首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) that prevent its proper folding and trafficking to the apical membrane of epithelial cells. Absence of cAMP-mediated Cl secretion in CF airways causes poorly hydrated airway surfaces in CF patients, and this condition is exacerbated by excessive Na+ absorption. The mechanistic link between missing CFTR and increased Na+ absorption in airway epithelia has remained elusive, although substantial evidence implicates hyperactivity of the epithelial Na+ channel (ENaC). ENaC is known to be activated by selective endoproteolysis of the extracellular domains of its α- and γ-subunits, and it was recently reported that ENaC and CFTR physically associate in mammalian cells. We confirmed this interaction in oocytes by co-immunoprecipitation and found that ENaC associated with wild-type CFTR was protected from proteolytic cleavage and stimulation of open probability. In contrast, ΔF508 CFTR, the most common mutant protein in CF patients, failed to protect ENaC from proteolytic cleavage and stimulation. In normal airway epithelial cells, ENaC was contained in the anti-CFTR immunoprecipitate. In CF airway epithelial cultures, the proportion of full-length to total α-ENaC protein signal was consistently reduced compared with normal cultures. Our results identify limiting proteolytic cleavage of ENaC as a mechanism by which CFTR down-regulates Na+ absorption.  相似文献   

2.
Amiloride-sensitive, epithelial Na+ channel (ENaC)-mediated, active absorption of Na+ is elevated in the airway epithelium of cystic fibrosis (CF) patients, resulting in excess fluid removal from the airway lumen. This excess fluid/volume absorption corresponds to CF transmembrane regulator-linked defects in ENaC regulation, resulting in the reduced mucociliary clearance found in CF airways. Herein we show that INO-4995, a synthetic analog of the intracellular signaling molecule, D-myo-inositol 3,4,5,6-tetrakisphosphate, inhibits Na+ and fluid absorption across CF airway epithelia, thus alleviating this critical pathology. This conclusion was based on electrophysiological studies, fluid absorption, and 22Na+ flux measurements in CF airway epithelia, contrasted with normal epithelia, and on electrophysiological studies in Madin-Darby canine kidney cells and 3T3 cells overexpressing ENaC. The effects of INO-4995 were long-lasting, dose-dependent, and more pronounced in epithelia from CF patients vs. controls. These findings support preclinical development of INO-4995 for CF treatment and demonstrate for the first time the therapeutic potential of inositol polyphosphate derivatives. epithelial Na+ channels; fluid absorption  相似文献   

3.
Studies in cystic fibrosis patients and mice overexpressing the epithelial Na+ channel β-subunit (βENaC-Tg) suggest that raised airway Na+ transport and airway surface liquid (ASL) depletion are central to the pathogenesis of cystic fibrosis lung disease. However, patients or mice with Liddle gain-of-function βENaC mutations exhibit hypertension but no lung disease. To investigate this apparent paradox, we compared the airway phenotype (nasal versus tracheal) of Liddle with CFTR-null, βENaC-Tg, and double mutant mice. In mouse nasal epithelium, the region that functionally mimics human airways, high levels of CFTR expression inhibited Liddle epithelial Nat channel (ENaC) hyperfunction. Conversely, in mouse trachea, low levels of CFTR failed to suppress Liddle ENaC hyperfunction. Indeed, Na+ transport measured in Ussing chambers (“flooded” conditions) was raised in both Liddle and βENaC-Tg mice. Because enhanced Na+ transport did not correlate with lung disease in these mutant mice, measurements in tracheal cultures under physiologic “thin film” conditions and in vivo were performed. Regulation of ASL volume and ENaC-mediated Na+ absorption were intact in Liddle but defective in βENaC-Tg mice. We conclude that the capacity to regulate Na+ transport and ASL volume, not absolute Na+ transport rates in Ussing chambers, is the key physiologic function protecting airways from dehydration-induced lung disease.  相似文献   

