首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mycobacterium avium comprises genetically related yet phenotypically distinct subspecies. Consistent with their common origin, whole-genome sequence comparisons have revealed extensive synteny among M. avium organisms. However, the sequenced strains also display numerous regions of heterogeneity that likely contribute to the diversity of the individual subspecies. Starting from a phylogenetic framework derived by multilocus sequence analysis, we examined the distribution of 25 large sequence polymorphisms across a panel of genetically defined M. avium strains. This distribution was most variable among M. avium subsp. hominissuis isolates. In contrast, M. avium subsp. paratuberculosis strains exhibited a characteristic profile, with all isolates containing a set of genomic insertions absent from other M. avium strains. The emergence of the pathogen from its putative M. avium subsp. hominissuis ancestor entailed the acquisition of approximately 125 kb of novel genetic material, followed by a second phase, characterized by reductive genomics. One genomic deletion is common to all isolates while additional deletions distinguish two major lineages of M. avium subsp. paratuberculosis. For the average strain, these losses total at least 38 kb (sheep lineage) to 90 kb (cattle lineage). This biphasic pattern of evolution, characterized by chromosomal gene acquisition with subsequent gene loss, describes the emergence of M. avium subsp. paratuberculosis and may serve as a general model for the origin of pathogenic mycobacteria.Mycobacterium avium organisms are nontuberculous mycobacteria prevalent in environmental and clinical settings. M. avium infections result in diverse diseases, including avian tuberculosis, Johne''s disease, and Lady Windermere''s syndrome. Isolates are phenotypically different and were historically classified as separate species. However, current taxonomy, based on molecular analyses, recognizes a single species, M. avium, which is divided into distinct subgroups (21, 22).At present, M. avium subsp. hominissuis denotes environmental organisms associated with opportunistic infections in humans and swine (13, 23). M. avium subsp. avium is the classical agent of tuberculosis in birds and, along with M. avium subsp. silvaticum, represents a distinct lineage of bird pathogens (22). M. avium subsp. paratuberculosis causes Johne''s disease (Paratuberculosis), a chronic granulomatous intestinal disease (5). Although primarily associated with livestock, the bacterium may infect a wide range of mammalian hosts. A number of studies, using molecular testing for the M. avium subsp. paratuberculosis-specific insertion element IS900, have found an association between the presence of M. avium subsp. paratuberculosis and Crohn''s disease in humans (1, 9).Previous studies, including bigenomic comparisons of the sequenced strains M. avium subsp. hominissuis 104 and M. avium subsp. paratuberculosis K-10 (11), have revealed inter- and intrasubspecies differences (6, 12, 15, 16, 18, 19, 26). The phenotypic heterogeneity of M. avium strains may stem from genomic differences, but in the absence of a phylogenetic framework it has been difficult to define the key variations associated with the emergence of an individual subspecies. Recently, we proposed a phylogeny for M. avium based on multilocus sequence analysis (MLSA) of 10 genes and 56 M. avium isolates. This phylogeny is consistent with the current taxonomy and indicates that M. avium subsp. paratuberculosis is a distinct, clonal lineage of M. avium (22). To better understand the evolution of this subspecies, we have now examined the distribution of large sequence polymorphisms among a genetically defined panel of M. avium strains. Our findings reveal a characteristic genomic profile for M. avium subsp. paratuberculosis and provide insight into the biphasic evolution of this successful pathogen.  相似文献   

2.
Attachment of Mycobacterium avium subsp. paratuberculosis to soil particles could increase their availability to farm animals, as well as influence the transportation of M. avium subsp. paratuberculosis to water sources. To investigate the possibility of such attachment, we passed a known quantity of M. avium subsp. paratuberculosis through chromatography columns packed with clay soil, sandy soil, pure silica, clay-silica mixture, or clay-silica complexes and measured the organisms recovered in the eluent using culture or quantitative PCR. Experiments were repeated using buffer at a range of pH levels with pure silica to investigate the effect of pH on M. avium subsp. paratuberculosis attachment. Linear mixed-model analyses were conducted to compare the proportional recovery of M. avium subsp. paratuberculosis in the eluent between different substrates and pH levels. Of the organisms added to the columns, 83 to 100% were estimated to be retained in the columns after adjustment for those retained in empty control columns. The proportions recovered were significantly different across different substrates, with the retention being significantly greater (P < 0.05) in pure substrates (silica and clay-silica complexes) than in soil substrates (clay soil and sandy soil). However, there were no significant differences in the retention of M. avium subsp. paratuberculosis between silica and clay-silica complexes or between clay soil and sandy soil. The proportion retained decreased with increasing pH in one of the experiments, indicating greater adsorption of M. avium subsp. paratuberculosis to soil particles at an acidic pH (P < 0.05). The results suggest that under experimental conditions M. avium subsp. paratuberculosis adsorbs to a range of soil particles, and this attachment is influenced by soil pH.Mycobacterium avium subsp. paratuberculosis is a pathogen of great significance for livestock since it causes a fatal and economically important disease called paratuberculosis or Johne''s disease (JD). The significance of M. avium subsp. paratuberculosis has further increased due to speculation over its role in the causation of Crohn''s disease in humans (10). Although reports trying to establish a causative association between M. avium subsp. paratuberculosis and Crohn''s disease are conflicting and inconclusive, they have aroused concerns among public health authorities (13); therefore, greater attention is now being paid to understand the natural ecology of M. avium subsp. paratuberculosis (32, 34). We investigated a largely unexplored aspect of the natural ecology of M. avium subsp. paratuberculosis: its attachment to soil particles, which could influence its availability to farm animals and humans (see below).Bacteria can become loosely associated with clay or soil particles through reversible adsorption mediated by electrostatic and van der Waals'' forces or by cell surface hydrophobicity (20). An irreversible firm attachment may later occur usually mediated by extracellular bridging polymers (8). The attachment of microbiota such as Escherichia coli, Arthrobacter spp., and poliovirus to soil or clay particles has been reported previously (2, 3, 11, 22, 26), but there is only indirect evidence of the association of mycobacteria with soil particles. A study reported the recovery of only 3.5% of nontuberculous mycobacteria inoculated into soil samples and attributed this to their adsorption to clay particles (5). Later, a similar phenomenon was inferred for M. avium subsp. paratuberculosis because 99% of these organisms in feces could not be detected upon culture of feces mixed with soil, suggesting the binding of M. avium subsp. paratuberculosis to soil particles (33). An association between M. avium subsp. paratuberculosis and clay particles was also suggested by an epidemiological study conducted to investigate the risk factors for ovine JD, indicating the possibility of bacterial attachment to clay particles (6).M. avium subsp. paratuberculosis is transmitted primarily by the feco-oral route. Infected animals shed huge numbers of M. avium subsp. paratuberculosis in their feces (29, 35), thus contaminating soil and the farm environment. The ability of M. avium subsp. paratuberculosis to survive for extended periods in an external environment, in spite of it being an obligate parasite (32, 34), facilitates the build-up of soil and pasture contamination levels over time. The attachment of M. avium subsp. paratuberculosis to soil particles could help retain the bacteria in the upper layers of the soil, thus further enhancing contamination levels. The contaminated farm environment thus becomes a potential source of infection for farm animals because grazing ruminants normally consume soil with pasture, and the amounts can be substantial, up to 300 or more grams per day for sheep (9, 21).In addition, runoff from contaminated farm soils can contaminate water bodies (23), which can be a potential health hazard for humans because the routine chlorine disinfection of water is not able to eliminate M. avium subsp. paratuberculosis completely (28). The transportation of bacteria from the farm environment to water sources is influenced by their attachment to soil or clay particles (11, 12). Generally, bacterial adsorption to soil particles decreases the rate of transportation through soil (3), but it also helps retain bacteria in the top surface layers of the soil, thus increasing the possibility of the contamination of runoff water (24). Note that soil particles can be dislodged and moved by wind, water, and mechanical factors.The aim of the present study was to verify whether M. avium subsp. paratuberculosis attaches to clay and other soil particles and whether this attachment is influenced by soil pH. The study findings improve our knowledge and understanding of the natural ecology of M. avium subsp. paratuberculosis.  相似文献   

