 26, 31). Once internalized, sialic acid is cleaved by an nanA-encoded aldolase or lyase to yield the 6-carbon hexosamine, N-acetylmannosamine (ManNAc), and pyruvate, with the latter entering the tricarboxylic acid cycle or gluconeogenesis. ManNAc is converted to its 6-phosphate derivative by a specific kinase encoded by nanK and epimerized by NanE to yield N-acetylglucosamine 6-phosphate, which is converted to fructose 6-phosphate by products of the nag operon (15, 17, 31, 32). The functions of the coregulated yjhS, yjhB, yjhC, and yhcH gene products are unknown but are not required for growth on Neu5Ac (15). However, YjhA (NanC) is an outer membrane porin required for diffusion of Neu5Ac in the absence of the major porins (7), while YjhT (NanM) is a mutarotase that catalyzes the conversion of the alpha sialic acid isomer to the more thermodynamically stable beta form (21). Neither nanC nor nanM is required for growth on Neu5Ac (15), suggesting that yjhS, yjhBC, and yhcH are involved in reactions that convert alternative sialic acids to Neu5Ac (22, 23). YhcH was crystallized and has been suggested to be an isomerase or epimerase involved in processing N-glycolylneuraminic acid (Neu5Gc) (25), but deletion of yhcH did not affect growth on this sialic acid as a sole carbon source (16).Computer-assisted analysis indicated that YjhB is a permease similar to NanT (16) whereas YjhC is a likely oxidoreductase or dehydrogenase. Orthologs of yhcH, nanC, nanM, and yjhBC are found in most bacterial species with intact Neu5Ac utilization systems, while yjhS is confined to E. coli and shigellae, either as part of the chromosomes in these strains or integrated with phages or phage remnants. However, a significant match (E value = 0.0007) was found between YjhS and AxeA in Rhodopirellula baltica, where AxeA is an acetyl xylan esterase (11), suggesting YjhS might be a sialate esterase. We propose that YjhS should be designated NanS to indicate its direct participation in utilization of an alternative sialic acid.  相似文献   

19.
Bacterial cytokinesis is coupled to the localized synthesis of new peptidoglycan (PG) at the division site. This newly generated septal PG is initially shared by the daughter cells. In Escherichia coli and other gram-negative bacteria, it is split shortly after it is made to promote daughter cell separation and allow outer membrane constriction to closely follow that of the inner membrane. We have discovered that the LytM (lysostaphin)-domain containing factors of E. coli (EnvC, NlpD, YgeR, and YebA) are absolutely required for septal PG splitting and daughter cell separation. Mutants lacking all LytM factors form long cell chains with septa containing a layer of unsplit PG. Consistent with these factors playing a direct role in septal PG splitting, both EnvC-mCherry and NlpD-mCherry fusions were found to be specifically recruited to the division site. We also uncovered a role for the LytM-domain factors in the process of β-lactam-induced cell lysis. Compared to wild-type cells, mutants lacking LytM-domain factors were delayed in the onset of cell lysis after treatment with ampicillin. Moreover, rather than lysing from midcell lesions like wild-type cells, LytM cells appeared to lyse through a gradual loss of cell shape and integrity. Overall, the phenotypes of mutants lacking LytM-domain factors bear a striking resemblance to those of mutants defective for the N-acetylmuramyl-l-alanine amidases: AmiA, AmiB, and AmiC. E. coli thus appears to rely on two distinct sets of putative PG hydrolases to promote proper cell division.Cytokinesis in Escherichia coli and other gram-negative bacteria proceeds via the coordinated constriction of their envelope layers (outer membrane, inner membrane, and peptidoglycan [PG]) (12, 13, 34, 89). This coordination is achieved by a multi-protein division machine referred to as the septal ring or divisome (20). Assembly of the septal ring begins with the polymerization of the bacterial tubulin protein, FtsZ, into a ring structure just underneath the inner membrane at the prospective site of cell division (8). Once formed, this so-called Z-ring facilitates the recruitment of a number of essential and nonessential division proteins to the division site for the assembly of the trans-envelope divisome organelle (20).A major function of the cytokinetic machinery is to promote the synthesis of the PG layer that will eventually fortify the new poles of