首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deciphering antibody specificities that constrain human immunodeficiency virus type 1 (HIV-1) envelope (Env) diversity, limit virus replication, and contribute to neutralization breadth and potency is an important goal of current HIV/AIDS vaccine research. Transplantation of discrete HIV-1 neutralizing epitopes into HIV-2 scaffolds may provide a sensitive, biologically functional context by which to quantify specific antibody reactivities even in complex sera. Here, we describe a novel HIV-2 proviral scaffold (pHIV-2KR.X7) into which we substituted the complete variable region 3 (V3) of the env gene of HIV-1YU2 or HIV-1Ccon to yield the chimeric proviruses pHIV-2KR.X7 YU2 V3 and pHIV-2KR.X7 Ccon V3. These HIV-2/HIV-1 chimeras were replication competent and sensitive to selective pharmacological inhibitors of virus entry. V3 chimeric viruses were resistant to neutralization by HIV-1 monoclonal antibodies directed against the CD4 binding site, coreceptor binding site, and gp41 membrane proximal external region but exhibited striking sensitivity to HIV-1 V3-specific monoclonal antibodies, 447-52D and F425 B4e8 (50% inhibitory concentration of [IC50] <0.005 μg/ml for each). Plasma specimens from 11 HIV-1 clade B- and 10 HIV-1 clade C-infected subjects showed no neutralizing activity against HIV-2 but exhibited high-titer V3-specific neutralization against both HIV-2/HIV-1 V3 chimeras with IC50 measurements ranging from 1:50 to greater than 1:40,000. Neutralization titers of B clade plasmas were as much as 1,000-fold lower when tested against the primary HIV-1YU2 virus than with the HIV-2KR.X7 YU2 V3 chimera, demonstrating highly effective shielding of V3 epitopes in the native Env trimer. This finding was replicated using a second primary HIV-1 strain (HIV-1BORI) and the corresponding HIV-2KR.X7 BORI V3 chimera. We conclude that V3 is highly immunogenic in vivo, eliciting antibodies with substantial breadth of reactivity and neutralizing potential. These antibodies constrain HIV-1 Env to a structure(s) in which V3 epitopes are concealed prior to CD4 engagement but do not otherwise contribute to neutralization breadth and potency against most primary virus strains. Triggering of the viral spike to reveal V3 epitopes may be required if V3 immunogens are to be components of an effective HIV-1 vaccine.  相似文献   

2.
3.
Broadly neutralizing antibodies to HIV-1 usually develops in chronic infections. Here, we examined the basis of enhanced sensitivity of an env clone amplified from cross neutralizing plasma of an antiretroviral naïve chronically infected Indian patient (ID50 >600-fold higher compared to other autologous env clones). The enhanced autologous neutralization of pseudotyped viruses expressing the sensitive envelope (Env) was associated with increased sensitivity to reagents and monoclonal antibodies targeting distinct sites in Env. Chimeric viruses constructed by swapping fragments of sensitive Env into resistant Env backbone revealed that the presence of unique residues within C2V3 region of gp120 governed increased neutralization. The enhanced virus neutralization was also associated with low CD4 dependence as well as increased binding of Env trimers to IgG1b12 and CD4-IgG2 and was independent of gp120 shedding. Our data highlighted vulnerabilities in the Env obtained from cross neutralizing plasma associated with the exposure of discontinuous neutralizing epitopes and enhanced autologous neutralization. Such information may aid in Env-based vaccine immunogen design.  相似文献   

4.
5.
PG9 and PG16 are two quaternary-structure-specific broadly neutralizing antibodies with unique HCDR3 subdomains. Previously, we showed that glycosylphosphatidylinositol (GPI)-anchored HCDR3 subdomains (GPI-HCDR3) can be targeted to lipid rafts of the plasma membrane, bind to the epitope recognized by HCDR3 of PG16, and neutralize diverse HIV-1 isolates. In this study, we further developed trimeric GPI-HCDR3s and demonstrated that trimeric GPI-HCDR3 (PG16) dramatically improves anti-HIV-1 neutralization, suggesting that a stoichiometry of recognition of 3 or 2 HCDR3 molecules (PG16) to 1 viral spike is possible.  相似文献   

6.
