首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Changes in membrane lipid composition is a fundamental strategy for plants to resist low-temperature stress. We compared members of 11 membrane glycerolipid classes in Thellungiella salsuginea and its close relative Arabidopsis thaliana at normal growth temperature, and during cold acclimation (CA), freezing (FR), and post-freezing recovery (PFR). The results showed several properties of T. salsuginea distinct from that in A. thaliana, which included: 1) low relative content of phosphatidic acid (PA) and a rapid increase and decrease of PA during FR and PFR respectively; 2) insensitivity of lyso-phospholipids to freezing; and 3) high ratio of phosphatidylcholine to phosphatidylethanolamine. All these properties were in favour of maintaining membrane integrity and stability and therefore enable T. salsuginea to be more tolerant to freezing than A. thaliana.  相似文献   

3.
盐芥ThMSD基因在大肠杆菌中的表达及特性研究   总被引:1,自引:0,他引:1  
超氧化物歧化酶(SODs)是真核生物中广泛存在的含金属抗氧化酶,包括Cu/Zn-SOD、Mn-SOD和Fe-SOD 3种.植物线粒体中的Mn-SOD在植物抗逆中发挥重要作用.ThMSD是前期工作中从极度抗逆植物盐芥中克隆到的Mn-SOD编码基因.将ThMSD连接到原核表达载体pET30a(+),转化到BL21,获得重组菌BL21(pET30a-ThMSD).SDS-PAGE分析表明,重组菌在32kDa处有明显的诱导条带,与理论大小一致.Western blotting分析表明,诱导的条带能和抗His标签的单克隆抗体发生特异性反应.对3个重组子的可溶性全蛋白进行SOD活性分析,发现均高于空白对照菌.选择能大量表达ThMSD的重组子进行大量诱导表达,通过镍亲和层析纯化目的蛋白.对纯化的ThMSD重组蛋白进行热稳定性分析,结果表明,55℃下ThMSD仍有50%以上活性,42℃处理40 min后仍保持60%以上活性.在重组菌BL21(pET30a-ThMSD)对NaCl的抗性分析实验中,当培养基中盐浓度高于正常值时,在所测定阶段重组菌的生长速度均高于对照菌.可见,经原核表达的重组蛋白ThMSD具有较强的SOD活性及热稳定性,表达ThMSD基因的BL21菌株提高了对NaCl的耐受力.推测盐芥ThMSD基因与盐芥极强的抗逆性有密切联系.  相似文献   

4.
The metabolite profiles of the model crucifer Thellungiella salsuginea (salt cress) ecotype Shandong subjected to various biotic and abiotic stresses were analyzed using HPLC-DAD-ESI-MS. Two different cruciferous microbial pathogens, Albugo candida, a biotrophic oomycete, and Leptosphaeria maculans, a necrotrophic fungus, elicited formation of the phytoalexins wasalexins A and B without causing visual damage on inoculated leaves. Analyses of non-polar and polar metabolites led to elucidation of the chemical structures of five metabolites: 4′-O-(E)-sinapoyl-7-methoxyisovitexin-2″-O-β-d-glucopyranoside, 4′-O-(E)-sinapoylisovitexin-2″-O-β-d-glucopyranoside, 4-O-β-d-glucopyranosyl-7-hydroxymatairesinol, 5′-O-β-d-glucopyranosyldihydroneoascorbigen and 3-O-β-d-glucopyranosylthiane. 3-O-β-d-glucopyranosylthiane, an unique metabolite for which we suggest the name glucosalsuginin, is proposed to derive from the glucosinolate glucoberteroin. In addition, the identification of a broad range of polar metabolites identical to those of other crucifers was carried out. Quantification of several metabolites over a period of eight days showed that concentrations of the polar phytoanticipin 4-methoxyglucobrassicin increased substantially in leaves irradiated with UV light (λmax 254 nm) relative to control leaves, but not in leaves subjected to other stresses.  相似文献   

5.
6.
7.
Proline accumulation is one of the most common responses of plants to environmental constraints. Thellungiella halophila/salsuginea, a model halophyte, accumulates high levels of proline in response to abiotic stress and in the absence of stress. Recently, lipid signaling pathways have been shown to be involved in the regulation of proline metabolism in Arabidopsis thaliana. Here we investigated the relationship between lipid signaling enzymes and the level of proline in T. salsuginea. Inhibition of phospholipase C (PLC) enzymes by the specific inhibitor U73122 demonstrated that proline accumulation is negatively controlled by PLCs in the absence of stress and under moderate salt stress (200 mM NaCl). The use of 1-butanol to divert some of the phospholipase D (PLD)-derived phosphatidic acid by transphosphatidylation revealed that PLDs exert a positive control on proline accumulation under severe stress (400 mM NaCl or 400 mM mannitol) but have no effect on its accumulation in non-stress conditions. This experimental evidence shows that positive and negative lipid regulatory components are involved in the fine regulation of proline metabolism. These signaling pathways in T. salsuginea are regulated in the opposite sense to those previously described in A. thaliana, revealing that common signaling components affect the physiology of closely related glycophyte and salt-tolerant plants differently.  相似文献   

