首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Members of the RidA (YjgF/YER057c/UK114) protein family are broadly conserved across the domains of life. In vitro, these proteins deaminate 3- or 4-carbon enamines that are generated as mechanistic intermediates of pyridoxal 5′-phosphate (PLP)-dependent serine/threonine dehydratases. The three-carbon enamine 2-aminoacrylate can inactivate some enzymes by forming a covalent adduct via a mechanism that has been well characterized in vitro. The biochemical activity of RidA suggested that the phenotypes of ridA mutant strains were caused by the accumulation of reactive enamine metabolites. The data herein show that in ridA mutant strains of Salmonella enterica, a stable 2-aminoacrylate (2-AA)/PLP adduct forms on the biosynthetic alanine racemase, Alr, indicating the presence of 2-aminoacrylate in vivo. This study confirms the deleterious effect of 2-aminoacrylate generated by metabolic enzymes and emphasizes the need for RidA to quench this reactive metabolite.  相似文献   

2.
3.
4.
The YjgF/YER057c/UK114 family is a highly conserved class of proteins that is represented in the three domains of life. Thus far, a biochemical function demonstrated for these proteins in vivo or in vitro has yet to be defined. In several organisms, strains lacking a YjgF homolog have a defect in branched-chain amino acid biosynthesis. This study probes the connection between yjgF and isoleucine biosynthesis in Salmonella enterica. In strains lacking yjgF the specific activity of transaminase B, catalyzing the last step in the synthesis of isoleucine, was reduced. In the absence of yjgF, transaminase B activity could be restored by inhibiting threonine deaminase, the first enzymatic step in isoleucine biosynthesis. Strains lacking yjgF showed an increased sensitivity to sulfometruron methyl, a potent inhibitor of acetolactate synthase. Based on work described here and structural reports in the literature, we suggest a working model in which YjgF has a role in protecting the cell from toxic effects of imbalanced ketoacid pools.  相似文献   

5.

Background  

The YjgF/YER057c/UK114 family of proteins is widespread in nature, but has as yet no clearly defined biological role. Members of the family exist as homotrimers and are characterised by intersubunit clefts that are delineated by well-conserved residues; these sites are likely to be of functional significance, yet catalytic activity has never been detected for any member of this family. The gene encoding the TdcF protein of E. coli, a YjgF/YER057c/UK114 family member, resides in an operon that strongly suggests a role in the metabolism of 2-ketobutyrate for this protein.  相似文献   

6.
RidA, the archetype member of the widely conserved RidA/YER057c/UK114 family of proteins, prevents reactive enamine/imine intermediates from accumulating in Salmonella enterica by catalyzing their hydrolysis to stable keto acid products. In the absence of RidA, endogenous 2-aminoacrylate persists in the cellular environment long enough to damage a growing list of essential metabolic enzymes. Prior studies have focused on the dehydration of serine by the pyridoxal 5′-phosphate (PLP)-dependent serine/threonine dehydratases, IlvA and TdcB, as sources of endogenous 2-aminoacrylate. The current study describes an additional source of endogenous 2-aminoacrylate derived from cysteine. The results of in vivo analysis show that the cysteine sensitivity of a ridA strain is contingent upon CdsH, the predominant cysteine desulfhydrase in S. enterica. The impact of cysteine on 2-aminoacrylate accumulation is shown to be unaffected by the presence of serine/threonine dehydratases, revealing another mechanism of endogenous 2-aminoacrylate production. Experiments in vitro suggest that 2-aminoacrylate is released from CdsH following cysteine desulfhydration, resulting in an unbound aminoacrylate substrate for RidA. This work expands our understanding of the role played by RidA in preventing enamine stress resulting from multiple normal metabolic processes.  相似文献   

7.

Background

It is now recognized that enzymatic or chemical side-reactions can convert normal metabolites to useless or toxic ones and that a suite of enzymes exists to mitigate such metabolite damage. Examples are the reactive imine/enamine intermediates produced by threonine dehydratase, which damage the pyridoxal 5''-phosphate cofactor of various enzymes causing inactivation. This damage is pre-empted by RidA proteins, which hydrolyze the imines before they do harm. RidA proteins belong to the YjgF/YER057c/UK114 family (here renamed the Rid family). Most other members of this diverse and ubiquitous family lack defined functions.

