首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spontaneous metatool use by New Caledonian crows   总被引:1,自引:0,他引:1  
A crucial stage in hominin evolution was the development of metatool use -- the ability to use one tool on another [1, 2]. Although the great apes can solve metatool tasks [3, 4], monkeys have been less successful [5-7]. Here we provide experimental evidence that New Caledonian crows can spontaneously solve a demanding metatool task in which a short tool is used to extract a longer tool that can then be used to obtain meat. Six out of the seven crows initially attempted to extract the long tool with the short tool. Four successfully obtained meat on the first trial. The experiments revealed that the crows did not solve the metatool task by trial-and-error learning during the task or through a previously learned rule. The sophisticated physical cognition shown appears to have been based on analogical reasoning. The ability to reason analogically may explain the exceptional tool-manufacturing skills of New Caledonian crows.  相似文献   

2.
Behavioral innovations allow animals to adjust their behavior to solve novel problems. While innovative behavior can be important for animals living in new environments, anthropogenic pollution may limit their ability to adapt by impairing cognition or motivation. In particular, exposure to light pollution at night can cause sleep deprivation and may, therefore, hinder innovative behavior. To test this hypothesis, we examined experimentally whether exposure to acute light pollution impacts problem‐solving success in peafowl (Pavo cristatus). After peafowl were exposed to artificial light pollution for one night, they were presented with a problem‐solving task in which they could extract food by piercing the lid of an unfamiliar food bowl. Their problem‐solving success was unrelated to short‐term light pollution exposure. Other factors, including persistence, sex of the bird, and moon illumination, influenced their success in solving the task. The results suggest that short‐term exposure to light pollution does not limit behavioral innovation, but long‐term studies are necessary to further probe this question.  相似文献   

3.
Crows and other birds in the family Corvidae regularly share information to learn the identity and whereabouts of dangerous predators, but can they use social learning to solve a novel task for a food reward? Here, we examined the factors affecting the ability of 27 wild-caught American crows to solve a common string pulling task in a laboratory setting. We split crows into two groups; one group was given the task after repeatedly observing a conspecific model the solution and the other solved in the absence of conspecific models. We recorded the crows’ estimated age, sex, size, body condition, level of nervousness, and brain volume using DICOM images from a CT scan. Although none of these variables were statistically significant, crows without a conspecific model and large brain volumes consistently mastered the task in the minimum number of days, whereas those with conspecific models and smaller brain volumes required varying and sometimes a substantial number of days to master the task. We found indirect evidence that body condition might also be important for motivating crows to solve the task. Crows with conspecific models were no more likely to initially solve the task than those working the puzzle without social information, but those that mastered the task usually copied the method most frequently demonstrated by their knowledgeable neighbors. These findings suggest that brain volume and possibly body condition may be factors in learning new tasks and that crows can use social learning to refine their ability to obtain a novel food source, although they must initially learn to access it themselves.  相似文献   

4.
Corvids (Family: CORVIDAE) are a clade of some 120 species widespread throughout much of the world that have attracted the interest of researchers due to their impressive cognitive abilities. The group is, however, also generally described as neophobic, a trait that increases the difficulty of undertaking such research. In Australia, Torresian crows (Corvus orru) have, like corvid species worldwide, thrived in urban environments, sharing this habitat with a number of other corvoid (Superfamily: CORVOIDEA) species. While each of these species has successfully colonised urban areas, the extent to which neophobia is present is not known. This study empirically tested the extent to which neophobia is exhibited in wild urban Torresian crows by measuring the delaying effect of a novel object to obtaining food and any changes in neophobic behaviours displayed. This was then compared with the other urban corvoid species that inhabit similar niches. This study confirmed that Torresian crows are significantly wary of a novel objects, displaying more neophobic behaviours and taking longer to attain the food. Crow behaviour provided evidence in support of both the dangerous niche hypothesis and the two‐factor model of neophobia and neophilia. Crows also displayed these behaviours to a significantly greater extent than the three other corvoids studied. However, the individual variation in crow behaviours when exposed to a novel object was extensive. This variation may be attributed to differing behavioural types between individuals, or different experiences with novel objects or humans in the bird's past.  相似文献   