The identification of a new generation of potent broadly neutralizing HIV-1 antibodies (bnAbs) has generated substantial interest in their potential use for the prevention and/or treatment of HIV-1 infection. While combinations of bnAbs targeting distinct epitopes on the viral envelope (Env) will likely be required to overcome the extraordinary diversity of HIV-1, a key outstanding question is which bnAbs, and how many, will be needed to achieve optimal clinical benefit. We assessed the neutralizing activity of 15 bnAbs targeting four distinct epitopes of Env, including the CD4-binding site (CD4bs), the V1/V2-glycan region, the V3-glycan region, and the gp41 membrane proximal external region (MPER), against a panel of 200 acute/early clade C HIV-1 Env pseudoviruses. A mathematical model was developed that predicted neutralization by a subset of experimentally evaluated bnAb combinations with high accuracy. Using this model, we performed a comprehensive and systematic comparison of the predicted neutralizing activity of over 1,600 possible double, triple, and quadruple bnAb combinations. The most promising bnAb combinations were identified based not only on breadth and potency of neutralization, but also other relevant measures, such as the extent of complete neutralization and instantaneous inhibitory potential (IIP). By this set of criteria, triple and quadruple combinations of bnAbs were identified that were significantly more effective than the best double combinations, and further improved the probability of having multiple bnAbs simultaneously active against a given virus, a requirement that may be critical for countering escape in vivo. These results provide a rationale for advancing bnAb combinations with the best in vitro predictors of success into clinical trials for both the prevention and treatment of HIV-1 infection.  相似文献   

7.
8.
A recent clinical trial of a T-cell-based AIDS vaccine delivered with recombinant adenovirus type 5 (rAd5) vectors showed no efficacy in lowering viral load and was associated with increased risk of human immunodeficiency virus type 1 (HIV-1) infection. Preexisting immunity to Ad5 in humans could therefore affect both immunogenicity and vaccine efficacy. We hypothesized that vaccine-induced immunity is differentially affected, depending on whether subjects were exposed to Ad5 by natural infection or by vaccination. Serum samples from vaccine trial subjects receiving a DNA/rAd5 AIDS vaccine with or without prior immunity to Ad5 were examined for the specificity of their Ad5 neutralizing antibodies and their effect on HIV-1 immune responses. Here, we report that rAd5 neutralizing antibodies were directed to different components of the virion, depending on whether they were elicited by natural infection or vaccination in HIV vaccine trial subjects. Neutralizing antibodies elicited by natural infection were directed largely to the Ad5 fiber, while exposure to rAd5 through vaccination elicited antibodies primarily to capsid proteins other than fiber. Notably, preexisting immunity to Ad5 fiber from natural infection significantly reduced the CD4 and CD8 cell responses to HIV Gag after DNA/rAd5 vaccination. The specificity of Ad5 neutralizing antibodies therefore differs depending on the route of exposure, and natural Ad5 infection compromises Ad5 vaccine-induced immunity to weak immunogens, such as HIV-1 Gag. These results have implications for future AIDS vaccine trials and the design of next-generation gene-based vaccine vectors.Recombinant adenovirus (rAd)-based vectors are currently under investigation in a variety of gene therapy and T-cell-based vaccine clinical trials. There are more than 370 such ongoing clinical trials for broad applications, including infectious diseases and cancer therapy (http://www.wiley.co.uk/genetherapy/clinical/). Based on supportive data from nonhuman primate studies, rAd-based vectors have been developed and tested in human clinical trials to deliver human immunodeficiency virus (HIV-1) gene products that stimulate HIV-specific immune responses. Preexisting immunity to Ad serotype 5 (Ad5), from which most vectors are derived, is common in humans. Though neutralizing antibodies to Ad5 may reduce the immunogenicity of Ad5-based vectors in animal models (16), their effect on immunity in subjects with previous Ad5 infection is poorly understood. In the STEP trial, which tested a Merck rAd5 vaccine encoding HIV-1 Gag, Pol, and Nef, vaccination failed to show protection, either