首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Paraquat is an herbicide used extensively in agriculture and has also been proposed to be a risk factor for Parkinson's disease. To date, experimental, clinical, and epidemiological data on paraquat neurotoxicity have been equivocal. In this short review, we discuss some technical and biological mechanisms that contribute to inconsistencies regarding paraquat neurotoxicity. We hypothesize that individual genetic variations in susceptibility generate major differences in neurotoxic risk and functional outcome. Identifying these heritable sources of variation in host susceptibility, and their role in complex gene–environment interactions, is crucial to identify risk biomarkers and to devise better prevention and treatment for those exposed to paraquat and other potential neurotoxicants.  相似文献   

2.
Variability in the susceptibility to infectious disease and its clinical manifestation can be determined by variation in the environment and by genetic variation in the pathogen and the host. Despite several successes based on candidate gene studies, defining the host variation affecting infectious disease has not been as successful as for other multifactorial diseases. Both single nucleotide variation and copy number variation (CNV) of the host contribute to the host’s susceptibility to infectious disease. In this review we focus on CNV, particularly on complex multiallelic CNV that is often not well characterised either directly by hybridisation methods or indirectly by analysis of genotypes and flanking single nucleotide variants. We summarise the well-known examples, such as α-globin deletion and susceptibility to severe malaria, as well as more recent controversies, such as the extensive CNV of the chemokine gene CCL3L1 and HIV infection. We discuss the potential biological mechanisms that could underly any genetic association and reflect on the extensive complexity and functional variation generated by a combination of CNV and sequence variation, as illustrated by the Fc gamma receptor genes FCGR3A, FCGR3B and FCGR2C. We also highlight some understudied areas that might prove fruitful areas for further research.  相似文献   

3.
Human genetic susceptibility to infectious disease   总被引:1,自引:0,他引:1  
Recent genome-wide studies have reported novel associations between common polymorphisms and susceptibility to many major infectious diseases in humans. In parallel, an increasing number of rare mutations underlying susceptibility to specific phenotypes of infectious disease have been described. Together, these developments have highlighted a key role for host genetic variation in determining the susceptibility to infectious disease. They have also provided insights into the genetic architecture of infectious disease susceptibility and identified immune molecules and pathways that are directly relevant to the human host defence.  相似文献   

4.
The blood-testis barrier (BTB) is conferred by co-existing tight junctions (TJs), basal ectoplasmic specialization (basal ES), desmosome-like junctions and gap junctions (GJs) between adjacent Sertoli cells near the basement membrane in the seminiferous epithelium. While the concept of the BTB has been known for more than a century and its significance to spermatogenesis discerned for more than five decades, its regulation has remained largely unknown. Recent studies, however, have demonstrated that focal adhesion kinase (FAK), a modulator of the integrin-based signaling that plays a crucial role on cell movement, apoptosis, cell survival and gene expression at the focal adhesion complex (FAC, also known as focal contact, a cell-matrix anchoring junction type), is an integrated component of the BTB, associated with the TJ-integral membrane protein occludin and its adaptor zonula occludens-1 (ZO-1). Herein, we summarize recent findings in the field regarding the significance of FAK in conferring BTB integrity based on some unexpected observations. We also critically discuss the role of FAK in regulating the timely "opening" and "closing" of the BTB to facilitate the transit of primary preleptotene spermatocytes across the BTB at stage VIII of the seminiferous epithelial cycle of spermatogenesis. Lastly, we propose a working model, which can be used to design future functional experiments to explore the involvement of FAK in BTB dynamics by investigators in the field.  相似文献   

