首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Batesian mimicry evolves when individuals of a palatable species gain the selective advantage of reduced predation because they resemble a toxic species that predators avoid. Here, we evaluated whether—and in which direction—Batesian mimicry has evolved in a natural population of mimics following extirpation of their model. We specifically asked whether the precision of coral snake mimicry has evolved among kingsnakes from a region where coral snakes recently (1960) went locally extinct. We found that these kingsnakes have evolved more precise mimicry; by contrast, no such change occurred in a sympatric non-mimetic species or in conspecifics from a region where coral snakes remain abundant. Presumably, more precise mimicry has continued to evolve after model extirpation, because relatively few predator generations have passed, and the fitness costs incurred by predators that mistook a deadly coral snake for a kingsnake were historically much greater than those incurred by predators that mistook a kingsnake for a coral snake. Indeed, these results are consistent with prior theoretical and empirical studies, which revealed that only the most precise mimics are favoured as their model becomes increasingly rare. Thus, highly noxious models can generate an ‘evolutionary momentum’ that drives the further evolution of more precise mimicry—even after models go extinct.  相似文献   

2.
In Batesian mimicry, a harmless species (the ‘mimic’) resembles a dangerous species (the ‘model’) and is thus protected from predators. It is often assumed that the mimetic phenotype evolves from a cryptic phenotype, but it is unclear how a population can transition through intermediate phenotypes; such intermediates may receive neither the benefits of crypsis nor mimicry. Here, we ask if selection against intermediates weakens with increasing model abundance. We also ask if mimicry has evolved from cryptic phenotypes in a mimetic clade. We first present an ancestral character-state reconstruction showing that mimicry of a coral snake (Micrurus fulvius) by the scarlet kingsnake (Lampropeltis elapsoides) evolved from a cryptic phenotype. We then evaluate predation rates on intermediate phenotypes relative to cryptic and mimetic phenotypes under conditions of both high- and low-model abundances. Our results indicate that where coral snakes are rare, intermediate phenotypes are attacked more often than cryptic and mimetic phenotypes, indicating the presence of an adaptive valley. However, where coral snakes are abundant, intermediate phenotypes are not attacked more frequently, resulting in an adaptive landscape without a valley. Thus, high-model abundance may facilitate the evolution of Batesian mimicry.  相似文献   

3.
Batesian mimicry is widespread, but whether and why different species of mimics vary geographically in resemblance to their model is unclear. We characterized geographic variation in mimetic precision among four Batesian mimics of coral snakes. Each mimic occurs where its model is abundant (i.e. in ‘deep sympatry’), rare (i.e. at the sympatry/allopatry boundary or ‘edge sympatry’) and absent (i.e. in allopatry). Geographic variation in mimetic precision was qualitatively different among these mimics. In one mimic, the most precise individuals occurred in edge sympatry; in another, they occurred in deep sympatry; in the third, they occurred in allopatry; and in the fourth, precise mimics were not concentrated anywhere throughout their range. Mimicry was less precise in allopatry than in sympatry in only two mimics. We present several nonmutually exclusive hypotheses for these patterns. Generally, examining geographic variation in mimetic precision – within and among different mimics – offers novel insights into the causes and consequences of mimicry.  相似文献   

4.
In Batesian mimicry, a harmless prey species imitates the warning coloration of an unpalatable model species. A traditional suggestion is that mimicry evolves in a two-step process, in which a large mutation first achieves approximate similarity to the model, after which smaller changes improve the likeness. However, it is not known which aspects of predator psychology cause the initial mutant to be perceived by predators as being similar to the model, leaving open the question of how the crucial first step of mimicry evolution occurs. Using theoretical evolutionary simulations and reconstruction of examples of mimicry evolution, we show that the evolution of Batesian mimicry can be initiated by a mutation that causes prey to acquire a trait that is used by predators as a feature to categorize potential prey as unsuitable. The theory that species gain entry to mimicry through feature saltation allows us to formulate scenarios of the sequence of events during mimicry evolution and to reconstruct an initial mimetic appearance for important examples of Batesian mimicry. Because feature-based categorization by predators entails a qualitative distinction between nonmimics and passable mimics, the theory can explain the occurrence of imperfect mimicry.  相似文献   