by lowering viral load or by decreasing acquisition of infection (3, 9, 12, 21). Furthermore, the possibility was raised that subjects with preexisting neutralizing antibodies from natural Ad5 infection may have carried an increased risk of HIV infection after vaccination. Thus, understanding the nature and immune effects of Ad5 seropositivity in humans is important to the development of vaccines against AIDS and other diseases.Ad5 is a common cause of respiratory disease and an occasional cause of gastroenteritis in humans, and exposure before adolescence is common in human populations (19). Such exposure stimulates both innate and adaptive immune responses that generate neutralizing antibodies and virus-specific T-cell responses (6). These antibodies can also synergize with each other to achieve maximum viral neutralization (7, 22). The capsid protein specificity of Ad5 neutralizing antibodies has been reported for humans following administration of rAd5 gene therapy vectors for advanced liver or lung cancer (7, 10). However, results were presented solely for antibodies induced by administration of rAd5. One report has assessed Ad5 neutralizing antibodies with a healthy human population that was Ad5 seropositive from natural exposure to the virus (18). The median titer of the population was presented, but the frequency of protein-specific neutralizing antibody has not been defined for humans.Here we describe the first report of the natural frequency and effect on immunization of neutralizing antibodies specific for different Ad capsid proteins in human subjects. We address the fundamental mechanisms of how humans generate neutralizing antibodies to a common cold virus that is in widespread use as a vector for gene therapy and vaccines. Such mechanisms may also be applicable to other nonenveloped viruses, including adeno-associated viruses and other viruses containing multiple envelope surface proteins, like influenza. To analyze the contribution of anti-capsid antibodies to neutralization by different human serum samples, wild-type and chimeric vectors were utilized. For example, a rAd type 5 (rAd5) vector with a fiber derived from Ad35 fiber (rAd5 F35) can be used to analyze the anti-Ad5 capsid response independent of fiber. Conversely, a rAd35 vector with a fiber transposed from Ad5 can determine the specificity of neutralization mediated by the Ad5 fiber. Using these vectors, we have analyzed human serum samples from two HIV vaccine clinical trials, VRC 006 and HVTN 204, in which a single-dose rAd5 vaccine alone and a three-dose DNA prime/single dose rAd5 boost vaccine encoding HIV-1 Env A,B, and C; Gag; and Pol, respectively, were administered. Thus, we sought to characterize the specificity of rAd5 neutralizing antibodies in Ad5-immune subjects and to determine their effect on immune responses elicited by vaccination.  相似文献   

9.
10.
Nearly all livers transplanted into hepatitis C virus (HCV)-positive patients become infected with HCV, and 10 to 25% of reinfected livers develop cirrhosis within 5 years. Neutralizing monoclonal antibody could be an effective therapy for the prevention of infection in a transplant setting. To pursue this treatment modality, we developed human monoclonal antibodies (HuMAbs) directed against the HCV E2 envelope glycoprotein and assessed the capacity of these HuMAbs to neutralize a broad panel of HCV genotypes. HuMAb antibodies were generated by immunizing transgenic mice containing human antibody genes (HuMAb mice; Medarex Inc.) with soluble E2 envelope glycoprotein derived from a genotype 1a virus (H77). Two HuMAbs, HCV1 and 95-2, were selected for further study based on initial cross-reactivity with soluble E2 glycoproteins derived from genotypes 1a and 1b, as well as neutralization of lentivirus pseudotyped with HCV 1a and 1b envelope glycoproteins. Additionally, HuMAbs HCV1 and 95-2 potently neutralized pseudoviruses from all genotypes tested (1a, 1b, 2b, 3a, and 4a). Epitope mapping with mammalian and bacterially expressed proteins, as well as synthetic peptides, revealed that HuMAbs HCV1 and 95-2 recognize a highly conserved linear epitope spanning amino acids 412 to 423 of the E2 glycoprotein. The capacity to recognize and neutralize a broad range of genotypes, the highly conserved E2 epitope, and the fully human nature of the antibodies make HuMAbs HCV1 and 95-2 excellent candidates for treatment of HCV-positive individuals undergoing liver transplantation.Hepatitis C virus (HCV) is