Results

Phylogenetic analysis divided the Rid family into a widely distributed, apparently archetypal RidA subfamily and seven other subfamilies (Rid1 to Rid7) that are largely confined to bacteria and often co-occur in the same organism with RidA and each other. The Rid1 to Rid3 subfamilies, but not the Rid4 to Rid7 subfamilies, have a conserved arginine residue that, in RidA proteins, is essential for imine-hydrolyzing activity. Analysis of the chromosomal context of bacterial RidA genes revealed clustering with genes for threonine dehydratase and other pyridoxal 5''-phosphate-dependent enzymes, which fits with the known RidA imine hydrolase activity. Clustering was also evident between Rid family genes and genes specifying FAD-dependent amine oxidases or enzymes of carbamoyl phosphate metabolism. Biochemical assays showed that Salmonella enterica RidA and Rid2, but not Rid7, can hydrolyze imines generated by amino acid oxidase. Genetic tests indicated that carbamoyl phosphate overproduction is toxic to S. enterica cells lacking RidA, and metabolomic profiling of Rid knockout strains showed ten-fold accumulation of the carbamoyl phosphate-related metabolite dihydroorotate.

Conclusions

Like the archetypal RidA subfamily, the Rid2, and probably the Rid1 and Rid3 subfamilies, have imine-hydrolyzing activity and can pre-empt damage from imines formed by amine oxidases as well as by pyridoxal 5''-phosphate enzymes. The RidA subfamily has an additional damage pre-emption role in carbamoyl phosphate metabolism that has yet to be biochemically defined. Finally, the Rid4 to Rid7 subfamilies appear not to hydrolyze imines and thus remain mysterious.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1584-3) contains supplementary material, which is available to authorized users.  相似文献   

8.
The YjgF/YER057c/UK114 family of proteins is conserved across the three domains of life, yet no biochemical function has been clearly defined for any member of this family. In Salmonella enterica, a deletion of yjgF results in a requirement for isoleucine when the mutant strain is grown in glucose-serine or pyruvate medium. Feedback inhibition of IlvA is required for the curative effect of isoleucine on glucose-serine medium. On pyruvate medium, yjgF mutants are unable to synthesize enough isoleucine for growth. From this study, we conclude that the isoleucine requirement of a yjgF mutant on pyruvate is a consequence of the decreased transaminase B (IlvE) activity that has previously been characterized in these mutants.  相似文献   

9.
Proteins UK114 and p14.5 are both members of the putative family of small proteins YER057c/YIL051c/YjgF. The biological role of these proteins is not understood very well, and in addition, their oligomeric structure in solution remains controversial. We therefore investigated the oligomeric structure of UK114 and p14.5 using a number of methods. Both proteins have exhibited a homotrimeric structure in solution. Indeed the trimeric structure of the two proteins appeared to be so similar that when protein subunits derived from different species were mixed, stable heterotrimeric complexes (monomer ratio of 1:2 and 2:1 of UK114 and p14.5, respectively) could be formed in vitro. Furthermore, the trimeric structure of both UK114 and p14.5 proved essential for the stoichiometric hydrophobic ligand, such as fatty acid binding activity of the two proteins.  相似文献   

10.
The RidA/Yer057/UK114 family of proteins is well represented across the domains of life and recent work has defined both an in vitro activity and an in vivo role for RidA. RidA proteins have enamine deaminase activity, and in their absence the reactive 2‐aminoacrylate (2‐AA) accumulates and inactivates at least some pyridoxal 5′‐phosphate (PLP)‐containing enzymes in Salmonella enterica. The conservation of RidA suggested that 2‐AA was a ubiquitous cellular stressor that was generated in central metabolism. Phenotypically, strains of S. enterica that lack RidA accumulated significantly more pyruvate in the growth medium than wild‐type strains. Here we dissected this ridA mutant phenotype and showed it was an indirect consequence of damage to serine hydroxymethyltransferase (GlyA; E.C. 2.1.2.1). The results here identified a fourth PLP enzyme as a target of enamine stress in Salmonella.  相似文献   