the developing daughter cells. PG is a polysaccharide polymer composed of repeating units of N-acetyl-glucosamine (GlcNAc) and N-acetyl-muramic acid (MurNAc) linked by a β-1,4-glycosidic bond (46). Attached to the MurNAc sugar is a short peptide that is used to form cross-links between adjacent polysaccharide strands (46). Such cross-links allow for the construction of a cell-shaped PG meshwork that surrounds the cell membrane and protects it from osmotic rupture.A new wave of zonal PG synthesis is initiated at the division site during each cell cycle (23, 25, 72, 77, 91). Several of the major PG synthases called penicillin-binding proteins are components of the divisome organelle and play important roles in the synthesis of PG during division (7, 21, 62, 67, 73, 74, 80, 81, 88, 90). The septal PG layer produced by these and perhaps other components of the divisome is thought to be initially shared by the daughter cells (46). In gram-positive bacteria, this septal PG layer is typically split some time after the daughter cells have been compartmentalized by membrane fusion (11). In gram-negative bacteria, however, the septal PG layer is split shortly after it is formed to allow constriction of the outer membrane to closely follow that of the inner (cytoplasmic) membrane (12, 13, 34, 89). This gives rise to the characteristic constricted appearance of predivisional cells of E. coli and its relatives.PG hydrolysis is required to promote septal PG splitting and eventual daughter cell separation (87). E. coli, like many bacteria, encodes a vast array of factors with known or predicted PG hydrolase activity (at least 30 genes and 11 different protein families) (29, 31, 87). In most cases, the loss of individual PG hydrolase factors has little effect on growth and division, suggesting that there is significant functional overlap between the various hydrolases (87). This dearth of phenotypic information has consequently made it difficult to understand the physiological roles of PG hydrolases and identify the subset of these factors needed for septal PG splitting. An approach that has helped overcome this limitation in E. coli, however, has been the systematic deletion of all members of a particular PG hydrolase family from the genome (22, 44, 45, 63). Thus far, of all the families of PG hydrolases encoded by E. coli, the factors that play the predominant role in cell separation appear to be the LytC-type N-acetylmuramyl-l-alanine amidases: AmiA, AmiB, and AmiC (44, 45, 69). Loss of all three of these amidases results in a severe defect in cell separation and the formation of extremely long cell chains. This chaining phenotype can be exacerbated by the loss of members of other classes of PG hydrolases like the lytic transglycosylases or d,d-endopeptidases (44, 68). However, relative to strains defective for the amidases, mutants lacking multiple lytic transglycosylases or d,d-endopeptidases alone do not display significant chaining phenotypes in E. coli. These PG hydrolases therefore appear to be playing more of an ancillary role in cell separation.The LytM (lysostaphin/peptidase M23)-domain containing factors (referred to as LytM factors for convenience) are a widely distributed class of putative PG hydrolases that have been poorly characterized with regard to their role in PG biogenesis in E. coli and other bacteria (31). The most well-studied members of this family of factors, LytM and lysostaphin, are metallo-endopeptidases that cleave the pentaglycine cross-bridges found in staphylococcal PG (9, 30, 64). Based on this activity, other LytM factors are also likely to be PG hydrolases but with altered cleavage specificity because pentaglycine cross-bridges are only found among the staphylococci (75). Indeed, the LytM protein, gp13, from the Bacillus subtilis phage Φ29 was recently shown to be a d,d-endopeptidase that cleaves the meso-diaminopimelic acid-d-Ala cross-links of B. subtilis PG (17).E. coli encodes four factors with identifiable LytM-domains: EnvC, NlpD, YgeR, and YebA (29) (Fig. (Fig.1).1). Of the four, only EnvC has been studied in appreciable detail. EnvC mutants have a mild cell separation (chaining) defect when grown in medium containing salt and a severe division defect when grown at high temperatures in medium lacking salt (5, 42, 48, 71). In addition, purified EnvC protein was found to possess PG hydrolase activity using a gel-based zymogram assay, and an EnvC-green fluorescent protein (GFP) fusion exported to the periplasm via the Tat system was shown to be recruited to the division site (5). In all, these results support a model in which EnvC is targeted to the division site to participate directly in septal PG splitting and daughter cell separation.Open in a separate windowFIG. 