5.
BackgroundThe composition of bacteria in and on the human body varies widely across human individuals, and has been associated with multiple health conditions. While microbial communities are influenced by environmental factors, some degree of genetic influence of the host on the microbiome is also expected. This study is part of an expanding effort to comprehensively profile the interactions between human genetic variation and the composition of this microbial ecosystem on a genome- and microbiome-wide scale.ResultsHere, we jointly analyze the composition of the human microbiome and host genetic variation. By mining the shotgun metagenomic data from the Human Microbiome Project for host DNA reads, we gathered information on host genetic variation for 93 individuals for whom bacterial abundance data are also available. Using this dataset, we identify significant associations between host genetic variation and microbiome composition in 10 of the 15 body sites tested. These associations are driven by host genetic variation in immunity-related pathways, and are especially enriched in host genes that have been previously associated with microbiome-related complex diseases, such as inflammatory bowel disease and obesity-related disorders. Lastly, we show that host genomic regions associated with the microbiome have high levels of genetic differentiation among human populations, possibly indicating host genomic adaptation to environment-specific microbiomes.ConclusionsOur results highlight the role of host genetic variation in shaping the composition of the human microbiome, and provide a starting point toward understanding the complex interaction between human genetics and the microbiome in the context of human evolution and disease.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0759-1) contains supplementary material, which is available to authorized users.  相似文献   

6.
Abstract.— Models of host‐parasite coevolution assume the presence of genetic variation for host resistance and parasite infectivity, as well as genotype‐specific interactions. We used the freshwater crustacean Daphnia magna and its bacterial microparasite Pasteuria ramosa to study genetic variation for host susceptibility and parasite infectivity within each of two populations. We sought to answer the following questions: Do host clones differ in their susceptibility to parasite isolates? Do parasite isolates differ in their ability to infect different host clones? Are there host clone‐parasite isolate interactions? The analysis revealed considerable variation in both host resistance and parasite infectivity. There were significant host clone‐parasite isolate interactions, such that there was no single host clone that was superior to all other clones in the resistance to every parasite isolate. Likewise, there was no parasite isolate that was superior to all other isolates in infectivity to every host clone. This form of host clone‐parasite isolate interaction indicates the potential for coevolution based on frequency‐dependent selection. Infection success of original host clone‐parasite isolate combinations (i.e., those combinations that were isolated together) was significantly higher than infection success of novel host clone‐parasite isolate combinations (i.e., those combinations that were created in the laboratory). This finding is consistent with the idea that parasites track specific host genotypes under natural conditions. In addition, correspondence analysis revealed that some host clones, although distinguishable with neutral genetic markers, were susceptible to the same set of parasite isolates and thus probably shared resistance genes.  相似文献   

7.
Baker C  Antonovics J 《PloS one》2012,7(1):e29089
Although genetic variation among humans in their susceptibility to infectious diseases has long been appreciated, little focus has been devoted to identifying patterns in levels of variation in susceptibility to different diseases. Levels of genetic variation in susceptibility associated with 40 human infectious diseases were assessed by a survey of studies on both pedigree-based quantitative variation, as well as studies on different classes of marker alleles. These estimates were correlated with pathogen traits, epidemiological characteristics, and effectiveness of the human immune response. The strongest predictors of levels of genetic variation in susceptibility were disease characteristics negatively associated with immune effectiveness. High levels of genetic variation were associated with diseases with long infectious periods and for which vaccine development attempts have been unsuccessful. These findings are consistent with predictions based on theoretical models incorporating fitness costs associated with the different types of resistance mechanisms. An appreciation of these observed patterns will be a valuable tool in directing future research given that genetic variation in disease susceptibility has large implications for vaccine development and epidemiology.  相似文献   

8.
Traditionally, the termination of parasite epidemics has been attributed to ecological causes: namely, the depletion of susceptible hosts as a result of mortality or acquired immunity. Here, we suggest that epidemics can also end because of rapid host evolution. Focusing on a particular host–parasite system, Daphnia dentifera and its parasite Metschnikowia bicuspidata , we show that Daphnia from lakes with recent epidemics were more resistant to infection and had less variance in susceptibility than Daphnia from lakes without recent epidemics. However, our studies revealed little evidence for genetic variation in infectivity or virulence in Metschnikowia . Incorporating the observed genetic variation in host susceptibility into an epidemiological model parameterized for this system reveals that rapid evolution can explain the termination of epidemics on time scales matching what occurs in lake populations. Thus, not only does our study provide rare evidence for parasite-mediated selection in natural populations, it also suggests that rapid evolution has important effects on short-term host–parasite dynamics.  相似文献   