11.
Studies on the carotenoid-overaccumulating structures in chromoplasts have led to the characterization of proteins termed plastid lipid-associated proteins (PAPs), involved in the sequestration of hydrophobic compounds. Here we characterize the PAP CHRD, which, based on sequence homology, belongs to a highly conserved group of proteins, YER057c/YjgF/UK114, involved in the regulation of basic and vital cellular processes in bacteria, yeast and animals. Two nuclear genes were characterized in tomato plants: one (LeChrDc) is constitutively expressed in various tissues and the other (LeChrDi) is induced by stress in leaves and is upregulated by developmental cues in floral tissues. Using RNAi and antisense approaches, we show their involvement in biologically significant processes such as photosynthesis. The quantum yield of photosynthetic electron flow in transgenic tomato leaves with suppressed LeChrDi/c expression was 30–50% of their control, non-transgenic counterparts and was ascribed to lower PSI activity. Transgenic flowers with suppressed LeChrDi/c also accumulated up to 30% less carotenoids per unit protein as compared to control plants, indicating an interrelationship between PAPs and floral-specific carotenoid accumulation in chromoplasts. We suggest that CHRD’s role in the angiosperm reproductive unit may be a rather recent evolutionary development; its original function may have been to protect the plant under stress conditions by preserving plastid functionality.Y. Leitner-Dagan and M. Ovadis contributed equally to this work  相似文献   

12.
Seventeen mutants with one, two or three amino acids substitutions of human protein p14.5, homologue to well-known tumor antigen from goat liver UK114 and a member of proteins YER057c/YIL051c/YjgF family, have been used for structure-functional relation studies and ligand binding analysis using cross-linking by triacryloyl-hexahydro-s-triazine (TAT), size exclusion chromatography, free fatty acid and 8-anilino-1-naphthalenesulfonic acid (ANS) binding assays. Amino acids having the most significant impact on the ligand binding activity have been determined: R107, N93, Y21 and F89. Arginine 107 has been identified as the most accessible amino acid in the cleft. Trimeric structure of protein p14.5 has been confirmed as being essential for stoichiometric small ligand binding activity and oligomeric structure of p14. Ligand binding activity may be related with the biological functions of these proteins, which still are not understood well.  相似文献   