8.
小盐芥营养器官的结构特点与其盐渍环境的关系研究   总被引:4,自引:0,他引:4  
利用石蜡切片法研究了盐生植物小盐芥(Thellungiella halophila)营养器官的解剖结构。结果表明:小盐芥根的初生结构中表皮细胞为1层,且细胞大而高度液泡化,根毛数量较少;皮层仅由外皮层和内皮层2层细胞构成,细胞大,排列紧密;根次生维管组织发达。茎的初生结构中外剀维管束8~10束,大小不等,呈一轮排列;髓和髓射线发达;茎次生结构中维管组织也很发达。根和茎的这些结构特点提高了植物体吸收、运输水分的能力,而且根的特殊结构和输导系统将盐分限制在根内,适应于盐渍环境所造成的渗透胁迫和干旱胁迫。小盐芥叶片较小,上、下表皮细胞各1层,细胞大而高度液泡化,叶肉中栅栏组织与海绵组织分化不明显,但叶绿体体积大、数目多,细胞间隙较大,通气性能好,光合效率高。这些特点对其适应干旱盐渍环境有重要意义。小盐芥上述结构特征与典型真盐生植物、旱生植物相去其远,其营养器官内也无盐腺、囊泡等泌盐结构。由此推论,小盐芥更倾向于似盐生植物(拒盐植物)。  相似文献   

9.
10.
11.
12.
利用实时定量PCR的方法分析了tsa-mi R396在盐芥不同组织的表达情况及盐、冷胁迫下的表达量变化,结果显示tsami R396在盐芥的不同组织均有表达,且在盐芥幼苗受盐、冷胁迫处理2 h后其表达量明显上升,随后呈波动性变化。利用在线软件ps RNATarget预测到25个tsa-mi R396的靶基因并进行功能分类。成功克隆tsa-mi R396前体,并利用Mfold在线软件分析该前体能够折叠形成茎环结构。  相似文献   

13.
Plants are able to acclimate to their growth light environments by utilizing a number of short- and long-term mechanisms. One strategy is to prevent accumulation of excess reactive oxygen species that can lead to photoinhibition of photosynthesis. Ureides, generated from purine degradation, have been proposed as antioxidants and involved in certain abiotic stress responses. Eutrema salsugineum (Thellungiella salsuginea) is an extremophilic plant known to exhibit a high degree of tolerance to a variety of abiotic stresses that invariably generate reactive oxygen species. In the present study we have investigated the possible role of the ureide metabolic pathway during acclimation to growth irradiance and its conference of tolerance to photoinhibition in Eutrema. Ureide accumulation was greater under high light growth which also conferred tolerance to photoinhibition at low temperature as measured by the maximal quantum yield of PSII photochemistry. This may represent an adaptive plastic response contributing to the extreme tolerance exhibited by this plant. Our results would provide evidence that ureide accumulation may be involved in abiotic stress as another defence mechanism in response to oxidative stress.  相似文献   

14.
L Pei  J Wang  K Li  Y Li  B Li  F Gao  A Yang 《PloS one》2012,7(8):e43501
Low phosphate availability is a major constraint on plant growth and agricultural productivity. Engineering a crop with enhanced low phosphate tolerance by transgenic technique could be one way of alleviating agricultural losses due to phosphate deficiency. In this study, we reported that transgenic maize plants that overexpressed the Thellungiella halophila vacuolar H(+)-pyrophosphatase gene (TsVP) were more tolerant to phosphate deficit stress than the wild type. Under phosphate sufficient conditions, transgenic plants showed more vigorous root growth than the wild type. When phosphate deficit stress was imposed, they also developed more robust root systems than the wild type, this advantage facilitated phosphate uptake, which meant that transgenic plants accumulated more phosphorus. So the growth and development in the transgenic maize plants were not damaged as much as in the wild type plants under phosphate limitation. Overexpression of TsVP increased the expression of genes involved in auxin transport, which indicated that the development of larger root systems in transgenic plants might be due in part to enhanced auxin transport which controls developmental events in plants. Moreover, transgenic plants showed less reproductive development retardation and a higher grain yield per plant than the wild type plants when grown in a low phosphate soil. The phenotypes of transgenic maize plants suggested that the overexpression of TsVP led to larger root systems that allowed transgenic maize plants to take up more phosphate, which led to less injury and better performance than the wild type under phosphate deficiency conditions. This study describes a feasible strategy for improving low phosphate tolerance in maize and reducing agricultural losses caused by phosphate deficit stress.  相似文献   