9.
Genetics, physiology, and behavior are all expected to influence the susceptibility of hosts to parasites. Furthermore, interactions between genetic and other factors are suggested to contribute to the maintenance of genetic polymorphism in resistance when the relative susceptibility of host genotypes is context dependent. We used a maternal sibship design and long- and short-term food deprivation treatments to test the role of family-level genetic variation, body condition, physiological state, and foraging behavior on the susceptibility of Lymnaea stagnalis snails to infection by a trematode parasite that uses chemical cues to locate its hosts. In experimental exposures, we found that snails in the long-term food deprivation treatment contracted fewer parasites than snails that were continuously well-fed, possibly because well-fed snails grew larger and attracted more transmission stages. When we kept the long-term feeding rates the same, but manipulated the physiological state and foraging behavior of the snails with short-term food deprivation treatment, we found that snails that were fed before the exposure contracted more parasites than snails that were fed during the exposure. This suggests that direct physiological effects of food processing, but not foraging behavior, predisposed snails to infection. Feeding treatments also affected the family-level variation in snail susceptibility, suggesting that the relative susceptibility of host genotypes was context dependent.  相似文献   

10.

Background

Genetic selection for host resistance offers a desirable complement to chemical treatment to control infectious disease in livestock. Quantitative genetics disease data frequently originate from field studies and are often binary. However, current methods to analyse binary disease data fail to take infection dynamics into account. Moreover, genetic analyses tend to focus on host susceptibility, ignoring potential variation in infectiousness, i.e. the ability of a host to transmit the infection. This stands in contrast to epidemiological studies, which reveal that variation in infectiousness plays an important role in the progression and severity of epidemics. In this study, we aim at filling this gap by deriving an expression for the probability of becoming infected that incorporates infection dynamics and is an explicit function of both host susceptibility and infectiousness. We then validate this expression according to epidemiological theory and by simulating epidemiological scenarios, and explore implications of integrating this expression into genetic analyses.

Results

Our simulations show that the derived expression is valid for a range of stochastic genetic-epidemiological scenarios. In the particular case of variation in susceptibility only, the expression can be incorporated into conventional quantitative genetic analyses using a complementary log-log link function (rather than probit or logit). Similarly, if there is moderate variation in both susceptibility and infectiousness, it is possible to use a logarithmic link function, combined with an indirect genetic effects model. However, in the presence of highly infectious individuals, i.e. super-spreaders, the use of any model that is linear in susceptibility and infectiousness causes biased estimates. Thus, in order to identify super-spreaders, novel analytical methods using our derived expression are required.

Conclusions

We have derived a genetic-epidemiological function for quantitative genetic analyses of binary infectious disease data, which, unlike current approaches, takes infection dynamics into account and allows for variation in host susceptibility and infectiousness.  相似文献   

11.
Bovine tuberculosis (BTB) is a significant veterinary and financial problem in many parts of the world. Associations between specific host genes and susceptibility to mycobacterial infections, such as tuberculosis, have been reported in several species. The objective of this study was to identify and evaluate the relationship of single-nucleotide polymorphisms (SNPs) in the CARD15 gene with susceptibility to BTB in Chinese Holstein cows. DNA samples from 201 Chinese Holstein cows (103 cases and 98 controls) were collected from Kunming City, Yuxi City, and Dali City in China. SNPs in the CARD15 gene were assessed using polymerase chain reaction (PCR) and restriction fragment length polymorphism-polymerase chain reaction (RFLP-PCR). Case-control association testing and statistical analysis identified six SNPs associated with susceptibility to BTB in Chinese Holstein cows. The frequency of genotypes C/T, A/G, A/G, A/G, C/T, and A/G in E4 (-37), 208, 1644, 1648, 1799, and E10 (+107), respectively, was significantly higher in cases than in controls, and also the alleles C, A, A, G, T, and A, respectively, were associated with a greater relative risk in cases than in controls. The distribution of two haplotypes, TGGACA and CAGACA, was significantly different between cases and controls. Overall, this case-control study suggested that E4 (-37)(C/T), 208(A/G), 1644(A/G), 1648(A/G), 1799(C/T), and E10 (+107)(A/G) in the CARD15 gene were significantly associated with susceptibility to BTB in Chinese Holstein cows and that haplotypes TGGACA and CAGACA could be used as genetic markers in marker-assisted breeding programs for breeding cows with high resistance to BTB.  相似文献   