5.
Batesian mimicry is characterized by phenotypic convergence between an unpalatable model and a palatable mimic. However, because convergent evolution may arise via alternative evolutionary mechanisms, putative examples of Batesian mimicry must be rigorously tested. Here, we used artificial butterfly facsimiles (N = 4000) to test the prediction that (1) palatable Limenitis lorquini butterflies should experience reduced predation when in sympatry with their putative model, Adelpha californica, (2) protection from predation on L. lorquini should erode outside of the geographical range of the model, and (3) mimetic color pattern traits are more variable in allopatry, consistent with relaxed selection for mimicry. We find support for these predictions, implying that this convergence is the result of selection for Batesian mimicry. Additionally, we conducted mark–recapture studies to examine the effect of mimicry and found that mimics survive significantly longer at sites where the model is abundant. Finally, in contrast to theoretical predictions, we found evidence that the Batesian model (A. californica) is protected from predation outside of its geographic range. We discuss these results considering the ongoing hybridization between L. lorquini and its sister species, L. weidemeyerii, and growing evidence that selection for mimicry predictably leads to a reduction in gene flow between nascent species.  相似文献   

6.
Both Batesian and Müllerian mimicries are considered classical evidence of natural selection where predation pressure has, at times, created a striking similarity between unrelated prey species. Batesian mimicry, in which palatable mimics resemble unpalatable aposematic species, is parasitic and only beneficial to the mimics. By contrast, in classical Müllerian mimicry the cost of predators' avoidance learning is shared between similar unpalatable co-mimics, and therefore mimicry benefits all parties. Recent studies using mathematical modeling have questioned the dynamics of Müllerian mimicry, suggesting that fitness benefits should be calculated in a way similar to Batesian mimicry; that is, according to the relative unpalatability difference between co-mimics. Batesian mimicry is very sensitive to the availability of alternative prey, but the effects of alternative prey for Müllerian dynamics are not known and experiments are rare. We designed two experiments to test the effect of alternative prey on imperfect Batesian and Müllerian mimicry complexes. When alternative prey were scarce, imperfect Batesian mimics were selected out from the population, but abundantly available alternative prey relaxed selection against imperfect mimics. Birds learned to avoid both Müllerian models and mimics irrespective of the availability of alternative prey. However, the rate of avoidance learning of models increased when alternative prey were abundant. This experiment suggests that the availability of alternative prey affects the dynamics of both Müllerian and Batesian mimicry, but in different ways.  相似文献   

7.
Mathematical models of mimicry typically involve artificial prey species with fixed colorations or appearances; this enables a comparison of predation rates to demonstrate the level of protection a mimic might be afforded. Fruitful theoretical results have been produced using this method, but it is also useful to examine the possible evolutionary consequences of mimicry. To that end, we present individual-based evolutionary simulation models where prey colorations are free to evolve. We use the models to examine the effect of Batesian mimics on Müllerian mimics and mimicry rings. Results show that Batesian mimics can potentially incite Müllerian mimicry relationships and encourage mimicry ring convergence.  相似文献   

8.
Classical (conventional) Müllerian mimicry theory predicts that two (or more) defended prey sharing the same signal always benefit each other despite the fact that one species can be more toxic than the other. The quasi‐Batesian (unconventional) mimicry theory, instead, predicts that the less defended partner of the mimetic relationship may act as a parasite of the signal, causing a fitness loss to the model. Here we clarify the conditions for parasitic or mutualistic relationships between aposematic prey, and build a model to examine the hypothesis that the availability of alternative prey is crucial to Müllerian and quasi‐Batesian mimicry. Our model is based on optimal behaviour of the predator. We ask if and when it is in the interest of the predator to learn to avoid certain species as prey when there is alternative (cryptic) prey available. Our model clearly shows that the role of alternative prey must be taken into consideration when studying model–mimic dynamics. When food is scarce it pays for the predator to test the models and mimics, whereas if food is abundant predators should leave the mimics and models untouched even if the mimics are quite edible. Dynamics of the mimicry tend to be classically Müllerian if mimics are well defended, while quasi‐Batesian dynamics are more likely when they are relatively edible. However, there is significant overlap: in extreme cases mimics can be harmful to models (a quasi‐Batesian case) even if the species are equally toxic. A crucial parameter explaining this overlap is the search efficiency with which indiscriminating vs. discriminating predators find cryptic prey. Quasi‐Batesian mimicry becomes much more likely if discrimination increases the efficiency with which the specialized predator finds cryptic prey, while the opposite case tends to predict Müllerian mimicry. Our model shows that both mutualistic and parasitic relationship between model and mimic are possible and the availability of alternative prey can easily alter this relationship.  相似文献   