13.
The oxidative pentose phosphate pathway is required for function of the alternative pyrimidine biosynthetic pathway, a pathway that allows thiamine synthesis in the absence of the PurF enzyme in Salmonella typhimurium. Mutants that no longer required function of the oxidative pentose phosphate pathway for thiamine synthesis were isolated. Further phenotypic analyses of these mutants demonstrated that they were also sensitive to the presence of serine in the medium, suggesting a partial defect in isoleucine biosynthesis. Genetic characterization showed that these pleiotropic phenotypes were caused by null mutations in yjgF, a previously uncharacterized open reading frame encoding a hypothetical 13.5-kDa protein. The YjgF protein belongs to a class of proteins of unknown function that exhibit striking conservation across a wide range of organisms, from bacteria to humans. This work represents the first detailed phenotypic characterization of yjgF mutants in any organism and provides important clues as to the function of this highly conserved class of proteins. Results also suggest a connection between function of the isoleucine biosynthetic pathway and the requirement for the pentose phosphate pathway in thiamine synthesis.The increasing number of completed genome sequences has resulted in the identification of new families of hypothetical proteins whose function has yet to be established. The lack of existing mutants defective in these conserved proteins suggests novel, complex, or subtle phenotypes. Through our work on thiamine synthesis in Salmonella typhimurium, we have isolated mutants defective in the recently identified YER057c/YjgF protein family. Our data suggest that defects in this protein result in complex phenotypes involving thiamine and isoleucine biosynthesis.Thiamine pyrophosphate (TPP) serves as an essential cofactor for a number of metabolic reactions involving the removal or transfer of C2 units. Despite the important role of TPP in cellular metabolism, its synthesis and regulation are not well understood in any organism. TPP is formed from two precursors, 4-methyl-5-(β-hydroxyethyl)thiazole phosphate (THZ-P) and 4-amino-5-hydroxymethyl-2-methylpyrimidine pyrophosphate (HMP-PP). These compounds are joined and subsequently phosphorylated as shown in Fig. Fig.1A.1A. Although many of the enzymatic steps in both the THZ-P and HMP-PP pathways have not been clearly defined, the major precursor molecules for both of these compounds have been determined by labeling studies (17, 20, 28, 29). In particular, the purine pathway intermediate, aminoimidazole ribotide (AIR), has been shown to provide all of the atoms in HMP (28, 50, 51).Open in a separate windowFIG. 1Pathway schematics. (A) Biosynthetic pathway for TPP. The involvement of the purine pathway in HMP-PP synthesis is shown with structural intermediates prior to the AIR branch point. Arrows denoted with dotted lines represent proposed steps. Reactions involved in the conversion of AIR to HMP-PP and in the synthesis of THZ-P have not been clearly defined. Genes whose products are required for selected reactions are indicated next to the relevant arrows. Abbreviations: R-P, ribose-5-phosphate, PRPP, phosphoribosylpyrophosphate. (B) Biosynthetic pathways for the branched-chain amino acids isoleucine and valine. Enzymes that catalyze specific steps are as follows: 1, aspartate transaminase; 2, 3, and 4, aspartate kinases I, II, and III, respectively; 5, aspartate semialdehyde dehydrogenase; 6 and 7, homoserine dehydrogenases I and II, respectively; 8, homoserine kinase; 9, threonine synthase; 10, threonine deaminase; 11 and 12, acetohydroxy acid synthases I and II, respectively; 13, acetohydroxy acid isomeroreductase; 14, dihydroxy acid dehydratase; 15, transaminase B; 16, transaminase C. OAA, oxaloacetic acid.Although the involvement of the purine pathway in the synthesis of HMP is clear, there is substantial genetic and biochemical evidence indicating that the first enzyme of the purine pathway, phosphoribosylpyrophosphate amidotransferase (PurF) (EC 2.4.2.14), is not required for HMP synthesis in S. typhimurium under all conditions. Mutants defective in purF are able to grow in the absence of thiamine when glucose is used as a carbon source if pantothenate is also supplied in the medium (23). Similarly, purF mutants do not require thiamine when grown on a number of nonglucose carbon sources, such as gluconate or ribose (54). The pathway responsible for synthesis of HMP independent of the PurF enzyme has been defined as the alternative pyrimidine biosynthetic (APB) pathway (21, 54); recent biochemical data suggest that phosphoribosylamine (PRA), or a derivative, is an intermediate in this pathway (24).Significant progress in our understanding of the APB pathway has been made by the isolation and characterization of mutants unable to synthesize thiamine in a purF background. One class of mutants, designated apbA, was defective in a pantothenate biosynthetic enzyme (ketopantoate reductase [PanE]) (32, 33), consistent with previous results implicating a role for pantothenate in PurF-independent thiamine synthesis (23). A second class of these mutants was defective in the oxidative pentose phosphate pathway, affecting either glucose-6-phosphate dehydrogenase (Zwf) or gluconate-6-phosphate dehydrogenase (Gnd) (25, 54). Addition of ribose-5-phosphate (ribose-5-P) restored function of the APB pathway in these mutants, suggesting that the role of these enzymes in HMP synthesis was to supply ribose-5-P. These results led to the model shown in Fig. Fig.1A1A which implicates ribose-5-P and an amine donor as precursors to PRA. Repeated attempts have failed to identify either the predicted PRA-forming activity or mutants defective in this step (27). There are several possible explanations for this. It is possible that the correct substrates have not been identified and/or that the PRA-forming activity is required for another cellular function.In this report, we describe the isolation and characterization of mutations that allow function of the APB pathway in the absence of the pentose phosphate pathway. These mutations were found to disrupt a previously uncharacterized open reading frame (ORF) encoding a hypothetical 13.5-kDa protein. We have designated this gene yjgF based on homology to the respective ORF in Escherichia coli. The YjgF protein belongs to the YER057c/YjgF protein family, a class of proteins of unknown function that exhibit striking conservation across a wide range of organisms. Characterization of these mutants revealed that they also were sensitive to the presence of serine in the medium, exhibiting a requirement for isoleucine under this condition. The phenotypes caused by yjgF mutations suggest that the YjgF protein may be involved in regulation or function of the isoleucine biosynthetic pathway. Further, results suggest a connection between isoleucine biosynthesis and function of the APB pathway in thiamine synthesis.  相似文献   