a major cause of liver failure and infects more than 170 million people worldwide. HCV is a member of the Flaviviridae family and contains a 9.6-kb positive-strand RNA genome. The genome is translated into a single polypeptide that is cleaved by viral and cellular proteases into at least nine different proteins. The major HCV surface glycoproteins, E1 and E2, form a noncovalent heterodimer on the virion surface (23) and are believed to mediate viral entry via a complex set of poorly understood interactions with cellular coreceptors, including CD81 (28), claudin-1 (8), occludin (29), scavenger receptor class B type I (30), and others (38). The E2 glycoprotein has been shown to interact directly with receptors (38); currently, no function has been assigned to E1, although it is known to be required for viral infection. These viral glycoproteins provide an obvious target for neutralizing monoclonal antibodies (MAbs).Isolation of potently neutralizing HCV-specific MAbs has been complicated by the lack of an in vitro cell culture system to study the full infection cycle of the virus. Recently, systems have been developed that allow for the generation of infectious viral particles, highlighting the importance of E1 and E2 in viral binding and entry. A novel in vitro infection system employs HCV pseudotyped viral particles (HCVpp) generated from a lentivirus that are devoid of native glycoproteins and engineered to contain HCV glycoproteins E1 and E2 (4, 15). HCVpp specifically infect cell lines derived from human liver cells and can be neutralized by polyclonal and MAbs directed against the HCV envelope glycoproteins.HCVpp have allowed the identification of antibodies that can neutralize HCV infection in cell culture. E1 has proven to be a difficult target for MAb-mediated neutralization, possibly because it appears to have low immunogenicity (32), has no identified binding proteins on the cell surface, and has an undefined role in cell entry. Despite this challenge, two groups have identified HCV neutralizing MAbs directed to E1: these MAbs are H-111, which has moderate neutralizing activity (17), and the recently isolated IGH505 and IGH526, which neutralize numerous HCV genotypes (1a, 1b, 2a, 4a, 5a, and 6a but not 2b and 3a) (22). Although they are predicted to inhibit viral binding or fusion, the mechanism by which these E1-directed MAbs neutralize HCV infection is unclear.A diverse group of mouse anti-E2 antibodies, recognizing both linear and discontinuous epitopes, has been generated. Many of these MAbs showed broad neutralization of multiple HCV genotypes, but not surprisingly, several HCV isolates were refractory to neutralization. In contrast, AP33, a mouse MAb that largely recognizes a highly conserved linear epitope in the N terminus of E2 (amino acids 412 to 423), was identified as a broadly cross-reactive antibody that neutralized strains from all genotypes tested (1a, 1b, 2a, 2b, 3a, 4, 5, and 6), with the exception of one genotype 5 virus (UKN5.14.4; GenBank accession no. AY894682) (24). Recently, several cross-reactive neutralizing MAbs have been identified that are of human origin and have the capacity to neutralize a significant fraction of the genotypes tested (1, 5, 12, 13, 27, 31) or to neutralize all genotypes tested (16, 20, 25). As with the vast majority of previously described human MAbs (HuMAbs), these MAbs recognize conformation-dependent epitopes of E2. One broadly neutralizing human antibody, AR3B, was tested in a mouse model of infection and showed significant protection from viremia (20). Given the known function of the E2 envelope glycoprotein, the high level of immunogenicity, the surface vulnerability, and the abundance of data pertaining to E2 and HCV neutralization, E2 provides a promising target for the development of fully human neutralizing antibodies.Liver deterioration due to HCV infection is the leading reason for liver transplantation in the United States. Unfortunately, it is highly likely that the transplanted liver will also become infected with HCV, and 10 to 25% of these patients develop cirrhosis within 5 years of transplant (9, 40). Here we describe the characterization of HuMAbs directed against the HCV E2 envelope glycoprotein, generated using transgenic mice. Based on epitope conservation and broad neutralization capacity, HuMAbs HCV1 and 95-2 provide excellent candidates for prevention of graft reinfection of HCV-infected individuals undergoing liver transplantation.  相似文献   

11.