5.
Recent work on animal personalities has shown that individuals within populations often differ consistently in various types of behaviour and that many of these behaviours correlate among individuals to form behavioural syndromes. Individuals of certain species have also been shown to differ in their rate of behavioural innovation in arriving at novel solutions to new and existing problems (e.g., mazes, novel foods). Here, we investigate whether behaviours traditionally studied in personality research are correlated with individual rates of innovation as part of a wider behavioural syndrome. Guppies (Poecilia reticulata) of both sexes from three different wild population sources were assessed: (a) exploration of an open area; (b) speed through a three‐dimensional maze; (c) investigation of a novel object; and (d) attraction to a novel food. The covariance structure (syndrome structure) was examined using structural equation modelling. The best model separated behaviours relating to activity in all contexts from rates of exploration/investigation and innovation. Innovative behaviour (utilizing new food and moving through a novel area) in these fish therefore forms part of the same syndrome as the traditional shy‐bold continuum (exploration of an open area and investigation of a novel object) found in many animal personality studies. There were no clear differences in innovation or syndrome structure between the sexes, or between the three different populations. However, body size was implicated as part of the behavioural syndrome structure, and because body size is highly correlated with age in guppies, this suggests that individual behavioural differences in personality/innovation in guppies may largely be driven by developmental state.  相似文献   

6.

Background

New Caledonian crows use a range of foraging tools, and are the only non-human species known to craft hooks. Based on a small number of observations, their manufacture of hooked stick tools has previously been described as a complex, multi-stage process. Tool behaviour is shaped by genetic predispositions, individual and social learning, and/or ecological influences, but disentangling the relative contributions of these factors remains a major research challenge. The properties of raw materials are an obvious, but largely overlooked, source of variation in tool-manufacture behaviour. We conducted experiments with wild-caught New Caledonian crows, to assess variation in their hooked stick tool making, and to investigate how raw-material properties affect the manufacture process.

Results

In Experiment 1, we showed that New Caledonian crows’ manufacture of hooked stick tools can be much more variable than previously thought (85 tools by 18 subjects), and can involve two newly-discovered behaviours: ‘pulling’ for detaching stems and bending of the tool shaft. Crows’ tool manufactures varied significantly: in the number of different action types employed; in the time spent processing the hook and bending the tool shaft; and in the structure of processing sequences. In Experiment 2, we examined the interaction of crows with raw materials of different properties, using a novel paradigm that enabled us to determine subjects’ rank-ordered preferences (42 tools by 7 subjects). Plant properties influenced: the order in which crows selected stems; whether a hooked tool was manufactured; the time required to release a basic tool; and, possibly, the release technique, the number of behavioural actions, and aspects of processing behaviour. Results from Experiment 2 suggested that at least part of the natural behavioural variation observed in Experiment 1 is due to the effect of raw-material properties.

Conclusions

Our discovery of novel manufacture behaviours indicates a plausible scenario for the evolutionary origins, and gradual refinement, of New Caledonian crows’ hooked stick tool making. Furthermore, our experimental demonstration of a link between raw-material properties and aspects of tool manufacture provides an alternative hypothesis for explaining regional differences in tool behaviours observed in New Caledonian crows, and some primate species.
  相似文献   

7.
The research reported here was designed to study the individual peculiarities of birds in solving a problem. Goldfinches Carduelis carduelis and siskins C. spinus were tested with the string‐pulling task: sitting on a perch from which a small food container is suspended by a string the test bird had to lift the container, using the bill to pull the string stepwise up and a foot to hold it, and repeat that until they could reach the food. Fifty‐two goldfinches and 29 siskins raised under controlled conditions were tested individually. Three groups became apparent: ‘inventors’ (23% of goldfinches; 62% of siskins) solved the problem by themselves; ‘imitators’ (25% of goldfinches; 10% of siskins) succeeded after seeing a performing conspecific; ‘duffers’ (52% of goldfinches, 28% of siskins) did not succeed either way. The species – but not the sexes – differed significantly in string‐pulling ability. The results of our experiments indicate that string pulling is an acquired combination of innate behaviour elements. An individual's string‐pulling competence may depend on prior experience of handling branchlets, on trial‐and‐error learning and on social learning (emulation). However, some individuals succeeded without these facilitating factors, while others did not succeed at all despite all of them present. Although functionally and motivationally related to feeding, the learned string pulling is often shown as a playful activity without an obvious reward.  相似文献   

8.
Innovative animals are those able to solve novel problems or invent novel solutions to existing problems. Despite the important ecological and evolutionary consequences of innovation, we still know very little about the traits that vary among individuals within a species to make them more or less innovative. Here we examine innovative problem solving by spotted hyenas (Crocuta crocuta) in their natural habitat, and demonstrate for the first time in a non-human animal that those individuals exhibiting a greater diversity of initial exploratory behaviours are more successful problem solvers. Additionally, as in earlier work, we found that neophobia was a critical inhibitor of problem-solving success. Interestingly, although juveniles and adults were equally successful in solving the problem, juveniles were significantly more diverse in their initial exploratory behaviours, more persistent and less neophobic than were adults. We found no significant effects of social rank or sex on success, the diversity of initial exploratory behaviours, behavioural persistence or neophobia. Our results suggest that the diversity of initial exploratory behaviours, akin to some measures of human creativity, is an important, but largely overlooked, determinant of problem-solving success in non-human animals.  相似文献   