1.Predicted domain structure of the E. coli LytM factors. Shown is a diagram depicting the predicted domain architecture of the four E. coli factors with identifiable LytM domains. Abbreviations: LytM, LytM domain; LysM, LysM PG-binding domain (29); CC, coiled coil; T, transmembrane domain; SS, signal sequence; SS*, lipoprotein signal sequence. The UniProtKB/Swiss-Prot accession numbers are as follows: EnvC (P37690), NlpD (P0ADA3), YebA (P0AFS9), and YgeR (Q46798).In the present study, we investigated the physiological role(s) of the entire set of E. coli LytM factors by generating mutant strains lacking all possible combinations of them. We found that, like the amidases, LytM factors play a critical role in daughter cell separation. Furthermore, studies of their subcellular localization revealed that NlpD is recruited to the division site along with EnvC, indicating that both of these LytM factors are likely to be participating directly in the septal PG splitting process. We also discovered that mutants lacking multiple LytM factors lyse more slowly and display an altered morphological response relative to wild-type (WT) cells when they are treated with ampicillin. This finding suggests that in addition to cell separation, LytM proteins play a role in the lytic mechanism of β-lactam antibiotics.  相似文献   

20.
Cryo-electron tomography (CET) was used to examine the native cellular organization of Treponema pallidum, the syphilis spirochete. T. pallidum cells appeared to form flat waves, did not contain an outer coat and, except for bulges over the basal bodies and widening in the vicinity of flagellar filaments, displayed a uniform periplasmic space. Although the outer membrane (OM) generally was smooth in contour, OM extrusions and blebs frequently were observed, highlighting the structure''s fluidity and lack of attachment to underlying periplasmic constituents. Cytoplasmic filaments converged from their attachment points opposite the basal bodies to form arrays that ran roughly parallel to the flagellar filaments along the inner surface of the cytoplasmic membrane (CM). Motile treponemes stably attached to rabbit epithelial cells predominantly via their tips. CET revealed that T. pallidum cell ends have a complex morphology and assume at least four distinct morphotypes. Images of dividing treponemes and organisms shedding cell envelope-derived blebs provided evidence for the spirochete''s complex membrane biology. In the regions without flagellar filaments, peptidoglycan (PG) was visualized as a thin layer that divided the periplasmic space into zones of higher and lower electron densities adjacent to the CM and OM, respectively. Flagellar filaments were observed overlying the PG layer, while image modeling placed the PG-basal body contact site in the vicinity of the stator-P-collar junction. Bioinformatics and homology modeling indicated that the MotB proteins of T. pallidum, Treponema denticola, and Borrelia burgdorferi have membrane topologies and PG binding sites highly similar to those of their well-characterized Escherichia coli and Helicobacter pylori orthologs. Collectively, our results help to clarify fundamental differences in cell envelope ultrastructure between spirochetes and gram-negative bacteria. They also confirm that PG stabilizes the flagellar motor and enable us to propose that in most spirochetes motility results from rotation of the flagellar filaments against the PG.Spirochetes are an ancient and extremely successful eubacterial phylum characterized by distinctive helical or planar wave-form morphology and flagellar filaments confined to the periplasmic space (55, 87). Spirochetes from the genera Leptospira, Treponema, and Borrelia are highly invasive pathogens that pose public health problems of global dimensions (1, 6, 57, 109). Treponema denticola and numerous other treponemal species, most of which remain uncultivated, are major components of the polymicrobial biofilms that cause periodontal disease (34, 56) and also have been implicated as risk factors for atherosclerosis (4, 125). The treponemal symbionts that dwell in the hindguts of