3.
4.
In order to introduce specificity for Mycobacterium avium subsp. paratuberculosis prior to a phage amplification assay, various magnetic-separation approaches, involving either antibodies or peptides, were evaluated in terms of the efficiency of capture (expressed as a percentage) of M. avium subsp. paratuberculosis cells and the percentage of nonspecific binding by other Mycobacterium spp. A 50:50 mixture of MyOne Tosylactivated Dynabeads coated with the chemically synthesized M. avium subsp. paratuberculosis-specific peptides biotinylated aMp3 and biotinylated aMptD (i.e., peptide-mediated magnetic separation [PMS]) proved to be the best magnetic-separation approach for achieving 85 to 100% capture of M. avium subsp. paratuberculosis and minimal (<1%) nonspecific recovery of other Mycobacterium spp. (particularly if beads were blocked with 1% skim milk before use) from broth samples containing 103 to 104 CFU/ml. When PMS was coupled with a recently optimized phage amplification assay and used to detect M. avium subsp. paratuberculosis in 50-ml volumes of spiked milk, the mean 50% limit of detection (LOD50) was 14.4 PFU/50 ml of milk (equivalent to 0.3 PFU/ml). This PMS-phage assay represents a novel, rapid method for the detection and enumeration of viable M. avium subsp. paratuberculosis organisms in milk, and potentially other sample matrices, with results available within 48 h.The prospect of being able to detect viable Mycobacterium avium subsp. paratuberculosis organisms in food or veterinary samples within 48 h using a commercially available phage amplification assay (FASTPlaqueTB assay; Biotec Laboratories Limited, Ipswich, United Kingdom), rather than waiting weeks for conventional culture results, is an exciting recent development (7, 8, 26). However, the mycobacteriophage used in the phage amplification assay has a broader mycobacterial host range than M. avium subsp. paratuberculosis alone (23). Consequently, plaques obtained when naturally infected, rather than artificially spiked, samples are tested may not necessarily emanate from M. avium subsp. paratuberculosis alone if other Mycobacterium spp. are also present in the sample. Some additional selective step prior to phage infection, such as magnetic separation (12), is needed to introduce selectivity for M. avium subsp. paratuberculosis.Magnetic separation (MS) has become a routine method in food and veterinary microbiology laboratories and is commonly used in combination with culture or molecular methods for the detection and isolation of pathogenic bacteria such as Listeria monocytogenes (13, 31), Salmonella spp. (22, 25), and Escherichia coli O157:H7 in both the food (15) and veterinary (20) clinical sample testing context. Magnetic-separation methods selectively separate the target bacterium from other, nontarget microorganisms and inhibitory sample components while concentrating the target bacterial cells into a smaller volume. Collectively, these properties of magnetic separation enhance the analytical specificity and sensitivity of the subsequent detection method, which can be culture, PCR, microscopy, an antigen detection immunoassay, or a phage assay. The latter is our proposed endpoint detection method. The combination of phage amplification and MS is not a new concept. Immunomagnetic (IMS)-phage assays for Salmonella enterica serovar Enteritidis and Escherichia coli O157:H7 have been described previously (5, 6).The original IMS approach for M. avium subsp. paratuberculosis, employing a polyclonal anti-M. avium subsp. paratuberculosis antibody, was described by Grant et al. (9). This IMS approach showed good detection specificity for M. avium subsp. paratuberculosis as well as high detection sensitivity, because it was able to recover ≤10 CFU/ml directly from both spiked broth and milk. Its subsequent use in combination with IS900 PCR enhanced the speed of detection of M. avium subsp. paratuberculosis (10), and IMS-PCR was able to detect as few as 103 CFU/50 ml, 1 to 2 log10 units lower than the number detected by IS900 PCR applied directly to milk. However, our experience of using this and another polyclonal-antibody-based IMS method (Pathatrix PM-50 beads; Matrix Microscience, Newmarket, England) in conjunction with culture on Herrold''s egg yolk medium for the isolation of M. avium subsp. paratuberculosis from mixed-broth cultures from milk (unpublished data) and from raw-milk cheeses (27) has been that these polyclonal-antibody-based IMS methods lack sufficient specificity for M. avium subsp. paratuberculosis, and that consequently, nontarget bacteria, which bind nonspecifically to the beads, often overgrow this bacterium in culture. With other food-borne pathogens, an appropriate selective culture medium can be employed after IMS to prevent the outgrowth of any nontarget bacteria. Unfortunately, no truly selective culture medium exists for M. avium subsp. paratuberculosis at present, so specificity for this bacterium via magnetic separation must be achieved by optimizing the types of bead and capture ligands used.A monoclonal-antibody-based IMS method for M. avium subsp. paratuberculosis was reported by Metzger-Boddien et al. (17). Other groups have been attempting to produce monoclonal antibodies for application in IMS (3, 4). However, as an alternative to either polyclonal or monoclonal antibodies for the capture of M. avium subsp. paratuberculosis, new magnetic-separation approaches involving an M. avium subsp. paratuberculosis-specific peptide, aMp3 (30) or aMptD (28), have been described (i.e., peptide-mediated magnetic separation [PMS]). The first peptide (aMp3) was screened from nine recombinant bacteriophages specifically binding M. avium subsp. paratuberculosis that were produced using a commercially available phage-peptide display library (30). The second peptide, aMptD, was identified by biopanning of the M. avium subsp. paratuberculosis-specific ABC transponder operon (mpt) (29). The two chemically synthesized peptides, aMp3 and aMptD, were linked via carbodiimide to paramagnetic beads and were used in peptide-based capture PCR. Both PMS methods were reported to have high selectivity for M. avium subsp. paratuberculosis (i.e., no cross-reaction with other Mycobacterium spp.), and the analytical detection sensitivity, 5 ×102 CFU per ml (28), was comparable to the results previously reported by Grant et al. (10).As with other pathogenic bacteria that are likely to be present in raw milk, low numbers of viable M. avium subsp. paratuberculosis organisms are expected to be encountered in milk and dairy products (2, 11, 24). For other food-borne pathogens, such as Listeria monocytogenes (31), Salmonella spp. (22), and Escherichia coli O157:H7 (15), magnetic separation is generally applied after an enrichment culture step. This enrichment culture step aims to dilute food components known to be growth/PCR inhibitors, revive stressed or injured cells, and boost the numbers of the target bacterium (18, 21), so that magnetic separation and subsequent detection are likely to be more successful. Unfortunately, a prior enrichment culture step is impractical for M. avium subsp. paratuberculosis, since it would take too long, due to the slow-growing nature of this bacterium; thus, MS really needs to be applied directly to the sample. Consequently, any IMS or PMS method for M. avium subsp. paratuberculosis must achieve close to 100% capture efficiency, with minimal nonspecific binding by other mycobacteria, to limit false-negative or false-positive results. Capture efficiency is a measure of the completeness of capture of the original population of target cells present in the sample. Analytical specificity refers to the ability of an assay to measure one particular organism or substance, rather than others, in a sample (19). Therefore, the objectives of this study were (i) to identify the best magnetic-separation approach for the isolation of M. avium subsp. paratuberculosis from milk, in terms of capture efficiency and the percentage of nonspecific binding, by comparing as many paramagnetic-bead-coating antigen combinations as possible and (ii) to evaluate the potential use of the best magnetic-separation approach in conjunction with the previously optimized phage assay (7) as a novel IMS- or PMS-phage assay for the detection of M. avium subsp. paratuberculosis in milk.  相似文献   

5.
It has been suggested that Mycobacterium avium subspecies paratuberculosis has a role in Crohn''s disease. The organism may be acquired but is difficult to culture from the environment. We describe a quantitative PCR (qPCR) method to detect M. avium subsp. paratuberculosis in drinking water and the results of its application to drinking water and faucet biofilm samples collected in the United States.Mycobacterium avium subspecies paratuberculosis is a member of the Mycobacterium avium complex. M. avium subsp. paratuberculosis causes Johne''s disease in bovine and ovine animals and has been hypothetically linked to Crohn''s disease in humans. Several review articles have been written describing the association between M. avium subsp. paratuberculosis and Crohn''s disease (1, 2, 10, 11, 16, 23). Most mycobacterial infections are acquired from the environment; however, M. avium subsp. paratuberculosis can elude laboratory culture from environmental samples (28). M. avium subsp. paratuberculosis has been cultured only once from drinking water in the United States; therefore, its occurrence in drinking water is unknown (17). There are several reasons one could expect to find M. avium subsp. paratuberculosis in drinking water. The bacterium has been isolated from surface water used as a source of drinking water (19, 20, 24, 26). It is resistant to chlorine disinfection (25). Also, other subspecies of M. avium have been detected in biofilms obtained from drinking water pipes in the United States (8, 22, 27).Due to the potential for waterborne transmission of mycobacteria and the association of M. avium subsp. paratuberculosis with human illness, the focus of this study was to estimate the organism''s occurrence in drinking water in the United States using quantitative PCR (qPCR) (15). A comprehensive method was developed for detection of M. avium subsp. paratuberculosis in drinking water and biofilms that includes the concentration of microorganisms from samples using membrane filtration, total DNA extraction and purification, and detection of two targets unique to this bacterium: IS900 and target 251. IS900 is a common target used to identify M. avium subsp. paratuberculosis, and the average number of copies per genome is 14 to 18 (13). Target 251 qPCR analysis, which corresponds to the M. avium subsp. paratuberculosis gene 2765c (David Alexander, personal communication), was developed by Rajeev et al. (21). Samples positive for both targets are considered positive for M. avium subsp. paratuberculosis. TaqMan primer and probe sequences and qPCR assay characteristics are described in Table Table1.1. The complete method is described in Fig. S1 in the supplemental material.

TABLE 1.