9.
Testing Problem Solving in Ravens: String-Pulling to Reach Food   总被引:7,自引:0,他引:7  
The aim of our study was to re‐examine the acquisition of problem‐solving behaviour in ravens: accessing meat suspended from a perch by a string. In contrast to a previous study, here we: (i) controlled for possible effects of fear of the string, competition by dominants, and social learning and (ii) devised a mechanically equivalent but non‐intuitive task to test for the possibility of means–end understanding. One‐year‐old ravens confronted with meat on a string for the first time tried several ways to reach the food. However, five of six birds suddenly performed a coherent sequence of pulling up and stepping on loops of string, essential for solving the problem. Those five birds were also successful in the non‐intuitive task where they had to pull down the string to lift the meat. A second group of birds with similar exposure to strings but without any experience in pulling up meat failed the pull‐down test. These results support the idea that the ravens’ behaviour in accessing meat on a string is not only a product of rapid learning but may involve some understanding of cause–effect relation between string, food and certain body parts.  相似文献   

10.
大学是培养创新型人才的重要场所,而培养学生的创新思维能力是培养创新型人才的关键。以《植物学》课程中的"根"的教学过程为例,探讨了"问题串"教学法、思维导图学习法以及概念重定义法在教学过程中的应用,实践表明,这样的教学方法有利于学生创新思维能力的培养,使学生在获得知识的同时学会科学的学习方法和创新思维方法。  相似文献   

11.
The ability of some bird species to pull up meat hung on a string is a famous example of spontaneous animal problem solving. The “insight” hypothesis claims that this complex behaviour is based on cognitive abilities such as mental scenario building and imagination. An operant conditioning account, in contrast, would claim that this spontaneity is due to each action in string pulling being reinforced by the meat moving closer and remaining closer to the bird on the perch. We presented experienced and naïve New Caledonian crows with a novel, visually restricted string-pulling problem that reduced the quality of visual feedback during string pulling. Experienced crows solved this problem with reduced efficiency and increased errors compared to their performance in standard string pulling. Naïve crows either failed or solved the problem by trial and error learning. However, when visual feedback was available via a mirror mounted next to the apparatus, two naïve crows were able to perform at the same level as the experienced group. Our results raise the possibility that spontaneous string pulling in New Caledonian crows may not be based on insight but on operant conditioning mediated by a perceptual-motor feedback cycle.  相似文献   

12.
It is generally assumed that birds’ choice of structurally suitable materials for nest building is genetically predetermined. Here, we tested that assumption by investigating whether experience affected male zebra finches’ (Taeniopygia guttata) choice of nest material. After a short period of building with relatively flexible string, birds preferred to build with stiffer string while those that had experienced a stiffer string were indifferent to string type. After building a complete nest with either string type, however, all birds increased their preference for stiff string. The stiffer string appeared to be the more effective building material as birds required fewer pieces of stiffer than flexible string to build a roofed nest. For birds that raised chicks successfully, there was no association between the material they used to build their nest and the type they subsequently preferred. Birds’ material preference reflected neither the preference of their father nor of their siblings but juvenile experience of either string type increased their preference for stiffer string. Our results represent two important advances: (i) birds choose nest material based on the structural properties of the material; (ii) nest material preference is not entirely genetically predetermined as both the type and amount of experience influences birds’ choices.  相似文献   

13.
Animals rarely solve problems spontaneously. Some bird species, however, can immediately find a solution to the string-pulling problem. They are able to rapidly gain access to food hung on the end of a long string by repeatedly pulling and then stepping on the string. It is currently unclear whether these spontaneous solutions are produced by insight or by a perceptual-motor feedback loop. Here, we presented New Caledonian crows and humans with a novel horizontal string-pulling task. While the humans succeeded, no individual crow showed a significant preference for the connected string, and all but one failed to gain the food even once. These results clearly show that string pulling in New Caledonian crows is generated not by insight, but by perceptual feedback. Animals can spontaneously solve problems without planning their actions.  相似文献   