15.
Abstract

In this paper, we re-annotated the genome of Pyrobaculum aerophilum str. IM2, particularly for hypothetical ORFs. The annotation process includes three parts. Firstly and most importantly, 23 new genes, which were missed in the original annotation, are found by combining similarity search and the ab initio gene finding approaches. Among these new genes, five have significant similarities with function-known genes and the rest have significant similarities with hypothetical ORFs contained in other genomes. Secondly, the coding potentials of the 1645 hypothetical ORFs are re-predicted by using 33 Z curve variables combined with Fisher linear discrimination method. With the accuracy being 99.68%, 25 originally annotated hypothetical ORFs are recognized as non-coding by our method. Thirdly, 80 hypothetical ORFs are assigned with potential functions by using similarity search with BLAST program. Re-annotation of the genome will benefit related researches on this hyperthermophilic crenarchaeon. Also, the re-annotation procedure could be taken as a reference for other archaeal genomes. Details of the revised annotation are freely available at http://cobi.uestc.edu.cn/resource/paero/  相似文献   

16.
In order to find some basis of salinity resistance in the chloroplastic metabolism, a halophytic Thellungiella salsuginea was compared with glycophytic Arabidopsis thaliana. In control T.s. plants the increased ratios of chlorophyll a/b and of fluorescence emission at 77 K (F730/F685) were documented, in comparison to A.t.. This was accompanied by a higher YII and lower NPQ (non‐photochemical quenching) values, and by a more active PSI (photosystem I). Another prominent feature of the photosynthetic electron transport (PET) in T.s. was the intensive production of H2O2 from PQ (plastoquinone) pool. Salinity treatment (0.15 and 0.30 M NaCl for A.t. and T.s., respectively) led to a decrease in ratios of chl a/b and F730/F685. In A.t., a salinity‐driven enhancement of YII and NPQ was found, in association with the stimulation of H2O2 production from PQ pool. In contrast, in salinity‐treated T.s., these variables were similar as in controls. The intensive H2O2 generation was accompanied by a high activity of PTOX (plastid terminal oxidase), whilst inhibition of this enzyme led to an increased H2O2 formation. It is hypothesized, that the intensive H2O2 generation from PQ pool might be an important element of stress preparedness in Thellungiella plants. In control T.s. plants, a higher activation state of carboxylase ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) was also documented in concert with the attachment of Rubisco activase (RCA) to the thylakoid membranes. It is supposed, that a closer contact of RCA with PSI in T.s. enables a more efficient Rubisco activation than in A.t.  相似文献   

17.
18.
Pedras MS  Adio AM 《Phytochemistry》2008,69(4):889-893
Investigation of phytoalexin production using abiotic elicitation showed that the phytoalexin rapalexin A was produced by both Thellungiella halophila and Arabidopsis thaliana, but while A. thaliana produced camalexin, T. halophila produced wasalexins A and B and methoxybrassenin B. Considering that the genome of T. halophila is being sequenced currently and that the wasalexin pathway present in T. halophila is expected to involve a number of genes also present in Brassica species, our discovery should facilitate the isolation of genes involved in biosynthetic pathways of phytoalexins of the most economically important crucifer species.  相似文献   

19.
Four genes encoding cold shock domain (CSD) proteins have been identified in salt cress [Thellungiella salsuginea (halophila), an extremophyte currently recognized as a promising model for studying stress tolerance]. The deduced proteins prove highly homologous to those of Arabidopsis thaliana (up to 95% identity) and are accordingly enumerated TsCSDP1-TsCSDP4; after the N-proximal conserved CSD, they have respectively 6, 2, 7, and 2 zinc finger motifs evenly spaced by Gly-rich stretches. Much lower similarity (approximately 45%) is observed in the regions upstream of TATA-box promoters of TsCSDP1 vs. AtCSP1, with numerous distinctions in the sets of identifiable cis-regulatory elements. Plasmid expression of sCSDP1 rescues a cold-sensitive cup-lacking mutant of Escherichia coli, confirming that the protein is functional. In leaves of salt cress plants under normal conditions, the mRNA levels for the four TsCSDPs relate as 10: 27: 1: 31. Chilling to 4 degrees C markedly alters the gene expression; the 4-day dynamics are different for all four genes and quite dissimilar from those reported for their Arabidopsis homologues under comparable conditions. Thus, the much greater cold hardiness of Thellungiella vs. Arabidopsis cannot be explained by structural distinctions of its CSDPs, but rather may be due to expedient regulation of their expression at low temperature.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号