qPCR assay primers, probes, DNA targets, and assay characteristicsa
DNA targetPrimer or probe (sequence, 5′→3′)Product (bp)
Reference
LODbLOQc
IS900IS900F (CCGCTAATTGAGAGATGCGATTGG)2301.81.813
IS900R (ATTCAACTCCAGCAGCGCGGCCTC)
IS900P (6-FAM-TCCACGCCCGCCCAGACAGG-TAMRA)
Target 251251F (GCAAGACGTTCATGGGAACT)200NDND21
251R (GCGTAACTCAGCGAACAACA)
251P (6-FAM-CTGACTTCACGATGCGGTTCTTC-TAMRA)
Open in a separate windowaFAM, 6-carboxyfluorescein; TAMRA, 6-carboxytetramethylrhodamine; ND, not determined.bThe limit of detection (LOD) of the IS900 qPCR assay was defined as the lowest copy number resulting in a CT of <40, determined from six independent dilution series.cThe limit of quantification (LOQ) was defined as the lowest copy number per assay yielding a coefficient of variation (CV) of less than 25% (33).A master standard curve was generated from six series of 10-fold dilutions of genomic DNA from M. avium subsp. paratuberculosis strain 49164 for quantification of IS900 target copies (see Fig. S2A in the supplemental material). Each dilution series contained eight standards run in triplicate for a total of 18 threshold cycle (CT) measurements per standard. A linear regression was performed on CT versus log IS900 copy number and R2 was 0.997. The standard error of y was used to create two equations to estimate the upper and lower concentration, or range, of M. avium subsp. paratuberculosis IS900 copy number.The specificities of the IS900 and target 251 primer/probe sets were evaluated by Rajeev et al. (21) on 211 M. avium subsp. paratuberculosis and 38 non-M. avium subsp. paratuberculosis isolates, and each assay was 100% specific for M. avium subsp. paratuberculosis. We further evaluated specificity using 22 M. avium subsp. paratuberculosis isolates from animals and 10 non-M. avium subsp. paratuberculosis ATCC reference strains (see Table S1 in the supplemental material) (18). Target 251 was 100% specific; however, one M. avium subsp. paratuberculosis isolate (3063) repeatedly produced a negative result by IS900 qPCR. Results suggest that a small subset of M. avium subsp. paratuberculosis isolates may not contain the IS900 element or may have a sequence that differs from that of the IS900 primer/probe set.The sensitivity of the method for detection of M. avium subsp. paratuberculosis in different drinking water matrices was evaluated by spiking serial dilutions of strain 1112 cells, ranging from 104 cells to no addition of cells, into 1-liter tap water samples obtained from five locations in the United States. The number of M. avium subsp. paratuberculosis cell equivalents was estimated by dividing the IS900 copy number obtained from the master standard curve by 18 (mean, 18 IS900 copies/M. avium subsp. paratuberculosis genome). The method provided consistent detection (5/5 samples) in a spiked sample of 100 cells/liter. In a spiked sample of 10 cells/liter, the IS900 target was detected 40% (2/5 samples) of the time, and at 1 cell/liter we did not detect the target in any spiked sample. Percent recovery was variable and decreased as the number of spiked cells decreased (Fig. (Fig.1).1). At a spike level of 1 × 104 cells/liter, the average percent recovery was 64%; this decreased to 9.2% at 1 × 102 cells/liter. Cell surface hydrophobicity, a property of mycobacteria, may have influenced clumping of the spiked sample or partitioning of M. avium subsp. paratuberculosis onto the sample bottle or filtration unit, affecting recovery of the bacterium (3).Open in a separate windowFIG. 1.Average percent recovery of M. avium subsp. paratuberculosis spiked into drinking water collected from five sites in the United States. Error bars denote standard deviation. MAP, M. avium subsp. paratuberculosis.  相似文献   

6.
Thermal inactivation experiments were carried out to assess the utility of a recently optimized phage amplification assay to accurately enumerate viable Mycobacterium avium subsp. paratuberculosis cells in milk. Ultra-heat-treated (UHT) whole milk was spiked with large numbers of M. avium subsp. paratuberculosis organisms (106 to 107 CFU/ml) and dispensed in 100-μl aliquots in thin-walled 200-μl PCR tubes. A Primus 96 advanced thermal cycler (Peqlab, Erlangen, Germany) was used to achieve the following time and temperature treatments: (i) 63°C for 3, 6, and 9 min; (ii) 68°C for 20, 40, and 60 s; and (iii) 72°C for 5, 10, 15, and 25 s. After thermal stress, the number of surviving M. avium subsp. paratuberculosis cells was assessed by both phage amplification assay and culture on Herrold''s egg yolk medium (HEYM). A high correlation between PFU/ml and CFU/ml counts was observed for both unheated (r2 = 0.943) and heated (r2 = 0.971) M. avium subsp. paratuberculosis cells. D and z values obtained using the two types of counts were not significantly different (P > 0.05). The D68°C, mean D63°C, and D72°C for four M. avium subsp. paratuberculosis strains were 81.8, 9.8, and 4.2 s, respectively, yielding a mean z value of 6.9°C. Complete inactivation of 106 to 107 CFU of M. avium subsp. paratuberculosis/ml milk was not observed for any of the time-temperature combinations studied; 5.2- to 6.6-log10 reductions in numbers were achieved depending on the temperature and time. Nonlinear thermal inactivation kinetics were consistently observed for this bacterium. This study confirms that the optimized phage assay can be employed in place of conventional culture on HEYM to speed up the acquisition of results (48 h instead of a minimum of 6 weeks) for inactivation experiments involving M. avium subsp. paratuberculosis-spiked samples.Due to the possible association of Mycobacterium avium subsp. paratuberculosis, the causative agent of Johne''s disease in cattle, with Crohn''s disease in humans, the consumption of milk and dairy products contaminated with this pathogenic bacterium has been suggested as a possible source of infection for humans (18). So far, the presence of viable M. avium subsp. paratuberculosis cells has been reported for pasteurized cows'' milk (6, 14, 23) and various cheeses (1, 4, 19). However, the rapid detection of viable M. avium subsp. paratuberculosis cells in food remains problematic. Culture is considered the gold standard method of demonstrating the viability of M. avium subsp. paratuberculosis cells, yet this approach is far from perfect and is not really appropriate for risk assessment purposes. First, M. avium subsp. paratuberculosis is a fastidious, slow-growing bacterium requiring a long incubation period before producing visible colonies (4 to 6 weeks minimum). Second, there is no selective growth medium for M. avium subsp. paratuberculosis, and chemical decontamination is required before plating samples on solid Herrold''s egg yolk medium (HEYM). This decontamination step, which aims to inactivate the competitive microflora, is often not totally effective, and cultures can be overgrown quickly by non-acid-fast bacteria during incubation. Third, the decontamination step has been demonstrated to have adverse effects on M. avium subsp. paratuberculosis viability (5). This extends the time required for primary isolation (to up to 20 weeks) and undoubtedly underestimates the number of cells originally present in the sample.Recently, we reported an optimization of the conditions of a commercially available phage amplification assay involving D29 mycobacteriophage (FASTPlaqueTB assay; Biotec Laboratories, Ipswich, United Kingdom) to permit accurate enumeration of M. avium subsp. paratuberculosis cells in milk (7). The main advantage of using phage amplification to detect M. avium subsp. paratuberculosis is that the number of viable cells can be estimated quickly, within 24 to 48 h, based on the count of plaques produced when D29-infected cells burst on a lawn of M. smegmatis indicator cells in an agar plate. Moreover, there is no need to carry out chemical decontamination of the sample before the phage assay because the D29 phage will infect only viable mycobacterial cells, and thus the detection sensitivity of the test is enhanced. For these reasons, the optimized phage amplification method may be used to speed up the acquisition of results during inactivation experiments involving samples artificially spiked with M. avium subsp. paratuberculosis.So far, the optimized phage amplification assay has been applied for the detection of viable M. avium subsp. paratuberculosis cells in spiked broth and milk samples. However, the performance of the test in assessing the viability of M. avium subsp. paratuberculosis cells subjected to physical or chemical treatments, which are likely to comprise mixtures of viable cells, injured/stressed cells, and dead cells, still needed to be investigated. For this reason, thermal inactivation experiments were carried out in order to assess the utility of this optimized phage assay for use instead of conventional culture for research involving artificially spiked milk samples. The main objectives of this study were to evaluate the correlation between colony and plaque counts for heat-treated M. avium subsp. paratuberculosis and to demonstrate a quicker acquisition of accurate results than that obtainable by culture.  相似文献   

7.
A light cycler-based real-time PCR (LC-PCR) assay that amplifies the F57 sequence of Mycobacterium avium subsp. paratuberculosis was developed. This assay also includes an internal amplification control template to monitor the amplification conditions in each reaction. The targeted F57 sequence element is unique for M.avium subsp. paratuberculosis and is not known to exist in any other bacterial species. The assay specificity was demonstrated by evaluation of 10 known M. avium subsp. paratuberculosis isolates and 33 other bacterial strains. The LC-PCR assay has a broad linear range (2 × 101 to 2 ×106 copies) for quantitative estimation of the number of M. avium subsp. paratuberculosis F57 target copies in positive samples. To maximize the assay's detection sensitivity, an efficient strategy for isolation of M. avium subsp. paratuberculosis DNA from spiked milk samples was also developed. The integrated procedure combining optimal M. avium subsp. paratuberculosis DNA isolation and real-time PCR detection had a reproducible detection limit of about 10 M. avium subsp. paratuberculosis cells per ml when a starting sample volume of 10 ml of M. avium subsp. paratuberculosis-spiked milk was analyzed. The entire process can be completed within a single working day and is suitable for routine monitoring of milk samples for M. avium subsp. paratuberculosis contamination. The applicability of this protocol for naturally contaminated milk was also demonstrated using milk samples from symptomatic M.avium subsp. paratuberculosis-infected cows, as well as pooled samples from a dairy herd with a confirmed history of paratuberculosis.  相似文献   

8.
Mycobacterium avium subsp. paratuberculosis, the causative agent of Johne''s disease in cattle, was identified in settled-dust samples of Dutch commercial dairy farms, both in the dairy barn and in the young stock housing. Bioaerosols may play a role in within-farm M. avium subsp. paratuberculosis transmission.Paratuberculosis is an infectious enteric disease caused by Mycobacterium avium subsp. paratuberculosis leading to economic losses in dairy cattle globally (2, 10). The main transmission route is the fecal/oral route from infectious adult cattle to susceptible calves (12).Preventive calf management was a key point in model studies (7), but 20-year implementation did not lead to farm-level eradication, suggesting uncontrolled routes of transmission (1, 7).Environmental samples were used to classify commercial dairy herds (3, 9, 11), based on long-term survival of M. avium subsp. paratuberculosis in the environment (16). Recently, bioaerosols containing viable M. avium subsp. paratuberculosis were identified in an experimental setting with 100% M. avium subsp. paratuberculosis prevalence (6) and may thus be a mode of transmission. Dust containing M. avium subsp. paratuberculosis might be ingested or inhaled by calves (4). Experimental M. avium subsp. paratuberculosis challenge studies in sheep successfully used inhalation (8). These transmission routes could hamper current control programs. Our objective was to study whether M. avium subsp. paratuberculosis could be detected in bioaerosols on commercial Dutch dairy farms.Dairy herds in three Dutch veterinary practices were sampled in 2009. All farms participated in a Dutch M. avium subsp. paratuberculosis monitoring program in 2008, either the Dutch Paratuberculosis Program (PPN; n = 2) or the Dutch Bulk Milk Quality Assurance Program (BMQAP; n = 22) (15). Both PPN herds were certified M. avium subsp. paratuberculosis-free. Herds corresponding to the BMQAP had at least one positive animal identified by enzyme-linked immunosorbent assay (ELISA) (Pourquier ELISA; Institut Pourquier, France). Farms were grouped into three M. avium subsp. paratuberculosis test prevalence levels (control, zero positive animals; group A, one positive animal; group B, two or more positive animals; Table Table11).