4.
Cystic fibrosis is characterized by an impaired cyclic adenosine 3,5-monophosphate (cAMP) activated Cl conductance in parallel with an enhanced amiloride sensitive Na+ conductance (ENaC) of the respiratory epithelium. Very recently, acute downregulation of ENaC by the cystic fibrosis transmembrane conductance regulator (CFTR) was demonstrated in several studies. The mechanism, however, by which CFTR exerts its inhibitory effect on ENaC remains obscure. We demonstrate that cytosolic domains of human CFTR are sufficient to induce inhibition of rat epithelial Na+ currents (rENaC) when coexpressed in Xenopus oocytes and stimulated with 3-isobutyl-1-methylxanthine (IBMX). Moreover, mutations of CFTR, which occur in cystic fibrosis, abolish CFTR-dependent downregulation of rENaC. Yeast two hybrid analysis of CFTR domains and rENaC subunits suggest direct interaction between the proteins. Enhanced Na+ transport as found in the airways of cystic fibrosis patients is probably due to a lack of CFTR dependent downregulation of ENaC.  相似文献   

5.

Background

Hyperactivity of the epithelial sodium (Na+) channel (ENaC) and increased Na+ absorption by airway epithelial cells leading to airway surface liquid dehydration and impaired mucociliary clearance are thought to play an important role in the pathogenesis of cystic fibrosis (CF) pulmonary disease. In airway epithelial cells, ENaC is constitutively activated by endogenous trypsin-like serine proteases such as Channel-Activating Proteases (CAPs). It was recently reported that ENaC activity could also be stimulated by apical treatment with human neutrophil elastase (hNE) in a human airway epithelial cell line, suggesting that hNE inhibition could represent a novel therapeutic approach for CF lung disease. However, whether hNE can also activate Na+ reabsorption in primary human nasal epithelial cells (HNEC) from control or CF patients is currently unknown.

Methods

We evaluated by short-circuit current (Isc) measurements the effects of hNE and EPI-hNE4, a specific hNE inhibitor, on ENaC activity in primary cultures of HNEC obtained from control (9) and CF (4) patients.

Results

Neither hNE nor EPI-hNE4 treatments did modify Isc in control and CF HNEC. Incubation with aprotinin, a Kunitz-type serine protease inhibitor that blocks the activity of endogenous CAPs, decreased Isc by 27.6% and 54% in control and CF HNEC, respectively. In control and CF HNEC pretreated with aprotinin, hNE did significantly stimulate Isc, an effect which was blocked by EPI-hNE4.

Conclusions

These results indicate that hNE does activate ENaC and transepithelial Na+ transport in both normal and CF HNEC, on condition that the activity of endogenous CAPs is first inhibited. The potent inhibitory effect of EPI-hNE4 on hNE-mediated ENaC activation observed in our experiments highlights that the use of EPI-hNE4 could be of interest to reduce ENaC hyperactivity in CF airways.  相似文献   

6.

Background

Cystic fibrosis (CF) respiratory epithelia are characterized by a defect Cl? secretion and an increased Na+ absorption through epithelial Na+ channels (ENaC). The present study aimed to find an effective inhibitor of human ENaC with respect to replacing amiloride therapy for CF patients. Therefore, we developed specific antisense oligonucleotides (AON) that efficiently suppress Na+ hyperabsorption by inhibiting the expression of the α‐ENaC subunit.

Methods

We heterologously expressed ENaC in oocytes of Xenopus laevis for mass screening of AON. Additionally, primary cultures of human nasal epithelia were transfected with AON and were used for Ussing chamber experiments, as well as biochemical and fluorescence optical analyses.

Results

Screening of several AON by co‐injection or sequential microinjection of AON and ENaC mRNA in X. laevis oocytes led to a sustained decrease in amiloride‐sensitive current and conductance. Using primary cultures of human nasal epithelia, we show that AON effectively suppress amiloride‐sensitive Na+ absorption mediated by ENaC in CF and non‐CF tissues. In western blot experiments, it could be shown that the amount of ENaC protein is effectively reduced after AON transfection.