Approximately 1% of those infected with HIV-1 develop broad and potent serum cross-neutralizing antibody activities. It is unknown whether or not the development of such immune responses affects the replication of the contemporaneous autologous virus. Here, we defined a pathway of autologous viral escape from contemporaneous potent and broad serum neutralizing antibodies developed by an elite HIV-1-positive (HIV-1+) neutralizer. These antibodies potently neutralize diverse isolates from different clades and target primarily the CD4-binding site (CD4-BS) of the viral envelope glycoprotein. Viral escape required mutations in the viral envelope glycoprotein which limited the accessibility of the CD4-binding site to the autologous broadly neutralizing anti-CD4-BS antibodies but which allowed the virus to infect cells by utilizing CD4 receptors on their surface. The acquisition of neutralization resistance, however, resulted in reduced cell entry potential and slower viral replication kinetics. Our results indicate that in vivo escape from autologous broadly neutralizing antibodies exacts fitness costs to HIV-1.  相似文献   

12.
13.
14.
Broadly neutralizing antibodies are commonly present in the sera of patients with chronic hepatitis C virus (HCV) infection. To elucidate possible mechanisms of virus escape from these antibodies, retrovirus particles pseudotyped with HCV glycoproteins (HCVpp) isolated from sequential samples collected over a 26-year period from a chronically infected patient, H, were used to characterize the neutralization potential and binding affinity of a panel of anti-HCV E2 human monoclonal antibodies (HMAbs). Moreover, AP33, a neutralizing murine monoclonal antibody (MAb) to a linear epitope in E2, was also tested against selected variants. The HMAbs used were previously shown to broadly neutralize HCV and to recognize a cluster of highly immunogenic overlapping epitopes, designated domain B, containing residues that are also critical for binding of viral E2 glycoprotein to CD81, a receptor essential for virus entry. Escape variants were observed at different time points with some of the HMAbs. Other HMAbs neutralized all variants except for the isolate 02.E10, obtained in 2002, which was also resistant to MAb AP33. The 02.E10 HCVpp that have reduced binding affinities for all antibodies and for CD81 also showed reduced infectivity. Comparison of the 02.E10 nucleotide sequence with that of the strain H-derived consensus variant, H77c, revealed the former to have two mutations in E2, S501N and V506A, located outside the known CD81 binding sites. Substitution A506V in 02.E10 HCVpp restored binding to CD81, but its antibody neutralization sensitivity was only partially restored. Double substitutions comprising N501S and A506V synergistically restored 02.E10 HCVpp infectivity. Other mutations that are not part of the antibody binding epitope in the context of N501S and A506V were able to completely restore neutralization sensitivity. These findings showed that some nonlinear overlapping epitopes are more essential than others for viral fitness and consequently are more invariant during earlier years of chronic infection. Further, the ability of the 02.E10 consensus variant to escape neutralization by the tested antibodies could be a new mechanism of virus escape from immune containment. Mutations that are outside receptor binding sites resulted in structural changes leading to complete escape from domain B neutralizing antibodies, while simultaneously compromising viral fitness by reducing binding to CD81.Over 170 million people worldwide are infected with hepatitis C virus (HCV). While acute infection is usually silent, the majority of infected individuals develop persistent infections. Approximately 30% of acute infections are spontaneously resolved. Cellular immunity is clearly necessary, as robust and sustained CD4+ and CD8+ T-cell responses are temporally associated with virus clearance leading to disease resolution (7). Persistent infection is associated with an inability to sustain a vigorous CD4+ response. The role of antibodies in disease resolution is increasingly recognized but less understood. Clinical trials with gamma globulin administration prior to the discovery of HCV achieved prophylactic effects on transfusion-associated non-A, non-B hepatitis cases, most of which were subsequently shown to be HCV related (28, 46). Animal studies showed that gamma globulin therapy delayed the onset of acute HCV infection (29). Preincubation of the infectious inoculum with pooled gamma globulin from HCV-positive donors prevented infection in challenged chimpanzees (55). The protection afforded by gamma globulin preparations correlated with antibody titers blocking infection of target cells with retroviral pseudotype particles expressing HCV E1E2 glycoproteins (HCVpp) (4). In addition, chimpanzees vaccinated with recombinant HCV E2 glycoproteins were protected against infection in a manner that correlated with serum antibody titers inhibiting binding of E2 to CD81 (19, 40, 41), a receptor required for entry by both HCVpp and cell