14.
Embryos were traditionally considered to possess limited learning abilities because of the immaturity of their developing brains. By contrast, neonates from diverse species show behaviours dependent on prior embryonic experience. Stimulus discrimination is a key component of learning and has been shown by a handful of studies in non-human embryos. Superb fairy-wren embryos (Malurus cyaneus) learn a vocal password that has been taught to them by the attending female during incubation. The fairy-wren embryos use the learned element as their begging call after hatching to solicit more parental feeding. In this study, we test whether superb fairy-wren embryos have the capacity to discriminate between acoustical stimuli and whether they show non-associative learning. We measured embryonic heart rate response using a habituation/dishabituation paradigm with eggs sourced from nests in the wild. Fairy-wren embryos lowered their heart rate in response to the broadcasts of conspecific versus heterospecific calls, and in response to the calls of novel conspecific individuals. Thus, fairy-wrens join humans as vocal-learning species with known prenatal learning and individual discrimination.  相似文献   

15.
A central question in evolutionary biology concerns the developmental processes by which new phenotypes arise. An exceptional example of evolutionary innovation is the single-celled seed trichome in Gossypium (“cotton fiber”). We have used fiber development in Gossypium as a system to understand how morphology can rapidly evolve. Fiber has undergone considerable morphological changes between the short, tightly adherent fibers of G. longicalyx and the derived long, spinnable fibers of its closest relative, G. herbaceum, which facilitated cotton domestication. We conducted comparative gene expression profiling across a developmental time-course of fibers from G. longicalyx and G. herbaceum using microarrays with ~22,000 genes. Expression changes between stages were temporally protracted in G. herbaceum relative to G. longicalyx, reflecting a prolongation of the ancestral developmental program. Gene expression and GO analyses showed that many genes involved with stress responses were upregulated early in G. longicalyx fiber development. Several candidate genes upregulated in G. herbaceum have been implicated in regulating redox levels and cell elongation processes. Three genes previously shown to modulate hydrogen peroxide levels were consistently expressed in domesticated and wild cotton species with long fibers, but expression was not detected by quantitative real time-PCR in wild species with short fibers. Hydrogen peroxide is important for cell elongation, but at high concentrations it becomes toxic, activating stress processes that may lead to early onset of secondary cell wall synthesis and the end of cell elongation. These observations suggest that the evolution of long spinnable fibers in cotton was accompanied by novel expression of genes assisting in the regulation of reactive oxygen species levels. Our data suggest a model for the evolutionary origin of a novel morphology through differential gene regulation causing prolongation of an ancestral developmental program.  相似文献   

16.
Innovative behaviours are defined as new behaviour patterns derived by the modification of pre-existing ones. To date, studies of animal innovation have focussed mainly on foraging activity. In this paper, we focussed on the innovative use of a new material—man-made plastic (polypropylene) string—in nest construction by a solitary nesting, territorial species, the Great Grey Shrike Lanius excubitor. An analysis of field data collected during the years 1999–2006 during intensive shrike research in Poland, as well as of nest record cards since 1964, suggests that plastic string has been a very popular nest material since the 1980s. Recently, plastic string was used significantly more often by shrikes living in intensive farmland habitats than by those in more natural meadows. We discuss the possible benefits of the use of plastic string, such as strengthening the nest structure and therefore helping to protect eggs and nestlings from inclement weather conditions, such as strong winds. On the other hand, the use of plastic string has a real cost for breeding Great Grey Shrikes because both adult birds and nestlings may get tangled in it.  相似文献   

17.
One of the most significant problems facing older individuals is difficulty staying asleep at night and awake during the day. Understanding the mechanisms by which the regulation of sleep/wake goes awry with age is a critical step in identifying novel therapeutic strategies to improve quality of life for the elderly. We measured wake, non-rapid eye movement (NREM) and rapid-eye movement (REM) sleep in young (2–4 months-old) and aged (22–24 months-old) C57BL6/NIA mice. We used both conventional measures (i.e., bout number and bout duration) and an innovative spike-and-slab statistical approach to characterize age-related fragmentation of sleep/wake. The short (spike) and long (slab) components of the spike-and-slab mixture model capture the distribution of bouts for each behavioral state in mice. Using this novel analytical approach, we found that aged animals are less able to sustain long episodes of wakefulness or NREM sleep. Additionally, spectral analysis of EEG recordings revealed that aging slows theta peak frequency, a correlate of arousal. These combined analyses provide a window into the mechanisms underlying the destabilization of long periods of sleep and wake and reduced vigilance that develop with aging.  相似文献   