Conclusions

Our data comprise an initial step towards a preclinical test with AON to reduce Na+ hyperabsorption in CF epithelia. Copyright © 2009 John Wiley & Sons, Ltd.
  相似文献   

7.
Airway surface liquid (ASL) absorption is initiated by Na+ entry via epithelial Na+ channels (ENaC), which establishes an osmotic gradient that drives fluid from the luminal to serosal airway surface. We and others have recently reported that a protease/anti-protease balance regulates ENaC in human airway epithelial cells (HAEC) and provides a mechanism for autoregulation of ASL volume. In cystic fibrosis (CF), this balance is disturbed, leading to constitutive proteolytic activation of ENaC and the pathological Na+ hyperabsorption characteristic of this airway disease. Prostasin is a glycosylphosphatidylinositol-anchored serine protease that activates ENaC and is expressed on the surface epithelium lining the airway. In this report we present evidence that prostasin expression is regulated by the ASL volume, allowing for increased proteolytic activation of ENaC when the ASL volume is high. Prostasin activity is further regulated by the cognate serpin protease nexin-1 (PN-1), which is expressed in HAEC and inhibits Na+ absorption by forming an inactive complex with prostasin and preventing the proteolytic processing of prostasin. Whereas these mechanisms regulate prostasin expression in response to ASL volume in non-CF epithelia, HAEC cultured from CF patients express >50% more prostasin on the epithelial surface. These findings suggest that a proteolytic cascade involving prostasin, an upstream prostasin-activating protease, and PN-1 regulate Na+ absorption in the airway and that abnormal prostasin expression contributes to excessive proteolytic activation of ENaC in CF patients.  相似文献   

8.
Pseudomonas aeruginosa is an opportunistic pathogen that significantly contributes to the mortality of patients with cystic fibrosis. Chronic infection by Pseudomonas induces sustained immune and inflammatory responses and damage to the airway. The ability of Pseudomonas to resist host defenses is aided, in part, by secreted proteases, which act as virulence factors in multiple modes of infection. Recent studies suggest that misregulation of protease activity in the cystic fibrosis lung may alter fluid secretion and pathogen clearance by proteolytic activation of the epithelial sodium channel (ENaC). To evaluate the possibility that proteolytic activation of ENaC may contribute to the virulence of Pseudomonas, primary human bronchial epithelial cells were exposed to P. aeruginosa and ENaC function was assessed by short circuit current measurements. Apical treatment with a strain known to express high levels of alkaline protease (AP) resulted in an increase in basal ENaC current and a loss of trypsin-inducible ENaC current, consistent with sustained activation of ENaC. To further characterize this AP-induced ENaC activation, AP was purified, and its folding, activity, and ability to activate ENaC were assessed. AP folding was efficient under pH and calcium conditions thought to exist in the airway surface liquid of normal and cystic fibrosis (CF) lungs. Short circuit measurements of ENaC in polarized monolayers indicated that AP activated ENaC in immortalized cell lines as well as post-transplant, primary human bronchial epithelial cells from both CF and non-CF patients. This activation was mapped to the γ-subunit of ENaC. Based on these data, patho-mechanisms associated with AP in the CF lung are proposed wherein secretion of AP leads to decreased airway surface liquid volume and a corresponding decrease in mucocilliary clearance of pulmonary pathogens.  相似文献   

9.
A balance sheet describing the integrated homeostasis of secretion, absorption, and surface movement of liquids on pulmonary surfaces has remained elusive. It remains unclear whether the alveolus exhibits an intra-alveolar ion/liquid transport physiology or whether it secretes ions/liquid that may communicate with airway surfaces. Studies employing isolated human alveolar type II (AT2) cells were utilized to investigate this question. Human AT2 cells exhibited both epithelial Na+ channel-mediated Na+ absorption and cystic fibrosis transmembrane conductance regulator-mediated Cl secretion, both significantly regulated by extracellular nucleotides. In addition, we observed in normal AT2 cells an absence of cystic fibrosis transmembrane conductance regulator regulation of epithelial Na+ channel activity and an absence of expression/activity of reported calcium-activated chloride channels (TMEM16A, Bestrophin-1, ClC2, and SLC26A9), both features strikingly different from normal airway epithelial cells. Measurements of alveolar surface liquid volume revealed that normal AT2 cells: 1) achieved an extracellular nucleotide concentration-dependent steady state alveolar surface liquid height of ∼4 μm in vitro; 2) absorbed liquid when the lumen was flooded; and 3) secreted liquid when treated with UTP or forskolin or subjected to cyclic compressive stresses mimicking tidal breathing. Collectively, our studies suggest that human AT2 cells in vitro have the capacity to absorb or secrete liquid in response to local alveolar conditions.  相似文献   