culture infectious HCV (HCVcc) (5, 17, 33, 53, 56). Two recent studies observed that patients with strong and progressive neutralizing antibody responses demonstrated decreasing viremia and control of viral replication (31, 39). A third study, however, reported the lack of neutralizing antibodies to heterologous HCVpp isolates in the sera of patients who eventually controlled their viremia during acute HCV infection (21). Furthermore, 104 to 106 virions per milliliter of serum are usually detected during chronic infection in the presence of high titers of serum neutralizing antibodies.A driver of persistent viremia is a high degree of viral variants, or “quasispecies.” Owing to a high viral replication rate (1012 copies per day) and an error-prone viral RNA-dependent polymerase, the estimated mutation rate is 2.0 × 10−3 base substitutions per genome per year (9, 34). This high rate of quasispecies formation contributes to the emergence of escape viral variants from immune surveillance. Mutations within major histocompatibility complex class I-restricted HCV epitopes lead to escape from cytotoxic T-cell responses (7). Mutations leading to escape from humoral immunity, particularly in E2 hypervariable region 1 (HVR1), known to be the target of host neutralizing antibodies, are also documented (10, 22, 30, 45). Protection in chimpanzees is achieved following challenge with an inoculum that had been preincubated with antibodies to autologous HVR1 (10). Yet over time, these isolate-specific antibodies drive the emergence of new viral variants that the concurrent immune response poorly recognizes. A study of sequential HCV isolates obtained from a patient, H, who was meticulously followed for a 26-year period starting 3 weeks after exposure to the virus, showed that the serial HCV variants were poorly neutralized by the concurrent serum antibodies (52). Escape was associated in part with mutations in HVR1 leading to decreased binding and neutralization by monoclonal antibodies (MAbs) to HVR1 that were produced against the first isolate obtained from this patient.Broadly neutralizing antibodies are usually directed against conformational epitopes within E2 (2, 8, 13, 14, 44). We previously described a panel of neutralizing and nonneutralizing human MAbs (HMAbs) to conformational epitopes on HCV E2 that were derived from peripheral B cells of individuals infected with either genotype 1a or 1b HCV. Cross-competition analyses delineated at least three immunogenic clusters of overlapping epitopes with distinct functions and properties (23-25). All nonneutralizing antibodies fell within one cluster, designated domain A (24). Neutralizing HMAbs segregated into two clusters, designated domains B and C, with domain B HMAbs having greater potency than domain C HMAbs in blocking infection with the strain JFH1 genotype 2a HCVcc (23, 25).The epitopes of increasing numbers of anti-HCV E2 neutralizing antibodies include residues that are also critical for binding of E2 to CD81. All of our domain B HMAbs inhibit binding of E2 to CD81. Alanine scanning mutagenesis of E2 regions implicated in binding to CD81 identified two highly conserved residues, G530 and D535, that are needed for all domain B antibodies, with a subset also requiring W529 (25, 26, 36). Other laboratories have isolated similar neutralizing antibodies to epitopes containing these residues (20, 32, 38). A similar panel of E2 mutants was previously used to identify five amino acid residues, W420, Y527, W529, G530, and D535, that are essential for interaction with CD81 (37, 42). These findings show that domain B antibodies exert their potent neutralization of HCV infectivity by directly competing with CD81 for binding to E2. It also explains the breadth of neutralization against different HCV genotypes and subtypes for many of these antibodies, since any changes in their epitopes could affect CD81 binding and virus entry. The conserved nature of this cluster of overlapping epitopes makes them of interest for vaccine and immunotherapeutic development. A critical question involves the likelihood that immune selection could lead to escape from neutralization by domain B HMAbs. The series of sequential HCVpp variants derived from patient H over a span of 26 years (52) provide a unique resource for studying the extent and mechanisms of virus escape from broadly neutralizing antibodies. This report describes evidence of escape from immune containment of some but not other domain B HMAbs. Interestingly, a single H variant with reduced HCVpp infectivity and diminished CD81 binding was resistant to neutralization by all domain B antibodies as well as MAb AP33, recognizing a highly conserved linear epitope spanning residues 413 to 420 (35, 47). Sequence analysis revealed multiple mutations on E2 at a considerable distance from CD81 binding residues that could account for the immune escape, although it is unlikely that they are part of the domain B HMAb or the AP33 epitopes. Site-directed substitutions at these mutations restored neutralization sensitivity to all antibodies and CD81 dependency.  相似文献   

15.