14.
The genome of Saccharomyces cerevisiae is arguably the best studied eukaryotic genome, and yet, it contains approximately 1000 genes that are still relatively uncharacterized. As the majority of these ORFs have no homologs with characterized sequence or protein structure, traditional sequence-based approaches cannot be applied to deduce their biological function. Here, we characterize YER067W, a conserved gene of unknown function that is strongly induced in response to many stress conditions and repressed in drug resistant yeast strains. Gene expression patterns of YER067W and its paralog YIL057C suggest an involvement in energy metabolism. We show that yeast lacking YER067W display altered levels of reserve carbohydrates and a growth deficiency in media that requires aerobic metabolism. Impaired mitochondrial function and overall reduction of ergosterol content in the YER067W deleted strain explained the observed 2- and 4-fold increase in resistance to the drugs fluconazole and amphotericin B, respectively. Cell fractionation and immunofluorescence microscopy revealed that Yer067w is associated with cellular membranes despite the absence of a transmembrane domain in the protein. Finally, the 1.7 Å resolution crystal structure of Yer067w shows an alpha-beta fold with low similarity to known structures and a putative functional site. YER067W''s involvement with aerobic energetic metabolism suggests the assignment of the gene name RGI1, standing for respiratory growth induced 1. Altogether, the results shed light on a previously uncharacterized protein family and provide basis for further studies of its apparent role in energy metabolism control and drug resistance.  相似文献   

15.
The YER057c/YIL051c/YjgF protein family is a set of 24 full-length homologs, each approximately 130 residues in length, and each with no known function or relationship to proteins of known structure. To determine the function of this family, the structure of one member--the YjgF protein from Escherichia coli--was solved and refined at a resolution of 1.2 A. The YjgF molecule is a homotrimer with exact threefold symmetry. Its tertiary and quaternary structures are related to that of Bacillus subtilis chorismate mutase, although their active sites are completely different. The YjgF protein has an active site curiously similar to protein tyrosine phosphatases, including a covalently modified cysteine, but it is unlikely to be functionally related. The lessons learned from this attempt to deduce function from structure may be useful to future projects in structural genomics.  相似文献   

16.
Streptomyces clavuligerus produces at least five different clavam metabolites, including clavulanic acid and the methionine antimetabolite, alanylclavam. In vitro transposon mutagenesis was used to analyze a 13-kb region upstream of the known paralogue gene cluster. The paralogue cluster includes one group of clavulanic acid biosynthetic genes in S. clavuligerus. Twelve open reading frames (ORFs) were found in this area, and mutants were generated in each using either in vitro transposon or PCR-targeted mutagenesis. Mutants with defects in any of the genes orfA, orfB, orfC, or orfD were unable to produce alanylclavam but could produce all of the other clavams, including clavulanic acid. orfA encodes a predicted hydroxymethyltransferase, orfB encodes a YjgF/YER057c/UK114-family regulatory protein, orfC encodes an aminotransferase, and orfD encodes a dehydratase. All of these types of proteins are normally involved in amino acid metabolism. Mutants in orfC or orfD also accumulated a novel clavam metabolite instead of alanylclavam, and a complemented orfC mutant was able to produce trace amounts of alanylclavam while still producing the novel clavam. Mass spectrometric analyses, together with consideration of the enzymes involved in its production, led to tentative identification of the novel clavam as 8-OH-alanylclavam, an intermediate in the proposed alanylclavam biosynthetic pathway.  相似文献   

17.
Phosphoribosylamine (PRA) is an intermediate in the biosynthetic pathway that is common to thiamine and purines. Glutamine phosphoribosyl pyrophosphate (PRPP) amidotransferase is the product of the purF gene in Salmonella enterica and catalyzes the synthesis of PRA from PRPP and glutamine. Strains lacking PurF require exogenous addition of purines for growth. However, under some growth conditions or with specific secondary mutations these strains grow in the absence of exogenous thiamine. Mutant alleles of hisA, which encodes 1-(5-phosphoribosyl)-5-[(5-phosphoribosylamino) methylideneamino] imidazole-4-carboxamide (ProFAR) isomerase, allowed PurF-independent PRA formation. The alleles of hisA that suppressed the requirement for exogenous thiamine resulted in proteins with reduced enzymatic activity. Data presented here showed that decreased activity of HisA altered metabolite pools and allowed PRA formation from ProFAR. Possible mechanisms of this conversion were proposed. The results herein emphasize the plasticity of the metabolic network and specifically highlight the potential for chemical syntheses to contribute to network robustness.  相似文献   