10.
Inhibition of epithelial Na+ channels (ENaC) by the cystic fibrosis transmembrane conductance regulator (CFTR) has been demonstrated previously. Recent studies suggested a role of cytosolic Cl for the interaction of CFTR with ENaC, when studied in Xenopus oocytes. In the present study we demonstrate that the Na+/H+-exchanger regulator factor (NHERF) controls expression of CFTR in mouse collecting duct cells. Inhibition of NHERF largely attenuates CFTR expression, which is paralleled by enhanced Ca2+-dependent Cl secretion and augmented Na+ absorption by the ENaC. It is further demonstrated that epithelial Na+ absorption and ENaC are inhibited by cytosolic Cl and that stimulation by secretagogues enhances the intracellular Cl concentration. Thus, the data provide a clue to the question, how epithelial cells can operate as both absorptive and secretory units: Increase in intracellular Cl during activation of secretion will inhibit ENaC and switch epithelial transport from salt absorption to Cl secretion.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

11.
Intracellular [Na+] ([Na+]i) modulates the activity of the epithelial Na channel (ENaC) to help prevent cell swelling and regulate epithelial Na+ transport, but the underlying mechanisms remain unclear. We show here that short-term (60–80 min) incubation of ENaC-expressing oocytes in high Na+ results in a 75% decrease in channel activity. When the β subunit was truncated, corresponding to a gain-of-function mutation found in Liddle's syndrome, the same maneuver reduced activity by 45% despite a larger increase in [Na+]i. In both cases the inhibition occurred with little to no change in cell-surface expression of γENaC. Long-term incubation (18 hours) in high Na+ reduced activity by 92% and 75% in wild-type channels and Liddle's mutant, respectively, with concomitant 70% and 52% decreases in cell-surface γENaC. In the presence of Brefeldin A to inhibit forward protein trafficking, high-Na+ incubation decreased wt ENaC activity by 52% and 88% after 4 and 8 hour incubations, respectively. Cleaved γENaC at the cell surface had lifetimes at the surface of 6 hrs in low Na+ and 4 hrs in high Na+, suggesting that [Na+]i increased the rate of retrieval of cleaved γ ENaC by 50%. This implies that enhanced retrieval of ENaC channels at the cell surface accounts for part, but not all, of the downregulation of ENaC activity shown with chronic increases in [Na+]i.  相似文献   

12.
The epithelial Na+ channel (ENaC) plays a central role in control of epithelial surface hydration and vascular volume. ENaC activity in these epithelia is limiting for sodium reabsorption. Abnormalities in ENaC function have been linked to disorders of total body Na+ homeostasis, blood volume, blood pressure, and lung fluid balance. Recently, ion channels were recognized as physiologically important effectors of small GTP-binding proteins and phosphatidylinositides. We review here recent findings relevant to regulation of ENaC by small G proteins and phosphatidylinositides.  相似文献   

13.
Intracellular [Na+] ([Na+]i) modulates the activity of the epithelial Na channel (ENaC) to help prevent cell swelling and regulate epithelial Na+ transport, but the underlying mechanisms remain unclear. We show here that short-term (60–80 min) incubation of ENaC-expressing oocytes in high Na+ results in a 75% decrease in channel activity. When the β subunit was truncated, corresponding to a gain-of-function mutation found in Liddle''s syndrome, the same maneuver reduced activity by 45% despite a larger increase in [Na+]i. In both cases the inhibition occurred with little to no change in cell-surface expression of γENaC. Long-term incubation (18 hours) in high Na+ reduced activity by 92% and 75% in wild-type channels and Liddle''s mutant, respectively, with concomitant 70% and 52% decreases in cell-surface γENaC. In the presence of Brefeldin A to inhibit forward protein trafficking, high-Na+ incubation decreased wt ENaC activity by 52% and 88% after 4 and 8 hour incubations, respectively. Cleaved γENaC at the cell surface had lifetimes at the surface of 6 hrs in low Na+ and 4 hrs in high Na+, suggesting that [Na+]i increased the rate of retrieval of cleaved γ ENaC by 50%. This implies that enhanced retrieval of ENaC channels at the cell surface accounts for part, but not all, of the downregulation of ENaC activity shown with chronic increases in [Na+]i.  相似文献   