The native envelope (Env) spike on the surface of human immunodeficiency virus type 1 (HIV-1) is trimeric, and thus trimeric Env vaccine immunogens are currently being explored in preclinical immunogenicity studies. Key challenges have included the production and purification of biochemically homogeneous and stable trimers and the evaluation of these immunogens utilizing standardized virus panels for neutralization assays. Here we report the binding and neutralizing antibody (NAb) responses elicited by clade A (92UG037.8) and clade C (CZA97.012) Env gp140 trimer immunogens in guinea pigs. These trimers have been selected and engineered for optimal biochemical stability and have defined antigenic properties. Purified gp140 trimers with Ribi adjuvant elicited potent, cross-clade NAb responses against tier 1 viruses as well as detectable but low-titer NAb responses against select tier 2 viruses from clades A, B, and C. In particular, the clade C trimer elicited NAbs that neutralized 27%, 20%, and 47% of tier 2 viruses from clades A, B, and C, respectively. Heterologous DNA prime, protein boost as well as DNA prime, recombinant adenovirus boost regimens expressing these antigens, however, did not result in an increased magnitude or breadth of NAb responses in this system. These data demonstrate the immunogenicity of stable, homogeneous clade A and clade C gp140 trimers and exemplify the utility of standardized tier 1 and tier 2 virus panels for assessing the NAb responses of candidate HIV-1 Env immunogens.The development and evaluation of novel HIV-1 Env immunogens are critical priorities of the HIV-1 vaccine field (2, 10, 25). The major antigenic target for neutralizing antibodies (NAbs) is the trimeric Env glycoprotein on the virion surface (4, 18, 30). Monomeric gp120 immunogens have not elicited broadly reactive NAbs in animal models (5, 13, 28, 29) or humans (16, 31), and thus several groups have focused on generating trimer immunogens that better mimic the native Env spike found on virions (3, 7, 14, 15, 20, 22, 27). It has, however, proven difficult to produce stable and conformationally homogeneous Env trimers. Strategies to modify Env immunogens have therefore been explored, including the removal of the cleavage site between gp120 and gp41 (3, 7, 23, 39, 40), the incorporation of an intramolecular disulfide bond to stabilize cleaved gp120 and gp41 moieties (6), and the addition of trimerization motifs such as the T4 bacteriophage fibritin “fold-on” (Fd) domain (8, 17, 39).Preclinical evaluation of candidate Env immunogens is critical for concept testing and for the prioritization of vaccine candidates. Luciferase-based virus neutralization assays with TZM.bl cells (21, 24) have been developed as high-throughput assays that can be standardized (26). However, the optimal use of this assay requires the generation of standardized virus panels derived from multiple clades that reflect both easy-to-neutralize (tier 1) and primary isolate (tier 2) viruses (21, 24). A tiered approach for the evaluation of novel Env immunogens has been proposed, in which tier 1 viruses represent homologous vaccine strains and a small number of heterologous neutralization-sensitive viruses while tier 2 viruses provide a greater measure of neutralization breadth for the purpose of comparing immunogens (24).We screened a large panel of primary HIV-1 isolates for Env stability and identified two viruses, CZA97.012 (clade C) (32) and 92UG037.8 (clade A) (17), that yielded biochemically homogeneous and stable Env trimers with well defined and uniform antigenic properties (17). The addition of the T4 bacteriophage fibritin “fold-on” (Fd) trimerization domain further increased their yield and purity (17). In the present study, we assessed the immunogenicity of these stable clade A and clade C gp140 trimers in guinea pigs. Both trimers elicited high-titer binding antibody responses and cross-clade neutralization of select tier 1 viruses as well as low-titer but detectable NAb responses against select tier 2 viruses from clades A, B, and C. These data demonstrate the immunogenicity of these stable gp140 trimers and highlight the utility of standardized virus panels in the evaluation of novel HIV-1 Env immunogens.  相似文献   

16.