TABLE 1.

Overview of the results of the questionnaire about relevant M. avium subsp. paratuberculosis management practicesa
ParameterValue for groupb
Control (n = 2)A (n = 8)B (n = 14)
Mean herd size (SD)69 (15)67 (19)102 (26)
Median no. of ELISA-positive cows (maximum)0 (0)1 (1)3 (10)
No. of farms with:
    Cow brush in barn2513
    Cow barn cleaned in summer with high-pressure cleaner064
    Dry cows in young stock housing033
    Young stock housed separately178
    Young stock housing empty in summer000
    Young stock housing cleaned with high-pressure cleaner061
Open in a separate windowaResults of the questionnaire about relevant M. avium subsp. paratuberculosis management practices in 24 Dutch farms enrolled in this study with 0 (control), 1 (group A), or ≥2 (group B) ELISA-positive animals.bn, number of farms.Farms were visited twice during the housing period. Sampling locations were above the animal level inside the barn. At the first visit (sampling 1 [S1]), settled dust was collected with wipes and a short management questionnaire was taken. At the same time, five to seven electrostatic dust collectors (EDC; Zeeman, Alphen a/d Rhijn, Netherlands) were installed and collected after 4 weeks (sampling 2 [S2]) (6). Settled-dust samples were processed according to a previously described method (6). Results are presented as proportions of positive locations. McNemar''s χ2 test was performed to investigate whether S1 differed from S2.No M. avium subsp. paratuberculosis was detected by real-time PCR in any of the settled-dust samples at control farms (Fig. (Fig.1).1). M. avium subsp. paratuberculosis DNA was detected in dust samples at S1 and S2 in more than 50% of the group A and B farms, with seven farms consistently positive. M. avium subsp. paratuberculosis DNA was detected in the young stock area in 3/6 (S1) and 2/6 (S2) farms of group B with single-barn housing. M. avium subsp. paratuberculosis DNA was also detected in settled-dust samples from separate young stock housings in three farms, of which two cohoused dry cows.Open in a separate windowFIG. 1.Proportions of farms with M. avium subsp. paratuberculosis DNA detected in settled-dust samples collected at samplings 1 and 2. Black bar, control (n = 2); checked bar, group A (n = 8); white bar, group B (n = 14).At control farms, no viable M. avium subsp. paratuberculosis was detected in any of the collected dust samples (Fig. (Fig.2).2). Viable M. avium subsp. paratuberculosis was detected in 6 B farms at S1. At S2, viable bacteria were present in 3 A farms and in the majority of B farms (Table (Table2).2). On five farms in group B, viable M. avium subsp. paratuberculosis was detected at both samplings.Open in a separate windowFIG. 2.Proportions of farms with viable M. avium subsp. paratuberculosis detected in settled-dust samples collected at samplings 1 and 2. Black bar, control (n = 2); checked bar, group A (n = 8); white bar, group B (n = 14).

TABLE 2.

Detection of M. avium subsp. paratuberculosis DNA or viable M. avium subsp. paratuberculosis in 5 to 7 settled-dust samples collected at sampling 1 or 2
No. of positive dust samplesNo. of farms with:
M. avium subsp. paratuberculosis DNA
Viable M. avium subsp. paratuberculosis
Control (n = 2)
Group A (n = 8)
Group B (n = 14)
Control (n = 2)
Group A (n = 8)
Group B (n = 14)
S1S2S1S2S1S2S1S2S1S2S1S2
0224345228586
13446124
243112
31111112
412
Open in a separate windowViable M. avium subsp. paratuberculosis was detected in the young stock housing in 4 and 3 farms of group B with single-barn housing at S1 and S2, respectively. No viable M. avium subsp. paratuberculosis was detected in separate young stock housings.To our knowledge, this study is the first to confirm the presence of M. avium subsp. paratuberculosis DNA as well as viable M. avium subsp. paratuberculosis in settled-dust samples of commercial dairy farms. M. avium subsp. paratuberculosis dispersion by bioaerosols under experimental conditions was already described (6). These findings support the concept of dust-based environmental dispersion of M. avium subsp. paratuberculosis within farms.The relatively small number of farms and the convenience sampling are limitations of this study that could have introduced bias. However, this study is a proof of principle that viable M. avium subsp. paratuberculosis can be detected in settled-dust samples on farms with a low M. avium subsp. paratuberculosis prevalence. The environmental method also seems specific for M. avium subsp. paratuberculosis, since no M. avium subsp. paratuberculosis could be detected in any samples of known M. avium subsp. paratuberculosis-free herds.Paratuberculosis control measures aim to prevent fecal-oral contact between infectious shedding adults and susceptible calves as the main transmission route of M. avium subsp. paratuberculosis. Several studies showed that “calf hygiene improvement” decreased prevalence but did not eliminate the disease (1, 7, 14), suggesting the existence of other transmission routes. In utero transmission, transmission via milk, and calf-to-calf transmission have been described previously (1, 12, 13). Additionally, infection via ingestion and/or inhalation of bioaerosols may be possible (4, 8).Twenty-three of 24 herds were housed in free stalls with one tie-stall herd. Most farmers (n = 15) separated young stock from adult cattle as standard procedure. However, six of these farmers cohoused dry cows in the young stock housing occasionally, indicating the difficulties of consequently implementing management advice. Three farmers did not raise young stock on their farms. In almost all barns, cow brushes were present, as they were recommended to enhance cow well-being in group housings (5), but at the same time they contribute to aerosolization of dust. Animal movement on slatted floors also contributes to dust formation, especially during the winter housing period.Most farmers from group A farms, compared to only a few from group B farms, intended to clean their barns yearly, but only 50% met this aim. Young stock housings were never totally empty, but high-pressure cleaning was occasionally performed at 6/8 farms of group A and at 1 of group B. The numbers of farms in this study precluded statistical testing, but the difference in cleaning attitude seemed remarkable.Comparison of the two methods of dust collection showed no statistical difference. No M. avium subsp. paratuberculosis, neither DNA nor viable M. avium subsp. paratuberculosis, could be detected on known negative farms, whereas on farms of groups A and B, M. avium subsp. paratuberculosis DNA was present in comparable numbers of locations. Viable M. avium subsp. paratuberculosis was present only in group B farms at S1 and in both group A and B farms at S2. It seems that M. avium subsp. paratuberculosis can survive in dust for some time. Besides having a possible role in M. avium subsp. paratuberculosis transmission, dust might also be a useful predictor of M. avium subsp. paratuberculosis presence or M. avium subsp. paratuberculosis introduction on dairy farms, even on farms with low M. avium subsp. paratuberculosis prevalence.In conclusion, this study showed that dust on farms with a low M. avium subsp. paratuberculosis seroprevalence contained viable M. avium subsp. paratuberculosis, which indicated a role in M. avium subsp. paratuberculosis transmission. Further research is needed to study if and how infection with M. avium subsp. paratuberculosis-contaminated dust is possible. Additionally, dust sampling may be an alternative tool to monitor M. avium subsp. paratuberculosis status in control programs.  相似文献   

9.
Bifidobacterium animalis subsp. lactis strain V9 is a Chinese commercial bifidobacteria with several probiotic functions. It was isolated from a healthy Mongolian child in China. We present here the complete genome sequence of V9 and compare it to 3 other published genome sequences of B. animalis subsp. lactis strains. The result indicates the lack of polymorphism among strains of this subspecies from different continents.Bifidobacterium animalis subsp. lactis strain V9 was isolated from the feces of a healthy Mongolian child in China (5). It has shown a high level of tolerance to gastric acid and bile acids (5). This strain has been implemented in the industrial production of dairy starter cultures by Inner Mongolia Yili Industrial Group Company Limited, the largest dairy corporation in China.Whole-genome sequencing of B. animalis subsp. lactis V9 was performed with a combined strategy of 454 sequencing (8) and Solexa paired-end sequencing technology (2). Genomic libraries containing 7-kb inserts were constructed, and 325,824 paired-end reads and 67,177 single-end reads were generated using the GS FLX system, giving 36.0-fold coverage of the genome. A total of 96.0% of the reads were assembled into four large scaffolds, including 163 nonredundant contigs, using the 454 Newbler assembler (454 Life Sciences, Branford, CT). A total of 8,953,102 reads (2-kb library) were generated to reach a depth of 335-fold coverage with an Illumina Solexa Genome Analyzer IIx and mapped to the scaffolds using the Burrows-Wheeler Alignment (BWA) tool (7). The gaps between scaffolds were filled by sequencing PCR products using an ABI 3730 capillary sequencer. The analysis of the genome was performed as described previously (3, 4).The complete genome sequence of V9 contains a circular 1,944,050-bp chromosome, with a GC content of 60.5%. The genome size is slightly larger than the sequenced genome sizes of B. animalis subsp. lactis strains DSM 10140T (1), Bl-04 (1), and AD011 (6) due to a unique insertion of 4,037 bp. The V9 genome contains 1,636 genes in total, including 1,572 coding genes, 4 rRNA operons, and 52 tRNAs.Comparison of the four B. animalis subsp. lactis genomes revealed nearly perfect synteny. AD011 is the most diverged strain, with more single nucleotide polymorphisms (SNPs) and indels than the other three strains. There are 197 SNPs in AD011, with 70 synonymous and 16 nonsynonymous SNPs, which means that there is only 1 SNP per 10 kb, indicating the high consistency within this subspecies. The other three strains are almost identical, with only 25 SNPs in V9, 13 SNPs in Bl-04, and 44 SNPs in DSM 10140T. Strain V9 was isolated from the feces of a Mongolian child in Inner Mongolia, China, where traditional fermented milk has been consumed for thousands of years, and the other three strains were originally isolated from fecal samples (1, 6) or yogurt (1) in the United States of America, France, and Korea. The result indicated the lack of polymorphism among multiple lineages from different continents (1).Interestingly, compared to the other three sequenced B. animalis subsp. lactis strains, V9 has a large insertion, which encodes one putative transposase (BalV_1091) and two sugar metabolism-related proteins, an alpha-1,4-glucosidase (BalV_1092) and an ABC transporter solute-binding protein (BalV_1093). This insertion is a copy of the region at positions 1,860,164 to 1,864,073, which is commonly shared by all four B. animalis subsp. lactis strains.  相似文献   