14.
The epithelial Na+ channel (ENaC) functions as a pathway for Na+ absorption in the kidney and lung, where it is crucial for Na+ homeostasis and blood pressure regulation. ENaC is regulated in part through signaling pathways that control the ubiquitination state of ENaC lysines. A defect in ubiquitination causes Liddle syndrome, an inherited form of hypertension. Here we determined that α-, β-, and γENaC are also substrates for lysine acetylation. Trichostatin A (TSA), a histone deacetylase inhibitor, enhanced ENaC acetylation and increased ENaC abundance in the total cell lysate and at the cell surface. Moreover, TSA increased ENaC current in Fischer rat thyroid and kidney collecting duct epithelia. We found that HDAC7 is expressed in the kidney collecting duct, supporting a potential role for this histone deacetylase in ENaC regulation. HDAC7 overexpression reduced ENaC abundance and ENaC current, whereas ENaC abundance and current were increased by silencing of HDAC7. ENaC and HDAC7 form a complex, as detected by coimmunoprecipitation. We observed a reciprocal relationship between acetylation and ubiquitination; TSA reduced ENaC ubiquitination, whereas HDAC7 increased ubiquitination. By reducing ENaC ubiquitination, TSA decreased the rate of ENaC degradation. Thus, acetylation increases epithelial Na+ absorption by antagonizing ENaC ubiquitination. This stabilizes ENaC, and hence, increases its abundance at the cell surface.  相似文献   

15.
Prostasin is a tryptic peptidase expressed in prostate, kidney, lung, and airway. Mammalian prostasins are related to Xenopus channel-activating protease, which stimulates epithelial Na+ channel (ENaC) activity in frogs. In human epithelia, prostasin is one of several membrane peptidases proposed to regulate ENaC. This study tests the hypothesis that prostasin can regulate ENaC in cystic fibrosis epithelia in which excessive Na+ uptake contributes to salt and water imbalance. We show that prostasin mRNA and protein are strongly expressed by human airway epithelial cell lines, including immortalized JME/CF15 nasal epithelial cells homozygous for the DeltaF508 cystic fibrosis mutation. Epithelial cells transfected with vectors encoding recombinant soluble prostasin secrete active, tryptic peptidase that is highly sensitive to inactivation by aprotinin. When studied as monolayers in Ussing chambers, JME/CF15 cells exhibit amiloride-sensitive, transepithelial Na+ currents that are markedly diminished by aprotinin, suggesting regulation by serine-class peptidases. Overproduction of membrane-anchored prostasin in transfected JME/CF15 cells does not augment Na+ currents, and trypsin-induced increases are small, suggesting that baseline serine peptidase-dependent ENaC activation is maximal in these cells. To probe prostasin's involvement in basal ENaC activity, we silenced expression of prostasin using short interfering RNA targeting of prostasin mRNA's 3'-untranslated region. This drops ENaC currents to 26 +/- 9% of baseline. These data predict that prostasin is a major regulator of ENaC-mediated Na+ current in DeltaF508 cystic fibrosis epithelia and suggest that airway prostasin is a target for therapeutic inhibition to normalize ion current in cystic fibrosis airway.  相似文献   

16.
Efficient clearance of mucus and inhaled pathogens from the lung is dependent on an optimal airway surface liquid (ASL) volume, which is maintained by the regulated transport of sodium and chloride across the airway epithelium. Accumulating evidence suggests that impaired mucus clearance in cystic fibrosis (CF) airways is a result of ASL depletion caused by excessive Na(+) absorption through the epithelial sodium channel (ENaC). However, the cellular mechanisms that result in increased ENaC activity in CF airways are not completely understood. Recently, proteases were shown to modulate the activity of ENaC, but the relevance of this mechanism to the physiologic regulation of ASL volume is unknown. Using primary human airway epithelial cells, we demonstrate that: (i) protease inhibitors are present in the ASL and prevent the activation of near-silent ENaC, (ii) when the ASL volume is increased, endogenous protease inhibitors become diluted, allowing for proteolytic activation of near-silent channels, and (iii) in CF, the normally present near-silent pool of ENaC is constitutively active and the alpha subunit undergoes increased proteolytic processing. These findings indicate that the ASL volume modulates the activity of ENaC by modification of the serine protease-protease inhibitor balance and that alterations in this balance contribute to excessive Na(+) absorption in cystic fibrosis.  相似文献   