The E2 envelope glycoprotein of hepatitis C virus (HCV) binds to the host entry factor CD81 and is the principal target for neutralizing antibodies (NAbs). Most NAbs recognize hypervariable region 1 on E2, which undergoes frequent mutation, thereby allowing the virus to evade neutralization. Consequently, there is great interest in NAbs that target conserved epitopes. One such NAb is AP33, a mouse monoclonal antibody that recognizes a conserved, linear epitope on E2 and potently neutralizes a broad range of HCV genotypes. In this study, the X-ray structure of AP33 Fab in complex with an epitope peptide spanning residues 412 to 423 of HCV E2 was determined to 1.8 Å. In the complex, the peptide adopts a β-hairpin conformation and docks into a deep binding pocket on the antibody. The major determinants of antibody recognition are E2 residues L413, N415, G418, and W420. The structure is compared to the recently described HCV1 Fab in complex with the same epitope. Interestingly, the antigen-binding sites of HCV1 and AP33 are completely different, whereas the peptide conformation is very similar in the two structures. Mutagenesis of the peptide-binding residues on AP33 confirmed that these residues are also critical for AP33 recognition of whole E2, confirming that the peptide-bound structure truly represents AP33 interaction with the intact glycoprotein. The slightly conformation-sensitive character of the AP33-E2 interaction was explored by cross-competition analysis and alanine-scanning mutagenesis. The structural details of this neutralizing epitope provide a starting point for the design of an immunogen capable of eliciting AP33-like antibodies.  相似文献   

17.
18.
We evaluated four gp140 Envelope protein vaccine immunogens that were derived from an elite neutralizer, subject VC10042, whose plasma was able to potently neutralize a wide array of genetically distinct HIV-1 isolates. We sought to determine whether soluble Envelope proteins derived from the viruses circulating in VC10042 could be used as immunogens to elicit similar neutralizing antibody responses by vaccination. Each gp140 was tested in its trimeric and monomeric forms, and we evaluated two gp140 trimer vaccine regimens in which adjuvant was supplied at all four immunizations or at only the first two immunizations. Interestingly, all four Envelope immunogens elicited high titers of cross-reactive antibodies that recognize the variable regions V1V2 and are potentially similar to antibodies linked with a reduced risk of HIV-1 acquisition in the RV144 vaccine trial. Two of the four immunogens elicited neutralizing antibody responses that neutralized a wide array of HIV-1 isolates from across genetic clades, but those responses were of very low potency. There were no significant differences in the responses elicited by trimers or monomers, nor was there a significant difference between the two adjuvant regimens. Our study identified two promising Envelope immunogens that elicited anti-V1V2 antibodies and broad, but low potency, neutralizing antibody responses.  相似文献   

19.
Hepatitis C virus (HCV) is a major cause of liver cirrhosis and hepatocellular carcinoma. A challenge for HCV vaccine development is to identify conserved epitopes able to elicit protective antibodies against this highly diverse virus. Glycan shielding is a mechanism by which HCV masks such epitopes on its E2 envelope glycoprotein. Antibodies to the E2 region comprising residues 412–423 (E2412–423) have broadly neutralizing activities. However, an adaptive mutation in this linear epitope, N417S, is associated with a glycosylation shift from Asn-417 to Asn-415 that enables HCV to escape neutralization by mAbs such as HCV1 and AP33. By contrast, the human mAb HC33.1 can neutralize virus bearing the N417S mutation. To understand how HC33.1 penetrates the glycan shield created by the glycosylation shift to Asn-415, we determined the structure of this broadly neutralizing mAb in complex with its E2412–423 epitope to 2.0 Å resolution. The conformation of E2412–423 bound to HC33.1 is distinct from the β-hairpin conformation of this peptide bound to HCV1 or AP33, because of disruption of the β-hairpin through interactions with the unusually long complementarity-determining region 3 of the HC33.1 heavy chain. Whereas Asn-415 is buried by HCV1 and AP33, it is solvent-exposed in the HC33.1-E2412–423 complex, such that glycosylation of Asn-415 would not prevent antibody binding. Furthermore, our results highlight the structural flexibility of the E2412–423 epitope, which may serve as an immune evasion strategy to impede induction of antibodies targeting this site by reducing its antigenicity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号