18.
Social network analysis methods have made it possible to test whether novel behaviors in animals spread through individual or social learning. To date, however, social network analysis of wild populations has been limited to static models that cannot precisely reflect the dynamics of learning, for instance, the impact of multiple observations across time. Here, we present a novel dynamic version of network analysis that is capable of capturing temporal aspects of acquisition—that is, how successive observations by an individual influence its acquisition of the novel behavior. We apply this model to studying the spread of two novel tool-use variants, “moss-sponging” and “leaf-sponge re-use,” in the Sonso chimpanzee community of Budongo Forest, Uganda. Chimpanzees are widely considered the most “cultural” of all animal species, with 39 behaviors suspected as socially acquired, most of them in the domain of tool-use. The cultural hypothesis is supported by experimental data from captive chimpanzees and a range of observational data. However, for wild groups, there is still no direct experimental evidence for social learning, nor has there been any direct observation of social diffusion of behavioral innovations. Here, we tested both a static and a dynamic network model and found strong evidence that diffusion patterns of moss-sponging, but not leaf-sponge re-use, were significantly better explained by social than individual learning. The most conservative estimate of social transmission accounted for 85% of observed events, with an estimated 15-fold increase in learning rate for each time a novice observed an informed individual moss-sponging. We conclude that group-specific behavioral variants in wild chimpanzees can be socially learned, adding to the evidence that this prerequisite for culture originated in a common ancestor of great apes and humans, long before the advent of modern humans.  相似文献   

19.
New Caledonian (NC) crows Corvus moneduloides are the most prolific avian tool users. In the wild, they use at least three distinct tool types to extract invertebrate prey from deadwood and vegetation, with some of their tools requiring complex manufacture, modification and/or deployment. Experiments with captive-bred, hand-raised NC crows have demonstrated that the species has a strong genetic predisposition for basic tool use and manufacture, suggesting that this behaviour is an evolved adaptation. This view is supported by recent stable-isotope analyses of the diets of wild crows, which revealed that tool use provides access to highly profitable hidden prey, with preliminary data indicating that parents preferentially feed their offspring with tool-derived food. Building on this work, our review examines the possible evolutionary origins of these birds’ remarkable tool-use behaviour. Whilst robust comparative analyses are impossible, given the phylogenetic rarity of animal tool use, our examination of a wide range of circumstantial evidence enables a first attempt at reconstructing a plausible evolutionary scenario. We suggest that a common ancestor of NC crows, originating from a (probably) non-tool-using South-East Asian or Australasian crow population, colonised New Caledonia after its last emersion several million years ago. The presence of profitable but out-of-reach food, in combination with a lack of direct competition for these resources, resulted in a vacant woodpecker-like niche. Crows may have possessed certain behavioural and/or morphological features upon their arrival that predisposed them to express tool-use rather than specialised prey-excavation behaviour, although it is possible that woodpecker-like foraging preceded tool use. Low levels of predation risk may have further facilitated tool-use behaviour, by allowing greater expenditure of time and energy on object interaction and exploration, as well as the evolution of a ‘slow’ life-history, in which prolonged juvenile development enables acquisition of complex behaviours. Intriguingly, humans may well have influenced the evolution of at least some of the species’ tool-oriented behaviours, via their possible introduction of candlenut trees together with the beetle larvae that infest them. Research on NC crows’ tool-use behaviour in its full ecological context is still in its infancy, and we expect that, as more evidence accumulates, some of our assumptions and predictions will be proved wrong. However, it is clear from our analysis of existing work, and the development of some original ideas, that the unusual evolutionary trajectory of NC crows is probably the consequence of an intricate constellation of interplaying factors.  相似文献   

20.
Abstract.  1. In holometabolous insects, learning has been demonstrated in both larval and adult stages. Whether learning can be retained through metamorphosis from larva via pupa to adult has long been a subject of debate. The present study is designed to distinguish between preimaginal and imaginal conditioning in the diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae) using oviposition preference tests on females exposed to various types of learning experiences during immature and adult stages.
2. Cohorts of test insects were reared from egg to pupa on an artificial diet, or on one of two host plants, Chinese cabbage, Brassica campestris L. ssp. pekinensis , and common cabbage, Brassica oleracea L. var. capitata . The ensuing females reared on the three kinds of food showed similar oviposition preference between the two plants. A brief experience of the less preferred host, common cabbage, by adults slightly increased their preference for this plant.
3. Cohorts of test insects were reared from egg to pupa on an artificial diet with or without the addition of a neem-based oviposition deterrent (Neemix® 4.5). Larval feeding experience did not alter oviposition response to the deterrent. However, emergence conditioning and early adult learning, achieved through experience of a residue of the deterrent carried over from the larval food on pupal cuticle and cocoons, altered oviposition preference significantly.
4. The combined results revealed no evidence of preimaginal conditioning in this insect but a strong effect of emergence conditioning and early adult learning on oviposition preference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号