12.
Although the role of host heredity in susceptibility to infectious diseases is significant, the genetic control of immunity to infection remains poorly understood. Advances in experimental and epidemiological analyses of complex genetic traits have led to the discoveries of novel genetic determinants of host resistance. New loci that control susceptibility to a number of intracellular pathogens have been identified using mouse models of infectious diseases. The contributions of individual loci, however, vary in quantitative and qualitative manner, depending on mechanisms of pathogen virulence and genetic background of the host. In this review, we discuss how genetic analysis of host resistance contributes to further understanding of host immunity and pathogenesis of intracellular infections.  相似文献   

13.
The incidence of bovine tuberculosis (BTB) is increasing in Great Britain, exacerbated by the temporary suspension of herd testing in 2001 for fear of spreading the much more contagious foot and mouth disease. The transmission pathways of BTB remain poorly understood. Current hypotheses suggest the disease is introduced into susceptible herds from a wildlife reservoir (principally the Eurasian Badger) and/or from cattle purchased from infected areas, while the role of climatic factors in transmission has generally been ignored. Here, we show how remotely sensed satellite data, which provide good indicators of a variety of climatic factors, can be used to describe the distribution of BTB in Great Britain in 1997, and suggest how such data could be used to produce BTB risk maps for the future.  相似文献   

14.
Host genetic factors exert significant influences on differential susceptibility to many infectious diseases. In addition, population structure of both host and parasite may influence disease distribution patterns. In this study, we assess the effects of population structure on infectious disease in two populations in which host genetic factors influencing susceptibility to parasitic disease have been extensively studied. The first population is the Jirel population of eastern Nepal that has been the subject of research on the determinants of differential susceptibility to soil-transmitted helminth infections. The second group is a Brazilian population residing in an area endemic for Trypanosoma cruzi infection that has been assessed for genetic influences on differential disease progression in Chagas disease. For measures of Ascaris worm burden, within-population host genetic effects are generally more important than host population structure factors in determining patterns of infectious disease. No significant influences of population structure on measures associated with progression of cardiac disease in individuals who were seropositive for T. cruzi infection were found.  相似文献   

15.
16.
Nasopharyngeal carcinoma (NPC) is a highly malignant cancer with local invasion and early distant metastasis. NPC is highly prevalent in the Southern China and South-eastern Asia. The genetic susceptibility, endemic environment factors, and Epstein-Barr virus (EBV) infection are believed to be the major etiologic factors of NPC. Once metastasis occurs, the prognosis is very poor. It is urgently needed to develop biomarkers for early clinical diagnosis/prognosis, and novel effective therapies for nasopharyngeal carcinoma. In this paper, we systematically reviewed the current progress of miRNA studies in NPC. It has been shown that both host encoded miRNAs and EBV encoded miRNAs play key roles in almost all the steps of epithelia cell carcinogenesis, including epithelial-mesenchymal to stem-like transition, cell growth, migration, invasion, and tumorigenesis. More importantly, some miRNAs could be secreted out and play a role in the microenvironments. The level of sera miRNAs is correlated with the copy numbers of host miRNAs in tumor biopsies. Promising results of gene therapy have been also achieved by lentiviral delivered miRNAs. Taken together, cell free miRNAs would be potential biomarkers of early clinical diagnosis/prognosis; while some miRNAs could be further developed into therapeutic agents in the future.  相似文献   