10.
Bifidobacteria are important members of the human gut flora, especially in infants. Comparative genomic analysis of two Bifidobacterium animalis subsp. lactis strains revealed evolution by internal deletion of consecutive spacer-repeat units within a novel clustered regularly interspaced short palindromic repeat locus, which represented the largest differential content between the two genomes. Additionally, 47 single nucleotide polymorphisms were identified, consisting primarily of nonsynonymous mutations, indicating positive selection and/or recent divergence. A particular nonsynonymous mutation in a putative glucose transporter was linked to a negative phenotypic effect on the ability of the variant to catabolize glucose, consistent with a modification in the predicted protein transmembrane topology. Comparative genome sequence analysis of three Bifidobacterium species provided a core genome set of 1,117 orthologs complemented by a pan-genome of 2,445 genes. The genome sequences of the intestinal bacterium B. animalis subsp. lactis provide insights into rapid genome evolution and the genetic basis for adaptation to the human gut environment, notably with regard to catabolism of dietary carbohydrates, resistance to bile and acid, and interaction with the intestinal epithelium. The high degree of genome conservation observed between the two strains in terms of size, organization, and sequence is indicative of a genomically monomorphic subspecies and explains the inability to differentiate the strains by standard techniques such as pulsed-field gel electrophoresis.Actinobacteria, Firmicutes, Proteobacteria, and Bacteroidetes are dominant microbial phyla widely distributed in diverse ecosystems on the planet (10, 13, 20, 23, 33, 40, 51). Metagenomic analyses of the microbial landscape inhabiting various mammalian environments, notably the human gastrointestinal tract (GIT) and skin, have specifically identified Actinobacteria as an important and occasionally dominant phylum (18, 21, 33). Among the members of the large, diverse, and dynamic microbial community residing in the human GIT, Bifidobacterium is a dominant genus considered beneficial to humans and includes probiotic strains (live microorganisms which, when administered in adequate amounts, confer a health benefit on the host) (11). The population of bifidobacteria in the human intestine varies over time. Following vaginal delivery, the GIT of healthy newborns is typically colonized by bifidobacteria, especially in breast-fed infants, during the first few days of life (12). Interindividual variation, however, is remarkable in the human infant intestinal flora (41), and dominant genera are not always consistent across metagenomic analyses of the human gut flora (18, 30, 33, 41). Over time, the infant intestinal ecosystem becomes more complex as the diet becomes more diverse, with bifidobacteria typically remaining dominant until weaning (30).Bifidobacterium animalis subsp. lactis is a gram-positive lactic acid bacterium commonly found in the guts of healthy humans and has been identified in the infant gut biota, particularly in ileal, fecal, and mucosal samples (52, 56). Some strains of B. animalis subsp. lactis are able to survive in the GIT, to adhere to human epithelial cells in vitro, to modify fecal flora, to modulate the host immune response, or to prevent microbial gastroenteritis and colitis (4, 15, 20, 40, 52, 56). Additionally, B. animalis subsp. lactis has been reported to utilize nondigestible oligosaccharides, which may contribute to the organism''s ability to compete in the human gut. Carbohydrates resistant to enzymatic degradation and not absorbed in the upper intestinal tract are a primary source of energy for microbes residing in the large intestine. The benefits associated with probiotic strains of B. animalis subsp. lactis have resulted in their inclusion in the human diet via formulation into a large array of dietary supplements and foods, including dairy products such as yogurt. Deciphering the complete genome sequences of such microbes will provide additional insight into the genetic basis for survival and residence in the human gut, notably with regard to the ability to survive gastric passage and utilize available nutrients. Also, these genomes provide reference sequences for ongoing metagenomic analyses of the human environment, including the gut metagenome.Bifidobacterium animalis subsp. lactis is the most common bifidobacterium utilized as a probiotic in commercial dairy products in North America and Europe (22, 38). However, despite this commercial and probiotic significance, strain-level differentiation of B. animalis subsp. lactis strains has been hindered by the high genetic similarity of these organisms, as determined by pulsed-field gel electrophoresis and other nucleic acid-based techniques (6, 55, 56), and the lack of available genomic sequence information. The genome sequence of strain BB-12 (17) is not currently publicly available, and only a draft genome sequence in 28 contigs is available for strain HN019 (GenBank project 28807). The complete B. animalis subsp. lactis genome for strain AD011 (28) was only recently (2009) published. While this was an important first step, a single genome does not allow identification of unique targets for strain differentiation or comparative analyses within the subspecies.The objectives of this study were to determine the complete genome sequences of two B. animalis subsp. lactis strains, the type strain and a widely used commercial strain, to provide insights into the functionality of this species and into species identification and strain specialization.  相似文献   

11.
cis-Acting elements in the viral genome RNA (vRNA) are essential for the translation, replication, and/or encapsidation of RNA viruses. In this study, a novel conserved cis-acting element was identified in the capsid-coding region of mosquito-borne flavivirus. The downstream of 5′ cyclization sequence (5′CS) pseudoknot (DCS-PK) element has a three-stem pseudoknot structure, as demonstrated by structure prediction and biochemical analysis. Using dengue virus as a model, we show that DCS-PK enhances vRNA replication and that its function depends on its secondary structure and specific primary sequence. Mutagenesis revealed that the highly conserved stem 1 and loop 2, which are involved in potential loop-helix interactions, are crucial for DCS-PK function. A predicted loop 1-stem 3 base triple interaction is important for the structural stability and function of DCS-PK. Moreover, the function of DCS-PK depends on its position relative to the 5′CS, and the presence of DCS-PK facilitates the formation of 5′-3′ RNA complexes. Taken together, our results reveal that the cis-acting element DCS-PK enhances vRNA replication by regulating genome cyclization, and DCS-PK might interplay with other cis-acting elements to form a functional vRNA cyclization domain, thus playing critical roles during the flavivirus life cycle and evolution.  相似文献   