9.
Batesian mimicry is a striking example of Darwinian evolution, in which a mimetic species resembles toxic or unpalatable model species, thereby receiving protection from predators. In some species exhibiting Batesian mimicry, nonmimetic individuals coexist as polymorphism in the same population despite the benefits of mimicry. In a previous study, we proposed that the abundance of mimics is limited by that of the models, leading to polymorphic Batesian mimicry in the swallowtail butterfly, Papilio polytes, on the Ryukyu Islands in Japan. We found that their mimic ratios (MRs), which varied among the Islands, were explained by the model abundance of each habitat, rather than isolation by distance or phylogenetic constraint based on the mitochondrial DNA (mtDNA) analysis. In the present study, this possibility was reexamined based on hundreds of nuclear single nucleotide polymorphisms (SNPs) of 93 P. polytes individuals from five Islands of the Ryukyus. We found that the population genetic and phylogenetic structures of P. polytes largely corresponded to the geographic arrangement of the habitat Islands, and the genetic distances among island populations show significant correlation with the geographic distances, which was not evident by the mtDNA‐based analysis. A partial Mantel test controlling for the present SNP‐based genetic distances revealed that the MRs of P. polytes were strongly correlated with the model abundance of each island, implying that negative frequency‐dependent selection interacting with model species shaped and maintained the mimetic polymorphism. Taken together, our results support the possibility that predation pressure, not isolation by distance or other neutral factors, is a major driving force of evolution of the Batesian mimicry in P. polytes from the Ryukyus.  相似文献   

10.
Batesian and aggressive mimicry are united by deceit: Batesian mimics deceive predators and aggressive mimics deceive prey. This distinction is blurred by Myrmarachne melanotarsa, an ant-like jumping spider (Salticidae). Besides often preying on salticids, ants are well defended against most salticids that might target them as potential prey. Earlier studies have shown that salticids identify ants by their distinctive appearance and avoid them. They also avoid ant-like salticids from the genus Myrmarachne. Myrmarachne melanotarsa is an unusual species from this genus because it typically preys on the eggs and juveniles of ant-averse salticid species. The hypothesis considered here is that, for M. melanotarsa, the distinction between Batesian and aggressive mimicry is blurred. We tested this by placing female Menemerus sp. and their associated hatchling within visual range of M. melanotarsa, its model, and various non-ant-like arthropods. Menemerus is an ant-averse salticid species. When seeing ants or ant mimics, Menemerus females abandoned their broods more frequently than when seeing non-ant-like arthropods or in control tests (no arthropods visible), as predicted by our hypothesis that resembling ants functions as a predatory ploy.  相似文献   

11.
In aggressive mimicry, a 'predatory' species resembles a model that is harmless or beneficial to a third species, the 'dupe'. We tested critical predictions of Batesian mimicry models, i.e. that benefits of mimicry to mimics and costs of mimicry to models should be experienced only when model and mimic co-occur, in an aggressive mimicry system involving juvenile bluestreaked cleaner wrasse (Labroides dimidiatus) as models and bluestriped fangblennies (Plagiotremus rhinorhynchos) as mimics. Cleanerfish mimics encountered nearly twice as many potential victims and had higher striking rates when in proximity to than when away from the model. Conversely, in the presence of mimics, juvenile cleaner wrasses were visited by fewer clients and spent significantly less time foraging. The benefits to mimic and costs to model thus depend on a close spatial association between model and mimic. Batesian mimicry theory may therefore provide a useful initial framework to understand aggressive mimicry.  相似文献   

12.
Since the phenomenon of mimicry was first described by Bates in 1862 it has become one of the foundational examples of adaptive evolution. Numerous subcategories of mimicry and dozens of hypotheses pertaining to its evolution and maintenance have been proposed. Many of these hypotheses, however, are difficult to test in experimental settings, and data from natural observations are often inadequate. Here we use data from a long‐term survey of butterfly presence and abundance to test several hypotheses pertaining to Batesian and female‐limited polymorphic mimicry (FPM; a special case of Batesian mimicry). We found strong evidence that models outnumber mimics in both mimicry systems, but no evidence for an increase in relative abundance of FPM mimics to their Batesian counterparts. Tests of the early‐emergence/model first hypothesis showed strong evidence that the Batesian mimic routinely emerges after the model, while emergence timing in the FPM system was site specific, suggesting that other ecological factors are at play. These results demonstrate the importance of long‐term field observations for testing evolutionary and ecological hypotheses.  相似文献   