17.
Proteases perform a diverse array of biological functions. From simple peptide digestion for nutrient absorption to complex signaling cascades, proteases are found in organisms from prokaryotes to humans. In the human airway, proteases are associated with the regulation of the airway surface liquid layer, tissue remodeling, host defense and pathogenic infection and inflammation. A number of proteases are released in the airways under both physiological and pathophysiological states by both the host and invading pathogens. In airway diseases such as cystic fibrosis, proteases have been shown to be associated with increased morbidity and airway disease progression. In this review, we focus on the regulation of proteases and discuss specifically those proteases found in human airways. Attention then shifts to the epithelial sodium channel (ENaC), which is regulated by proteolytic cleavage and that is considered to be an important component of cystic fibrosis disease. Finally, we discuss bacterial proteases, in particular, those of the most prevalent bacterial pathogen found in cystic fibrosis, Pseudomonas aeruginosa.  相似文献   

18.
The epithelial Na+ channel (ENaC) is a major regulator of salt and water reabsorption in a number of epithelial tissues. Abnormalities in ENaC function have been directly linked to several human disease states including Liddle syndrome, psuedohypoaldosteronism, and cystic fibrosis and may be implicated in salt-sensitive hypertension. ENaC activity in epithelial cells is regulated both by open probability and channel number. This review focuses on the regulation of ENaC in the cells of the kidney cortical collecting duct by trafficking and recycling. The trafficking of ENaC is discussed in the broader context of epithelial cell vesicle trafficking. Well-characterized pathways and protein interactions elucidated using epithelial model cells are discussed, and the known overlap with ENaC regulation is highlighted. In following the life of ENaC in CCD epithelial cells the apical delivery, internalization, recycling, and destruction of the channel will be discussed. While a number of pathways presented still need to be linked to ENaC regulation and many details of the regulation of ENaC trafficking remain to be elucidated, knowledge of these mechanisms may provide further insights into ENaC activity in normal and disease states.  相似文献   

19.
Epithelial Na+ channels facilitate the transport of Na+ across high resistance epithelia. Proteolytic cleavage has an important role in regulating the activity of these channels by increasing their open probability. Specific proteases have been shown to activate epithelial Na+ channels by cleaving channel subunits at defined sites within their extracellular domains. This minireview addresses the mechanisms by which proteases activate this channel and the question of why proteolysis has evolved as a mechanism of channel activation.Many ion channels are silent at rest and are activated in response to a variety of factors, including membrane potential, external ligands, and intracellular signaling processes. The ENaC2 has evolved as a channel that is thought to reside primarily in an active state, facilitating the bulk movement of Na+ out of renal tubular or airway lumens. The regulated insertion and retrieval of channels at the plasma membrane have important roles in modulating ENaC-dependent Na+ transport (1). A number of factors also have a role in regulating ENaC activity via changes in channel Po or gating. In this regard, it has become increasingly apparent that proteolysis of ENaC subunits has a key role in this process (2). This minireview addresses several questions regarding the role of ENaC subunit proteolysis in regulating channel gating. (i) Where are ENaC subunits cleaved? (ii) Which proteases mediate ENaC cleavage? (iii) Why are channels activated by proteolysis? (iv) Is proteolysis responsible, in part, for the highly variable channel Po that has been noted for ENaC? (v) Why have ENaCs evolved as channels that require proteolysis for activation?  相似文献   

20.
The genetic disease cystic fibrosis is caused by mutation of the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). Controversial studies reported regulation of the epithelial sodium channel (ENaC) by CFTR. We found that uptake of 22Na+ through ENaC is modulated by activation of CFTR in oocytes, coexpressing CFTR and ENaC, depending on extracellular chloride concentration. Furthermore we found that the effect of CFTR activation could be mimicked by other chloride channels. Voltage– and patch–clamp measurements, however, showed neither stimulation nor inhibition of ENaC-mediated conductance by activated CFTR. We conclude that the observed modulation of 22Na+ uptake by activated CFTR is due to the effect of CFTR-mediated chloride conductance on the membrane potential. These findings argue against the notion of a specific influence of CFTR on ENaC and emphasize the chloride channel function of CFTR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号