termites, where they provide their insect host with essential nutrients (10), are one of the most striking examples of the extraordinary biodiversity achieved by spirochetes. It is readily apparent, therefore, that in the course of their complex evolution, spirochetes have exploited a basic ultrastructural plan to accommodate an immense spectrum of metabolic activities and lifestyles, both commensal and pathogenic.Venereal syphilis is a multistage, sexually transmitted disease caused by the noncultivatable spirochete Treponema pallidum. Following inoculation, usually in the genital region, T. pallidum disseminates via lymphatics and blood to diverse organs, where it can establish persistent, even life-long, infection (68, 97). Over the years there has been great interest in defining ultrastructural features of the syphilis spirochete that might contribute to syphilis pathogenesis (58, 64, 84, 120, 121). Classic electron microscopy studies established that T. pallidum possesses a characteristic spirochete ultrastructure consisting of outer and cytoplasmic membranes and periplasmic flagellar filaments originating from cytoplasmic membrane-associated, subterminal basal bodies (55, 58). Hovind-Hougen (58) identified a putative peptidoglycan (PG) layer surrounding the cytoplasmic membrane (CM), and she noted that the end of the bacterium contains a distinct structural entity which she speculated mediates polar attachment to mammalian cells and extracellular matrix components. Freeze-fracture analysis has shown that the T. pallidum outer membrane (OM) contains a lower density of membrane-spanning proteins than its counterparts in either gram-negative bacteria or cultivatable spirochetes (99, 118), and it is thought that the paucity of surface-exposed antigenic targets resulting from this unusual OM ultrastructure is an important element of the spirochete''s strategy for immune evasion (14, 93, 97).In the more than 10 years since the publication of the T. pallidum genomic sequence made available a much-needed parts list for the bacterium (44), we have learned comparatively little about how these components are organized to create this extremely virulent and immunoevasive pathogen. Cryo-electron tomography (CET) has emerged as a powerful methodology for bridging the gap between protein-protein interactions and cellular architecture (70, 71). With this technique, thin films of cells are vitreously frozen to preserve cell structure in a close-to-native state, thereby avoiding chemical fixation, dehydration, and staining artifacts typically associated with conventional electron microscopy (EM). A series of images acquired as the sample is progressively tilted in an electron microscope are used to generate a three-dimensional (3D) reconstruction of the intact cell. In recent years, investigators have used CET to examine a variety of eukaryotic and prokaryotic cell types (70, 73, 77). With respect to spirochetes, CET has been used to visualize the intact flagellar motors of Treponema primitia (79) and Borrelia burgdorferi (67, 72); novel internal and external structural features of T. denticola (60); Treponema primitia (80), B. burgdorferi (66), and Leptospira interrogans (74); the flat ribbon configuration of B. burgdorferi periplasmic flagella (18); and the defects created in B. burgdorferi OMs when organisms are incubated with a borreliacidal monoclonal antibody (69). In the present study, we used CET to examine the native cellular organization of T. pallidum. These analyses demonstrated, not surprisingly, that T. pallidum shares many structural features with T. denticola while, at the same time, calling attention to the fluidity and dynamism of the syphilis spirochete''s cell envelope. Our study also revealed that T. pallidum cell ends possess an unexpected degree of structural complexity and diversity compared to those of other spirochetes examined to date by CET. Lastly, our work has clarified the location of the PG layer within the periplasmic space and its spatial relationship to the motility apparatus, which are prerequisites for understanding spirochete movement and, by extension, invasiveness. As a whole, the information obtained underscores and clarifies fundamental differences in cell envelope composition and organization between T. pallidum, as well as other pathogenic spirochetes, and the model gram-negative bacterium, Escherichia coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号