18.
In Salmonella enterica, the biosynthetic pathways for the generation of purines and the essential cofactor thiamine pyrophosphate branch after sharing five enzymatic steps. Phosphoribosyl amine (PRA) is the first intermediate in the common portion of the pathway and is generated from phosphoribosylpyrophosphate and glutamine by the PurF enzyme (phosphoribosylpyrophosphate amidotransferase). A null mutation in yjgF allows PurF-independent PRA formation by an unknown mechanism. The tryptophan biosynthetic enzyme complex anthranilate synthase-phosphoribosyltransferase, composed of the TrpD and TrpE proteins, was shown to be essential for PRA formation in strains lacking both yjgF and purF. The activity generating PRA in a yjgF mutant background has features that distinguish it from the TrpDE-mediated PRA formation shown previously for this enzyme in strains with an active copy of yjgF. The data presented here are consistent with a model in which the absence of YjgF uncovers a new catalytic activity of TrpDE.  相似文献   

19.
The Salmonella enterica serovar Typhimurium PhoP/PhoQ system has largely been studied as a paradigmatic two-component regulatory system not only to dissect structural and functional aspects of signal transduction in bacteria but also to gain knowledge about the versatile devices that have evolved allowing a pathogenic bacterium to adjust to or counteract environmental stressful conditions along its life cycle. Mg2+ limitation, acidic pH, and the presence of cationic antimicrobial peptides have been identified as cues that the sensor protein PhoQ can monitor to reprogram Salmonella gene expression to cope with extra- or intracellular challenging conditions. In this work, we show for the first time that long chain unsaturated free fatty acids (LCUFAs) present in Salmonella growth medium are signals specifically detected by PhoQ. We demonstrate that LCUFAs inhibit PhoQ autokinase activity, turning off the expression of the PhoP-dependent regulon. We also show that LCUFAs exert their action independently of their cellular uptake and metabolic utilization by means of the β-oxidative pathway. Our findings put forth the complexity of input signals that can converge to finely tune the activity of the PhoP/PhoQ system. In addition, they provide a new potential biochemical platform for the development of antibacterial strategies to fight against Salmonella infections.  相似文献   

20.
Clostridioides difficile is the leading cause of postantibiotic diarrhea in adults. During infection, the bacterium must rapidly adapt to the host environment by using survival strategies. Protein phosphorylation is a reversible post-translational modification employed ubiquitously for signal transduction and cellular regulation. Hanks-type serine/threonine kinases (STKs) and serine/threonine phosphatases have emerged as important players in bacterial cell signaling and pathogenicity. C. difficile encodes two STKs (PrkC and CD2148) and one phosphatase. We optimized a titanium dioxide phosphopeptide enrichment approach to determine the phosphoproteome of C. difficile. We identified and quantified 2500 proteins representing 63% of the theoretical proteome. To identify STK and serine/threonine phosphatase targets, we then performed comparative large-scale phosphoproteomics of the WT strain and isogenic ΔprkC, CD2148, Δstp, and prkC CD2148 mutants. We detected 635 proteins containing phosphorylated peptides. We showed that PrkC is phosphorylated on multiple sites in vivo and autophosphorylates in vitro. We were unable to detect a phosphorylation for CD2148 in vivo, whereas this kinase was phosphorylated in vitro only in the presence of PrkC. Forty-one phosphoproteins were identified as phosphorylated under the control of CD2148, whereas 114 proteins were phosphorylated under the control of PrkC including 27 phosphoproteins more phosphorylated in the ?stp mutant. We also observed enrichment for phosphothreonine among the phosphopeptides more phosphorylated in the Δstp mutant. Both kinases targeted pathways required for metabolism, translation, and stress response, whereas cell division and peptidoglycan metabolism were more specifically controlled by PrkC-dependent phosphorylation in agreement with the phenotypes of the ΔprkC mutant. Using a combination of approaches, we confirmed that FtsK was phosphorylated in vivo under the control of PrkC and that Spo0A was a substrate of PrkC in vitro. This study provides a detailed mapping of kinase–substrate relationships in C. difficile, paving the way for the identification of new biomarkers and therapeutic targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号