13.
Biological mimicry has served as a salient example of natural selection for over a century, providing us with a dazzling array of very different examples across many unrelated taxa. We provide a conceptual framework that brings together apparently disparate examples of mimicry in a single model for the purpose of comparing how natural selection affects models, mimics and signal receivers across different interactions. We first analyse how model–mimic resemblance likely affects the fitness of models, mimics and receivers across diverse examples. These include classic Batesian and Müllerian butterfly systems, nectarless orchids that mimic Hymenoptera or nectar‐producing plants, caterpillars that mimic inert objects unlikely to be perceived as food, plants that mimic abiotic objects like carrion or dung and aggressive mimicry where predators mimic food items of their own prey. From this, we construct a conceptual framework of the selective forces that form the basis of all mimetic interactions. These interactions between models, mimics and receivers may follow four possible evolutionary pathways in terms of the direction of selection resulting from model–mimic resemblance. Two of these pathways correspond to the selective pressures associated with what is widely regarded as Batesian and Müllerian mimicry. The other two pathways suggest mimetic interactions underpinned by distinct selective pressures that have largely remained unrecognized. Each pathway is characterized by theoretical differences in how model–mimic resemblance influences the direction of selection acting on mimics, models and signal receivers, and the potential for consequent (co)evolutionary relationships between these three protagonists. The final part of this review describes how selective forces generated through model–mimic resemblance can be opposed by the basic ecology of interacting organisms and how those forces may affect the symmetry, strength and likelihood of (co)evolution between the three protagonists within the confines of the four broad evolutionary possibilities. We provide a clear and pragmatic visualization of selection pressures that portrays how different mimicry types may evolve. This conceptual framework provides clarity on how different selective forces acting on mimics, models and receivers are likely to interact and ultimately shape the evolutionary pathways taken by mimetic interactions, as well as the constraints inherent within these interactions.  相似文献   

14.
Batesian mimicry is seen as an example of evolution by natural selection, with predation as the main driving force. The mimic is under selective pressure to resemble its model, whereas it is disadvantageous for the model to be associated with the palatable mimic. In consequence one might expect there to be an evolutionary arms race, similar to the one involving host-parasite coevolution. In this study, the evolutionary dynamics of a Batesian mimicry system of model ants and ant-mimicking salticids is investigated by comparing the phylogenies of the two groups. Although Batesian mimics are expected to coevolve with their models, we found the phylogenetic patterns of the models and the mimics to be indicative of adaptive radiation by the mimic rather than co-speciation between the mimic and the model. This shows that there is strong selection pressure on Myrmarachne, leading to a high degree of polymorphism. There is also evidence of sympatric speciation in Myrmarachne, the reproductive isolation possibly driven by female mate choice in polymorphic species.  相似文献   

15.
Conspicuousness, or having high contrast relative to the surrounding background, is a common feature of unpalatable species. Several hypotheses have been proposed to explain the occurrence of conspicuousness, and while most involve the role of conspicuousness as a direct signal of unpalatability to potential predators, one hypothesis suggests that exaggerated conspicuousness may evolve in unpalatable species to reduce predator confusion with palatable species (potential Batesian mimics). This hypothesis of antagonistic coevolution between palatable and unpalatable species hinges on the ‘cost of conspicuousness’, in which conspicuousness increases the likelihood of predation more in palatable species than in unpalatable species. Under this mimicry scenario, four patterns are expected: (i) mimics will more closely resemble local models than models from other localities, (ii) there will be a positive relationship between mimic and model conspicuousness, (iii) models will be more conspicuous in the presence of mimics, and (iv) when models and mimics differ in conspicuousness, mimics will be less conspicuous than models. We tested these predictions in the salamander mimicry system involving Notophthalmus viridescens (model) and one colour morph of Plethodon cinereus (mimic). All predictions were supported, indicating that selection for Batesian mimicry not only influences the evolution of mimics, but also the evolution of the models they resemble. These findings indicate that mimicry plays a large role in the evolution of model warning signals, particularly influencing the evolution of conspicuousness.  相似文献   

16.
The resemblance between mimetic organisms and their models varies from near perfect to very crude. One possible explanation, which has received surprisingly little attention, is that evolution can improve mimicry only at some cost to the mimetic organism. In this article, an evolutionary game theory model of mimicry is presented that incorporates such constraints. The model generates novel and testable predictions. First, Batesian mimics that are very common and/or mimic very weakly defended models should evolve either inaccurate mimicry (by stabilizing selection) or mimetic polymorphism. Second, Batesian mimics that are very common and/or mimic very weakly defended models are more likely to evolve mimetic polymorphism if they encounter predators at high rates and/or are bad at evading predator attacks. The model also examines how cognitive constraints acting on signal receivers may help determine evolutionarily stable levels of mimicry. Surprisingly, improved discrimination abilities among signal receivers may sometimes select for less accurate mimicry.  相似文献   