12.
A microtiter alamarBlue assay was adapted and optimized for Mycobacterium avium subsp. paratuberculosis. Using cell concentrations ranging from 104 to 108 CFU/ml, a minimum incubation time to indicate viability was obtained after 24 h. Rifampin (rifampicin) was used to demonstrate that this method has applications for high-throughput screening against M. avium subsp. paratuberculosis.Mycobacterium avium subsp. paratuberculosis is a chronic enteric pathogen which is widely distributed throughout the food chain (4, 16). Its association with Johne''s disease in cattle is economically significant, with the United States alone suffering losses of $1.5 billion a year (6). Furthermore, its potential to cause human disease is disconcerting and controversial (7, 10, 11, 13). Therefore, the identification and development of novel anti-M. avium subsp. paratuberculosis agents are urgently required. In order to facilitate this, it is important to have available rapid anti-M. avium subsp. paratuberculosis assays permitting high-throughput analysis. A microtiter alamarBlue assay (currently untested for M. avium subsp. paratuberculosis) is a reliable means of determining cellular viability in bacteria (9). This rapid and inexpensive assay lends itself to a high-throughput screening format and has been shown to be applicable to some species of mycobacteria (3, 15). Furthermore, its correlation with other more expensive methods for determining mycobacterium viability is high, between 93 and 100% (1, 5, 15). These include the Mycobacteria Growth Indicator Tube, the Bactec radiometric method, and luciferase reporter systems. This study set out to establish and optimize a microtiter alamarBlue assay for a broad range of M. avium subsp. paratuberculosis titers and to evaluate applications for this assay, including high-throughput screening of novel anti-M. avium subsp. paratuberculosis compounds, and antibiotic resistance profiling of M. avium subsp. paratuberculosis.M. avium subsp. paratuberculosis (CIT03) was isolated from the feces of an infected cow, as described by Ristow et al. (12), and cultivated on Herrold''s egg yolk medium agar supplemented with mycobactin J (2 μl/ml), amphotericin B (50 μg/ml), vancomycin (50 μg/ml), and nalidixic acid (50 μg/ml) for 16 weeks at 37°C. The identity of M. avium subsp. paratuberculosis was confirmed using acid-fast staining, mycobactin dependency, and PCR analysis as previously described (2, 8, 14). To generate sufficient biomass, M. avium subsp. paratuberculosis was subsequently grown in Middlebrook 7H9 broth (MB broth), supplemented with oleic acid, albumin, dextrose, catalase (10%; Becton Dickinson), glycerol (0.2%), and mycobactin J (0.2%). This generally took 16 weeks.Prior to the assay, 10 ml of the 16-week culture was centrifuged at 15,000 rpm for 20 min. The pellet was washed in fresh MB broth and resuspended in 10 ml of fresh supplemented MB broth containing 0.2% mycobactin J. The turbidity was adjusted to match McFarland standard no. 1 (3 × 108 CFU/ml). From this suspension, a series of 1:5 dilutions ranging from 3 × 108 to 9.6 × 104 CFU/ml was set up in MB broth (5-ml volumes), using sterile Falcon tubes. The microtiter plate was organized into rows B, C, D, E, F, and G. Two-hundred-microliter aliquots of 3 × 108 CFU/ml M. avium subsp. paratuberculosis were added to 10 wells in row B. Two-hundred-microliter aliquots of 6 × 107 CFU/ml were added to row C, 1.2 × 107 CFU/ml to row D, 2.4 × 106 CFU/ml to row E, 4.8 × 105 CFU/ml to row F, and 9.6 × 104 CFU/ml to row G. This assay was allowed to progress over a period of 11 days. Twenty microliters (10% of the volume in the well) of a fresh alamarBlue reagent (AbD Serotec) was added, with mixing, to each column on each sampling day. Plates were covered and resealed with Parafilm and incubated at 37°C after the addition of the dye. Absorbance readings at 570 and 600 nm were then taken at 6 h, 24 h, and 48 h for each column. The assay was performed in triplicate, and percent reduction values of alamarBlue were determined using the appropriate formula (www.biokom.com.pl/files/alamarblue.pdf).In terms of optimization, this assay examined the influence of cell numbers, the cellular incubation time, and the optimal incubation time with alamarBlue. All three had a significant impact on color development and percent reduction of the dye. For the highest concentration of cells (3 × 108 CFU/ml) (Fig. (Fig.1a),1a), a strong reduction of the dye was observed after 1 day of cellular incubation. Further incubation of the cells or incubation with the dye did not result in an appreciable increase in dye reduction values. Indeed, a decrease in the percent reduction was noted, most likely due to buffering agents reaching their maximum buffering efficiencies in the reagent mix (www.abdserotec.com/about/alamarblue). At the mid-range cellular levels (2.4 × 106 CFU/ml) (Fig. (Fig.1b),1b), detectable dye reduction occurred after 2 days. The reduction was substantial after day 4. At the lowest concentration of cells (9.6 × 104 CFU/ml) (Fig. (Fig.1c),1c), a noticeable change in dye reduction was observed after 9 days. While longer incubation with alamarBlue led to greater dye reduction with a given cell titer, as shown with each suspension at 6, 24, and 48 h, the 24-h reading was considered sufficient to give a clear indication of viability.Open in a separate windowFIG. 1.Optimization of alamarBlue conditions using 3 × 108 CFU/ml (a), 2.4 × 106 CFU/ml (b), and 9.6 × 104 CFU/ml (c) over 11 days. Following the addition of alamarBlue, readings were taken at 6, 24, and 48 h.Percent reduction of the dye was standardized to 10, 20, 40, and 60% for each concentration of cells (Table (Table1).1). These values serve as definitive indicators of metabolic activity and may be used for multiple applications, such as comparing the relative viabilities of strains, or the influence of media composition or environmental stress on M. avium subsp. paratuberculosis. In particular, we feel that this assay is suited to comparing the relative efficacies of multiple anti-M. avium subsp. paratuberculosis compounds and/or antibiotic resistance profiling in a high-throughput screening format. The success of this assay requires strict adherence to specific cell numbers, growth phases, and their equivalent incubation times.

TABLE 1.

Required time taken for M. avium subsp. paratuberculosis to reduce alamarBlue
M. avium subsp. paratuberculosis cell concn (CFU/ml)Time (h) required to reach indicated % reductiona
10
20
40
60
CellularalamarBlueCellularalamarBlueCellularalamarBlueCellularalamarBlue
3 × 10824624624242424
6 × 107246242424489624
1.2 × 10724249624962414448
2.4 × 106966964812048N/AN/A
4.8 × 105966144482164826448
9.6 × 10496621648>264N/AN/AN/A
Open in a separate windowaN/A, not applicable.Traditionally, detection of viability with the alamarBlue assay has been achieved on the basis of the pink-blue color change (1, 5, 9, 15). However, this method for M. avium subsp. paratuberculosis is also quantitative, as it determines the threshold percent reduction values required for visual color change of the medium (<12% blue, 12 to 18% purple, and >20% pink). Visually, all wells with calculated values below 12% after the addition of the dye were consistently blue, most probably due to insufficient metabolism needed to indicate viability. All wells which were purple were recorded as having percent reduction values of 12 to 18%. Wells with values over 20% were consistently pink, which is indicative of cellular metabolism. The time taken to indicate definitive viability varied significantly for each dilution of cells, ranging from 1 day plus 6 h with the dye (3 × 108 CFU/ml) to 9 days plus 48 h with the dye (9.6 × 104 CFU/ml), as seen in Table Table11.To demonstrate the application of the assay, it was used to assess the susceptibility of M. avium subsp. paratuberculosis to rifampin (rifampicin). Rifampin was prepared in dimethyl sulfoxide at double the maximum concentration required. The assay was carried out using 6 × 107 CFU/ml over a period of 4 days, plus a 24-h incubation with alamarBlue in supplemented MB broth containing 0.2% mycobactin J. The final antibiotic concentration ranged from 125 to 0.48 μg/ml. The MIC90 of rifampin for M. avium subsp. paratuberculosis was determined as 1.92 μg/ml, which correlates well with other studies (17) (Fig. (Fig.2).2). This result highlights the assay''s potential as a high-throughput screening platform for antibiotic resistance profiling and the identification of novel anti-M. avium subsp. paratuberculosis agents.Open in a separate windowFIG. 2.Determination of the MIC90 of rifampin against M. avium subsp. paratuberculosisGiven the association of M. avium subsp. paratuberculosis with both animal and human diseases, such rapid, quantitative, and inexpensive (approximately 10 euro cents per sample) viability assays will be very useful for rapid screening of anti-M. avium subsp. paratuberculosis compounds and antibiotic profiling.  相似文献   

13.
Mycoplasma hyorhinis is generally considered a swine pathogen yet is most commonly found infecting laboratory cell lines. An increasing body of evidence suggests that chronic infections with M. hyorhinis may cause oncogenic transformation. Here, we announce the complete genome sequence of M. hyorhinis strain HUB-1.Mycoplasma hyorhinis is generally considered to be a swine pathogen causing lung lesions, inflammation in the chest and abdominal lining, and arthritis (8). This agent also frequently contaminates laboratory cell cultures, impinging on many aspects of biological research (3). Recent studies have demonstrated that M. hyorhinis infections induce a malignant phenotype in human prostate (7) and gastric (4) cells, suggesting that M. hyorhinis infections are associated with oncogenic transformation. These properties of M. hyorhinis have increased its profile to researchers. The complete genome sequence of this microbe has yet to be determined.We sequenced the genome of M. hyorhinis strain HUB-1, a pathogenic strain isolated from the respiratory tract of swine. Whole-genome sequencing was performed by combining GS FLX (6) and Solexa paired-end sequencing technologies (1). Genomic libraries containing 3-kb inserts were constructed, and 308,604 reads (79.7% paired end) were produced using the GS FLX system, giving 65.9-fold coverage of the genome. About 93.4% of reads were assembled into one large scaffold using Newbler software (454 Life Sciences, Branford, CT). A total of 822,579 reads were generated using an Illumina Solexa Genome Analyzer IIx and were mapped to the scaffold using the Burrows-Wheeler alignment (BWA) tool (5). Gaps were filled by local assembly of the Solexa/Roche 454 reads or by sequencing PCR products by using an ABI 3730 capillary sequencer. Open reading frames containing more than 30 amino acid residues were predicted using Glimmer 3.0 (2) and verified by comparison with six other closely related genome sequences.The complete genome of M. hyorhinis HUB-1 consists of an 839,615-bp single circular chromosome with an average G+C content of 25.88%. A total of 654 protein-encoding genes are predicted. The average protein size is 364 amino acids, and the mean coding percentage is 85.2%. The genome includes 30 tRNA genes, and only a single copy of the 16S-23S rRNA operon can be found. The 5S rRNA operon is separate from the 16S-23S rRNA operon. Protein secretion occurs through a truncated membrane protein secretion system, consisting of SecA, SecD, SecY, PrsA, DnaK, Tig, and LepA. Additionally, 20 pseudogenes, which become truncated or inactivated, are identified in the genome.M. hyorhinis contains a special variable lipoprotein (Vlp) system that constitutes its major coat protein (9) and provides a mutational strategy for evasion of the host immune system. Different M. hyorhinis strains carry a variable number of vlp genes (9). M. hyorhinis HUB-1 is characterized to contain seven vlp genes displayed in the order 5′-vlpD-vlpE-vlpF-insertion sequence (IS)-vlpG-vlpA-IS-vlpB-vlpC-3′.This is the first complete genome sequence of M. hyorhinis, and its availability will provide a better-defined genetic background for future studies of gene expression and regulation.  相似文献   