17.
Both sequence variation and copy-number variation (CNV) of the genes encoding receptors for immunoglobulin G (Fcγ receptors) have been genetically and functionally associated with a number of autoimmune diseases. However, the molecular nature and evolutionary context of this variation is unknown. Here, we describe the structure of the CNV, estimate its mutation rate and diversity, and place it in the context of the known functional alloantigen variation of these genes. Deletion of Fcγ receptor IIIB, associated with systemic lupus erythematosus, is a result of independent nonallelic homologous recombination events with a frequency of approximately 0.1%. We also show that pathogen diversity, in particular helminth diversity, has played a critical role in shaping the functional variation at these genes both between mammalian species and between human populations. Positively selected amino acids are involved in the interaction with IgG and include some amino acids that are known polymorphic alloantigens in humans. This supports a genetic contribution to the hygiene hypothesis, which states that past evolution in the context of helminth diversity has left humans with an array of susceptibility alleles for autoimmune disease in the context of a helminth-free environment. This approach shows the link between pathogens and autoimmune disease at the genetic level and provides a strategy for interrogating the genetic variation underlying autoimmune-disease risk and infectious-disease susceptibility.  相似文献   

18.
Genetic epidemiology of tuberculosis susceptibility: impact of study design   总被引:1,自引:0,他引:1  
Stein CM 《PLoS pathogens》2011,7(1):e1001189
Several candidate gene studies have provided evidence for a role of host genetics in susceptibility to tuberculosis (TB). However, the results of these studies have been very inconsistent, even within a study population. Here, we review the design of these studies from a genetic epidemiological perspective, illustrating important differences in phenotype definition in both cases and controls, consideration of latent M. tuberculosis infection versus active TB disease, population genetic factors such as population substructure and linkage disequilibrium, polymorphism selection, and potential global differences in M. tuberculosis strain. These considerable differences between studies should be accounted for when examining the current literature. Recommendations are made for future studies to further clarify the host genetics of TB.  相似文献   

19.
Reducing disease prevalence through selection for host resistance offers a desirable alternative to chemical treatment. Selection for host resistance has proven difficult, however, due to low heritability estimates. These low estimates may be caused by a failure to capture all the relevant genetic variance in disease resistance, as genetic analysis currently is not taylored to estimate genetic variation in infectivity. Host infectivity is the propensity of transmitting infection upon contact with a susceptible individual, and can be regarded as an indirect effect to disease status. It may be caused by a combination of physiological and behavioural traits. Though genetic variation in infectivity is difficult to measure directly, Indirect Genetic Effect (IGE) models, also referred to as associative effects or social interaction models, allow the estimation of this variance from more readily available binary disease data (infected/non-infected). We therefore generated binary disease data from simulated populations with known amounts of variation in susceptibility and infectivity to test the adequacy of traditional and IGE models. Our results show that a conventional model fails to capture the genetic variation in infectivity inherent in populations with simulated infectivity. An IGE model, on the other hand, does capture some of the variation in infectivity. Comparison with expected genetic variance suggests that there is scope for further methodological improvement, and that potential responses to selection may be greater than values presented here. Nonetheless, selection using an index of estimated direct and indirect breeding values was shown to have a greater genetic selection differential and reduced future disease risk than traditional selection for resistance only. These findings suggest that if genetic variation in infectivity substantially contributes to disease transmission, then breeding designs which explicitly incorporate IGEs might help reduce disease prevalence.  相似文献   

20.
Autophagy is a central process in regulation of cell survival, cell death and proliferation and plays an important role in carcinogenesis, including thyroid carcinoma. Genetic variation in autophagy components has been demonstrated to influence the capacity to execute autophagy and is associated with disease susceptibility, progression and outcome. In the present study, we assessed whether genetic variation in autophagy genes contributes to susceptibility to develop thyroid carcinoma, disease progression and/or patient outcome. The results indicate that patients carrying the ATG5 single nucleotide polymorphisms rs2245214 have a higher probability to develop thyroid carcinoma (OR 1.85 (95% CI 1.04–3.23), P = 0.042). In contrast, no significant differences could be observed for the other genetic variants studied in terms of thyroid carcinoma susceptibility. Furthermore, none of the selected genetic variants were associated with clinical parameters of disease progression and outcome. In conclusion, genetic variation in ATG5, a central player in the autophagy process, is found to be associated with increased susceptibility for thyroid carcinoma, indicating a role for autophagy in thyroid carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号