17.
Batesian mimicry is the resemblance between unpalatable models and palatable mimics. The widely accepted idea is that the frequency and the unprofitability of the model are crucial for the introduction of a Batesian mimic into the prey population. However, experimental evidence is limited and furthermore, previous studies have considered mainly perfect mimicry (automimicry). We investigated imperfect Batesian mimicry by varying the frequency of an aposematic model at two levels of distastefulness. The predator encountered prey in a random order, one prey item at a time. The prey were thus presented realistically in a sequential way. Great tits (Parus major) were used as predators. This experiment, with a novel signal, supports the idea that Batesian mimics gain most when the models outnumber them. The mortalities of the mimics as well as the models were significantly dependent on the frequency of the model. Both prey types survived better the fewer mimics there were confusing the predator. There were also indications that the degree of distastefulness of the model had an effect on the survival of the Batesian mimic: the models survived significantly better the more distasteful they were. The experiment supports the most classical predictions in the theories of the origin and maintenance of Batesian mimicry.  相似文献   

18.
Batesian mimics can parasitize Müllerian mimicry rings mimicking the warning color signal. The evolutionary success of Batesian mimics can increase adding complexity to the signal by behavioral and locomotor mimicry. We investigated three fundamental morphological and locomotor traits in a Neotropical mimicry ring based on Ithomiini butterflies and parasitized by Polythoridae damselflies: wing color, wing shape, and flight style. The study species have wings with a subapical white patch, considered the aposematic signal, and a more apical black patch. The main predators are VS‐birds, visually more sensitive to violet than to ultraviolet wavelengths (UVS‐birds). The white patches, compared to the black patches, were closer in the bird color space, with higher overlap for VS‐birds than for UVS‐birds. Using a discriminability index for bird vision, the white patches were more similar between the mimics and the model than the black patches. The wing shape of the mimics was closer to the model in the morphospace, compared to other outgroup damselflies. The wing‐beat frequency was similar among mimics and the model, and different from another outgroup damselfly. Multitrait aposematic signals involving morphology and locomotion may favor the evolution of mimicry rings and the success of Batesian mimics by improving signal effectiveness toward predators.  相似文献   

19.
Mimicry, the resemblance of one species by another, is a complex phenomenon where the mimic (Batesian mimicry) or the model and the mimic (Mullerian mimicry) gain an advantage from this phenotypic convergence. Despite the expectation that mimics should closely resemble their models, many mimetic species appear to be poor mimics. This is particularly apparent in some systems in which there are multiple available models. However, the influence of model pattern diversity on the evolution of mimetic systems remains poorly understood. We tested whether the number of model patterns a predator learns to associate with a negative consequence affects their willingness to try imperfect, novel patterns. We exposed week‐old chickens to coral snake (Micrurus) color patterns representative of three South American areas that differ in model pattern richness, and then tested their response to the putative imperfect mimetic pattern of a widespread species of harmless colubrid snake (Oxyrhopus rhombifer) in different social contexts. Our results indicate that chicks have a great hesitation to attack when individually exposed to high model pattern diversity and a greater hesitation to attack when exposed as a group to low model pattern diversity. Individuals with a fast growth trajectory (measured by morphological traits) were also less reluctant to attack. We suggest that the evolution of new patterns could be favored by social learning in areas of low pattern diversity, while individual learning can reduce predation pressure on recently evolved mimics in areas of high model diversity. Our results could aid the development of ecological predictions about the evolution of imperfect mimicry and mimicry in general.  相似文献   

20.
Batesian mimics gain protection from predation through the evolution of physical similarities to a model species that possesses anti-predator defences. This protection should not be effective in the absence of the model since the predator does not identify the mimic as potentially dangerous and both the model and the mimic are highly conspicuous. Thus, Batesian mimics should probably encounter strong predation pressure outside the geographical range of the model species. There are several documented examples of Batesian mimics occurring in locations without their models, but the evolutionary responses remain largely unidentified. A mimetic species has four alternative evolutionary responses to the loss of model presence. If predation is weak, it could maintain its mimetic signal. If predation is intense, it is widely presumed the mimic will go extinct. However, the mimic could also evolve a new colour pattern to mimic another model species or it could revert back to its ancestral, less conspicuous phenotype. We used molecular phylogenetic approaches to reconstruct and test the evolution of mimicry in the North American admiral butterflies (Limenitis: Nymphalidae). We confirmed that the more cryptic white-banded form is the ancestral phenotype of North American admiral butterflies. However, one species, Limenitis arthemis, evolved the black pipevine swallowtail mimetic form but later reverted to the white-banded more cryptic ancestral form. This character reversion is strongly correlated with the geographical absence of the model species and its host plant, but not the host plant distribution of L. arthemis. Our results support the prediction that a Batesian mimic does not persist in locations without its model, but it does not go extinct either. The mimic can revert back to its ancestral, less conspicuous form and persist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号