14.
Anaplasma marginale subsp. centrale is a naturally attenuated subtype that has been used as a vaccine for a century. We sequenced the genome of this organism and compared it to those of virulent senso stricto A. marginale strains. The comparison markedly narrows the number of outer membrane protein candidates for development of a safer inactivated vaccine and provides insight into the diversity among strains of senso lato A. marginale.Sir Arnold Theiler described Anaplasma marginale as the “cause of a specific tick-borne disease of cattle” in 1908 (14), providing the first identification of a rickettsial pathogen. Two years later, Theiler isolated a less virulent organism, which he designated A. marginale subtype centrale (15). This naturally attenuated strain has been used as a live vaccine to prevent severe disease due to A. marginale senso stricto strains for 100 years. Understanding the genetic similarities and differences between the vaccine strain and wild-type A. marginale strains will provide clues as to how the vaccine provides protection. To that end, we have sequenced the A. marginale subsp. centrale vaccine strain using a whole-genome shotgun sequencing strategy.Genomic DNA, obtained from Kimron Veterinary institute, was fragmented by hydroshearing and ligated into pSmartLCKan (Lucigen). A total of 10,752 paired-end sequence reads (∼6.5× coverage) were generated. Assembly with Phrap (www.phrap.org) resulted in 148 contigs. Closure was achieved by applying the genome walking method across gap-spanning subclones and genomic DNA amplicons. For polymorphic loci, the most frequently observed subclone sequence was selected.Coding sequences (CDSs) in the single, circular, 1,206,806-bp chromosome were predicted using Glimmer2 and Glimmer3 (4, 5, 12). Annotation was as described previously for A. marginale senso stricto genomes (2, 3). There are 925 predicted CDSs, 19 pseudogenes, 37 tRNA genes, and a single set of rRNA genes in the genome. A. marginale subsp. centrale contains 10 putative genes not found in the closed-core genomes of senso stricto strains (3). Similarly, 18 genes found in senso stricto strains are absent from A. marginale subsp. centrale. This divergence is consistent with the subspecies nomenclature (15), but the findings do not resolve whether these genetic differences warrant classification of the vaccine strain as a distinct species within the genus Anaplasma (6).The ability of live A. marginale subsp. centrale to protect against a diversity of A. marginale strains indicates that epitopes critical for protective immunity are broadly conserved (11). As immunity against A. marginale can be induced by immunization with purified outer membrane protein (OMP) complexes (8-10, 13), identification of OMPs conserved between A. marginale subsp. centrale and senso stricto A. marginale may narrow the vaccine candidate list. A. marginale OMPs cluster predominately into two protein superfamilies, major surface protein 1 (Msp1) and Pfam01617/Msp2 (2). Members of the Msp1 superfamily from senso stricto strains (1, 2) are not well conserved (e.g., Msp1a, Msp1b-1, Msp1b-2, and Mlp2 to Mlp4; 13 to 48% amino acid identity) or are nonexistent (e.g., the products of Msp1b partial genes 1 to 3) in A. marginale subsp. centrale, suggesting that immunity induced by the live vaccine strain is unlikely to be associated with the Msp1 superfamily.Comparative analysis of the Pfam01617/Msp2 superfamily (2, 8) reveals both conservation and diversity. OpAG1 to OpAG3 and Msp4 are generally well conserved, while the family comprising Omp1 to Omp15 found in senso stricto strains (2, 3, 8) is reduced in A. marginale subsp. centrale: genes for the closely related proteins Omp7 to Omp9 are collapsed into a single CDS, and genes for homologs of Omp2, Omp3, Omp6, and Omp15 are missing. The OMP complex capable of inducing protective immunity contains 11 proteins (7, 8). By excluding those without homologs in the vaccine strain and the highly variable Msp2 and Msp3, the number of candidates is narrowed to six: four Msp2 superfamily members (Msp4, Omp1, Omp7, and OpAG2) and two non-superfamily members (AM779/ACIS557 and AM854/ACIS486). The degree of identity among these candidates from the vaccine strain and senso stricto A. marginale strains ranges from 63% (for OpAG2 proteins) to 88% (for Msp4 homologs). While the next steps in vaccine development will require strain analysis for epitope conservation in these candidates and immunization trials to test in vivo efficacy, progress will be accelerated using the minimal candidate list defined by the comparative genomics approach.  相似文献   

15.
Staphylococcus lugdunensis is a member of the coagulase-negative staphylococci and commonly found as part of the human skin flora. It is a significant cause of catheter-related bacteremia and also causes serious infections like native valve endocarditis in previously healthy individuals. We report the complete genome sequence of this medically important bacterium.Staphylococcus lugdunensis is a member of the coagulase-negative staphylococci (CoNS) commonly colonizing the human skin and mucosal membranes. While the genus Staphylococcus contains 48 named species currently, only a few species, notably S. aureus, are coagulase positive. Thus, the phenotypic characteristic is routinely tested in the medical microbiological laboratory for rapid differentiation of the highly pathogenic S. aureus from the other staphylococci. Among the CoNS, only a few species are known to cause human disease, usually in the form of opportunistic infections only (6). However, S. lugdunensis is an important exception (3). Besides causing catheter-related bacteremia similar to other CoNS, it causes a variety of severe nosocomial and community-acquired infections, including native valve endocarditis, a devastating and potentially fatal disease that can affect previously healthy individuals. Another unusual feature are the susceptibilities of S. lugdunensis isolates to multiple antimicrobial agents even when the incidence of multiple-drug-resistant CoNS and S. aureus occurrences are increasing in both hospital and community settings (4, 5).The genome sequence of S. lugdunensis strain HKU09-01 was determined by high-throughput sequencing performed on a GS FLX system (Roche Diagnostics, Basel, Switzerland), with approximately 45-fold coverage of the genome. This clinical strain was previously isolated from the culture of pus from a skin swab. Genome assembly was performed using the Newbler assembler, resulting in 30 large contigs (>500 bp in size). The contigs were then ordered and oriented into one scaffold using OSLay (11). The genome-finishing strategy for S. lugdunensis was similar to that employed for our previously sequenced Laribacter hongkongensis genome (12). Briefly, gap closures were performed by genomic PCR followed by DNA sequencing of amplification products on an ABI 3130xl sequencer (Applied Biosystems, CA). The finished sequence was validated by genome macrorestriction analysis using multiple rare-cutting enzymes and visualization by pulsed-field gel electrophoresis. Protein coding regions were predicted with Glimmer3 (2), and automatic genome annotation was performed on the RAST server (1). Additionally, annotation of tRNA and transfer-messenger RNA (tmRNA) genes was performed using tRNAScan-SE (10) and ARAGORN (9). Identification of rRNA genes was performed using RNAmmer (8).The genome of S. lugdunensis strain HKU09-01 consists of a circular 2,658,366-bp chromosome with G+C content of 33.87%, similar to those of other staphylococci. No plasmids are present in the sequenced strain. The genome contains 61 tRNA genes for all amino acids and 2,489 predicted protein-coding genes. Eight putative genomic islands were identified, and one actually consists of a pair of duplicated 32-kb genomic regions. Similar to Staphylococcus saprophyticus (7), but different from the other staphylococci, the genome contains 6 rRNA operons, one of them having the unusual organization 5S-16S-23S-5S.With the availability of the present genome sequence, S. lugdunensis now joins other staphylococcal species with human pathogenic potential, like S. aureus, S. epidermidis, S. haemolyticus, and S. saprophyticus, to have at least one reference genome available. Further in-depth analysis will be necessary to fully elucidate the genomic differences that may explain the variation in virulence of the staphylococcal species.  相似文献   

16.
17.
Yeast exonuclease 5 is encoded by the YBR163w (DEM1) gene, and this gene has been renamed EXO5. It is distantly related to the Escherichia coli RecB exonuclease class. Exo5 is localized to the mitochondria, and EXO5 deletions or nuclease-defective EXO5 mutants invariably yield petites, amplifying either the ori3 or ori5 region of the mitochondrial genome. These petites remain unstable and undergo continuous rearrangement. The mitochondrial phenotype of exo5Δ strains suggests an essential role for the enzyme in DNA replication and recombination. No nuclear phenotype associated with EXO5 deletions has been detected. Exo5 is a monomeric 5′ exonuclease that releases dinucleotides as products. It is specific for single-stranded DNA and does not hydrolyze RNA. However, Exo5 has the capacity to slide across 5′ double-stranded DNA or 5′ RNA sequences and resumes cutting two nucleotides downstream of the double-stranded-to-single-stranded junction or RNA-to-DNA junction, respectively.Endonucleases and exonucleases are intimately involved in all aspects of DNA metabolism in the cell. In mitochondria, several constitutive nucleases have been identified that contribute to the proper maintenance of the mitochondrial genome through replication and recombination pathways. In addition, nucleases can localize to mitochondria in response to DNA stress in order to mediate appropriate DNA repair. Among the constitutive mitochondrial nucleases in Saccharomyces cerevisiae are the Nuc1 nuclease that contributes to DNA recombination efficiency and functions in apoptosis (4, 38) and the Cce1 endonuclease that resolves recombination intermediates (29). The Din7 endonuclease is a mitochondrially located 5′ flap endonuclease related to FEN1 (20). While deletion of the gene for either of these enzymes produced marginal mitochondrial phenotypes, more severe phenotypes were observed when combined deletions of these nuclease genes were studied or when they were combined with deletions of other genes involved in DNA recombination or repair, such as MHR1 or MSH1 (20, 22, 27). Recently, human Dna2 was shown to localize to both the nuclear and mitochondrial compartments and to participate in mitochondrial DNA replication and base excision repair (11, 39). Its function in yeast mitochondrial DNA maintenance has not been studied in detail. Finally, the 5′ flap endonuclease FEN1, which normally functions in primer RNA degradation during Okazaki fragment maturation in the nucleus, also localizes to the mitochondrion in response to DNA damage, participating in long-patch base excision repair (19, 23).Since mitochondrial function is not essential to yeast survival, dysfunction caused by mutations of the mitochondrial genome can be readily detected as a loss of respiration function, which is scored as the inability to grow on nonfermentable carbon sources. A defect in the mitochondrial DNA polymerase γ MIP1 results in complete loss of the mitochondrial DNA, and the mutant fails to grow on glycerol-containing media lacking glucose (14). Such cells are designated ρ0. Genome maintenance defects can also result in the generation of petite mutants that still contain mitochondrial DNA. Generally, most of the mitochondrial genome has been deleted, and a small origin-containing region has been amplified (ρ). S. cerevisiae contains eight such origin regions that are highly similar in sequence and are distributed over the 86-kb mitochondrial genome (8, 9, 15). Petites that have amplified the ori5 region have been studied more extensively (16, 22).While the nucleases listed above participate in the proper maintenance of the mitochondrial genome through their replication and/or recombination functions, none appears to be essential for the integrity of the mitochondrial genome. One reasonable explanation for these observations is functional redundancy. Indeed, functional nuclease redundancy is quite common; it has been observed in the process of DNA degradation during mismatch repair in Escherichia coli, during Okazaki fragment maturation in yeast, and during the resection of double-stranded breaks in yeast (7, 25, 33). However, the possibility remains that an additional nuclease(s) is active in the mitochondrion. The present paper describes an essential mitochondrial exonuclease that is distantly related to the nuclease domain of RecB, a subunit of the bacterial RecBCD recombinase. This nuclease was discovered over 2 decades ago during a biochemical chromatographic survey of yeast exonucleases and was called exonuclease 5 (3). Initial studies with a partially purified enzyme preparation showed it to be a 5′ exonuclease specific for single-stranded DNA (ssDNA). Here we report the identification of the EXO5 gene and describe comprehensive biochemical and genetic studies that show a critical role for EXO5 in mitochondrial DNA maintenance, presumably through the processing of replication intermediates. Upon deletion of EXO5 or inactivation of its nuclease activity, only ρ mutants could be recovered. EXO5 has previously been characterized as DEM1 (defects in morphology) because the deletion mutant shows defects in growth and in mitochondrial morphology (10, 12). No nuclear defect associated with an EXO5 deletion has been detected.  相似文献   

18.
The enteropathy called paratuberculosis (PTB), which mainly affects ruminants and has a worldwide distribution, is caused by Mycobacterium avium subsp. paratuberculosis. This disease significantly reduces the cost-effectiveness of ruminant farms, and therefore, reliable and rapid detection methods are needed to control the spread of the bacterium in livestock and in the environment. The aim of this study was to identify a specific and sensitive combination of DNA extraction and amplification to detect M. avium subsp. paratuberculosis in feces. Negative bovine fecal samples were inoculated with increasing concentrations of two different bacterial strains (field and reference) to compare the performance of four extraction and five amplification protocols. The best results were obtained using the JohnePrep and MagMax extraction kits combined with an in-house triplex real-time PCR designed to detect IS900, ISMap02 (an insertion sequence of M. avium subsp. paratuberculosis present in 6 copies per genome), and an internal amplification control DNA simultaneously. These combinations detected 10 M. avium subsp. paratuberculosis cells/g of spiked feces. The triplex PCR detected 1 fg of genomic DNA extracted from the reference strain K10. The performance of the robotized version of the MagMax extraction kit combined with the IS900 and ISMap02 PCR was further evaluated using 615 archival fecal samples from the first sampling of nine Friesian cattle herds included in a PTB control program and followed up for at least 4 years. The analysis of the results obtained in this survey demonstrated that the diagnostic method was highly specific and sensitive for the detection of M. avium subsp. paratuberculosis in fecal samples from cattle and a very valuable tool to be used in PTB control programs.  相似文献   

19.

Background

A human isolate of Mycobacterium avium subsp. paratuberculosis (M. paratuberculosis 43525) was sequenced and compared genomically to other mycobacterial pathogens. M. paratuberculosis 43525 was recently isolated from a patient with ulcerative colitis and belongs to the M. avium complex, a group known to infect both humans and animals. While M. paratuberculosis is a known pathogen of livestock, there are only 20 human isolates from the last 20 years, therefore we took the opportunity to perform a whole genome comparison between human and animal mycobacterial pathogens. We also compared virulence determinants such as the mycobactin cluster, PE/PPE genes and mammalian cell entry (mce) operons between MAC subspecies that infect animals and those that infect humans. M. tuberculosis was also included in these analyses given its predominant role as a human pathogen.

Results

This genome comparison showed the PE/PPE profile of M. paratuberculosis 43525 to be largely the same as other M. paratuberculosis isolates, except that it had one PPE and one PE_PGRS protein that are only present in human MAC strains and M. tuberculosis. PE/PPE proteins that were unique to M. paratuberculosis 43525, M. avium subsp. hominissuis and a caprine M. paratuberculosis isolate, were also identified. In addition, the mycobactin cluster differed between human and animal isolates and a unique mce operon flanked by two mycobactin genes, mbtA and mbtJ, was identified in all available M. paratuberculosis genomes.

Conclusions

Despite the whole genome comparison placing M. paratuberculosis 43525 as closely related to bovine M. paratuberculosis, key virulence factors were similar to human mycobacterial pathogens. This study highlights key factors of mycobacterial pathogenesis in humans and forms the basis for future functional studies.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1889-2) contains supplementary material, which is available to authorized users.  相似文献   

20.
Lactobacillus helveticus is a versatile dairy bacterium found to possess heterogeneous genotypes depending on the ecosystem from which it was isolated. The recently published genome sequence showed the remarkable flexibility of its structure, demonstrated by a substantial level of insertion sequence (IS) element expansion in association with massive gene decay. To assess this diversity and examine the level of genome plasticity within the L. helveticus species, an array-based comparative genome hybridization (aCGH) experiment was designed in which 10 strains were analyzed. The aCGH experiment revealed 16 clusters of open reading frames (ORFs) flanked by IS elements. Four of these ORFs are associated with restriction/modification which may have played a role in accelerated evolution of strains in a commercially intensive ecosystem undoubtedly challenged through successive phage attack. Furthermore, analysis of the IS-flanked clusters demonstrated that the most frequently encountered ISs were also those most abundant in the genome (IS1201, ISL2, ISLhe1, ISLhe2, ISLhe65, and ISLhe63). These findings contribute to the overall viewpoint of the versatile character of IS elements and the role they may play in bacterial genome plasticity.Lactobacillus helveticus is a gram-positive, homofermentative lactic acid bacterium which is widely used in the manufacture of cheeses, such as Swiss cheese and some Cheddar-type cheeses (22, 25). It is also commonly used in the production of different types of Italian cheeses, such as Parmigiano Reggiano (18) and Grana Padano, where it contributes to the formation of specific flavor compounds (42).Phylogenetic analysis of ribosomal protein sequences derived from lactobacilli and streptococci classified L. helveticus in the same group along with both gastrointestinal (GI) tract and dairy-specific species (14). Comparative analysis of the 16S rRNA of L. helveticus DPC4571 revealed 98.4% identity with Lactobacillus acidophilus NCFM and indicated that this probiotic strain was closely related to strain DPC4571, despite the different environments these two lactobacilli inhabit (4). The results of genomic analysis of L. helveticus suggested that two major events have occurred in the diversification process of L. helveticus from a common ancestor with L. acidophilus, selective gene loss and acquisition of a large number of insertion sequence (IS) elements (4). IS elements are DNA sequences capable of independent transposition within and between bacterial genomes (31). Their capacity for independent mobility demonstrates the parasitic nature of these elements (11); however, they can also be regarded as having a positive influence, as they assist in promoting genetic variation (1). Thus, even though the primal character of these elements remains unclear in that they may be considered simply as selfish DNA elements, their impact on the architecture of microbial genomes is undeniable. It has already been demonstrated that IS-related mutations occur in Escherichia coli (44), Lactococcus lactis (10), Mycobacterium tuberculosis (33), and Francisella tularensis (39). Their active role was also demonstrated in the evolution of Paracoccus methylutens DM12 plasmids (3). Early bioinformatic analysis of the L. helveticus DPC4571 genome sequence resulted in identification of IS-associated truncations in genes associated with cellobiose transport, acetaldehyde dehydrogenase and diacetyl reductase (6). Considering the extraordinary abundance of IS elements in the L. helveticus DPC4571 chromosome (213 in total), it is noteworthy that very few open reading frames (ORFs) are directly affected by their presence. Presumably, the vast majority of insertion events proved detrimental to some aspect of the strain''s competitiveness and so were not selected in the ensuing population. We believe that the phenomenonal abundance of IS elements in L. helveticus makes it a very suitable system in which to study the role of IS elements in the evolution of bacterial genomes, particularly in ecosystems which impose challenging selective pressures.The level of chromosomal synteny that exists between L. helveticus DPC4571 and L. acidophilus NCFM is surprising, especially since the latter strain contains only 17 IS elements, and this observation highlighted the need for further studies of mobile genetic elements in the L. helveticus species. In order to address this issue, we employed DNA microarray technology to compare the overall genetic complement and specific genes associated with IS elements in different strains of L. helveticus. The use of comparative whole-genome array-based comparative genome hybridization (aCGH) has already been successfully applied to the identification of genetic differences within many closely related microorganisms. For example, large genomic deletions were identified among pathogenic Mycobacterium avium subsp. avium and Mycobacterium avium subsp. paratuberculosis (49) and Tropheryma whipplei strains (27). In addition, the absence of five Streptomyces coelicolor genomic islands were reported in Streptomyces lividans (24), and differences in gene content were detected in other species, Salmonella enterica (38) and Xylella fastidiosa (26). In this work we compared the genomes of nine strains of L. helveticus which were isolated from the dairy environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号