首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mammalian gastrointestinal (GI) tract harbors a diverse population of commensal species collectively known as the microbiota, which interact continuously with the host. From very early in life, secretory IgA (SIgA) is found in association with intestinal bacteria. It is considered that this helps to ensure self-limiting growth of the microbiota and hence participates in symbiosis. However, the importance of this association in contributing to the mechanisms ensuring natural host-microorganism communication is in need of further investigation. In the present work, we examined the possible role of SIgA in the transport of commensal bacteria across the GI epithelium. Using an intestinal loop mouse model and fluorescently labeled bacteria, we found that entry of commensal bacteria in Peyer''s patches (PP) via the M cell pathway was mediated by their association with SIgA. Preassociation of bacteria with nonspecific SIgA increased their dynamics of entry and restored the reduced transport observed in germ-free mice known to have a marked reduction in intestinal SIgA production. Selective SIgA-mediated targeting of bacteria is restricted to the tolerogenic CD11c+CD11b+CD8 dendritic cell subset located in the subepithelial dome region of PPs, confirming that the host is not ignorant of its resident commensals. In conclusion, our work supports the concept that SIgA-mediated monitoring of commensal bacteria targeting dendritic cells in the subepithelial dome region of PPs represents a mechanism whereby the host mucosal immune system controls the continuous dialogue between the host and commensal bacteria.  相似文献   

2.
Ileal lesions in 36.4% of patients with Crohn's disease are colonized by pathogenic adherent-invasive Escherichia coli. The aim of this study was to determine the in vitro inhibitory effects of the probiotic strain, Lactobacillus casei DN-114 001, on adhesion to and invasion of human intestinal epithelial cells by adherent-invasive E. coli isolated from Crohn's disease patients. The experiments were performed with undifferentiated Intestine-407 cells and with undifferentiated or differentiated Caco-2 intestinal epithelial cells. Bacterial adhesion to and invasion of intestinal epithelial cells were assessed by counting CFU. The inhibitory effects of L. casei were determined after coincubation with adherent-invasive E. coli or after preincubation of intestinal cells with L. casei prior to infection with adherent-invasive E. coli. Inhibitory effects of L. casei on adherent-invasive E. coli adhesion to differentiated and undifferentiated intestinal epithelial cells reached 75% to 84% in coincubation and 43% to 62% in preincubation experiments, according to the cell lines used. Addition of L. casei culture supernatant to the incubation medium increased L. casei adhesion to intestinal epithelial cells and enhanced the inhibitory effects of L. casei. The inhibitory effects on E. coli invasion paralleled those on adhesion. This effect was not due to a bactericidal effect on adherent-invasive E. coli or to a cytotoxic effect on epithelial intestinal cells. As Lactobacillus casei DN-114 001 strongly inhibits interaction of adherent-invasive E. coli with intestinal epithelial cells, this finding suggests that the probiotic strain could be of therapeutic value in Crohn's disease.  相似文献   

3.
蒙脱石对细菌黏附Caco-2细胞的影响   总被引:7,自引:0,他引:7  
采用Caco-2细胞培养模型,观察两歧双歧杆菌、嗜酸乳杆菌、嗜水气单胞菌、副溶血弧菌、大肠杆菌、鼠伤寒沙门菌的黏附率,并在培养液中加入蒙脱石,计算蒙脱石对细菌黏附的阻断率,探讨蒙脱石对上述细菌黏附作用的影响。结果表明:所试菌与Caco-2细胞均有不同程度的黏附作用;蒙脱石对细菌黏附Caco-2细胞均有不同程度的阻断作用,对病原菌黏附Caco-2细胞的阻断作用要明显大于其对益生菌的阻断效果,其中对大肠杆菌、鼠伤寒沙门菌、嗜水气单胞菌、副溶血弧菌黏附的阻断率分别为54.22%、48.41%、60.53%、50.64%,而对两歧双歧杆菌、嗜酸乳杆菌黏附的阻断率分别为25.64%和21.49%。结果提示蒙脱石可有效阻断病原菌黏附,从而防治肠道细菌感染和细菌移位。  相似文献   

4.
Escherichia coli Nissle 1917 (EcN) is among the best characterised probiotics, with a proven clinical impact in a range of conditions. Despite this, the mechanisms underlying these "probiotic effects" are not clearly defined. Here we applied random transposon mutagenesis to identify genes relevant to the interaction of EcN with intestinal epithelial cells. This demonstrated mutants disrupted in the kfiB gene, of the K5 capsule biosynthesis cluster, to be significantly enhanced in attachment to Caco-2 cells. However, this phenotype was distinct from that previously reported for EcN K5 deficient mutants (kfiC null mutants), prompting us to explore further the role of kfiB in EcN:Caco-2 interaction. Isogenic mutants with deletions in kfiB (EcNΔkfiB), or the more extensively characterised K5 capsule biosynthesis gene kfiC (EcNΔkfiC), were both shown to be capsule deficient, but displayed divergent phenotypes with regard to impact on Caco-2 cells. Compared with EcNΔkfiC and the EcN wild-type, EcNΔkfiB exhibited significantly greater attachment to Caco-2 cells, as well as apoptotic and cytotoxic effects. In contrast, EcNΔkfiC was comparable to the wild-type in these assays, but was shown to induce significantly greater COX-2 expression in Caco-2 cells. Distinct differences were also apparent in the pervading cell morphology and cellular aggregation between mutants. Overall, these observations reinforce the importance of the EcN K5 capsule in host-EcN interactions, but demonstrate that loss of distinct genes in the K5 pathway can modulate the impact of EcN on epithelial cell health.  相似文献   

5.
Lactobacillus rhamnosus GG, a probiotic with good survival capacity in the human gut, has well-documented adhesion properties and health effects. Recently, spaCBA-encoded pili that bind to human intestinal mucus were identified on its cell surface. Here, we report on the phenotypic analysis of a spaCBA pilus knockout mutant in comparison with the wild type and other adhesin mutants. The SpaCBA pilus of L. rhamnosus GG showed to be key for efficient adherence to the Caco-2 intestinal epithelial cell (IEC) line and biofilm formation. Moreover, the spaCBA mutant induces an elevated level of interleukin-8 (IL-8) mRNA in Caco-2 cells compared to the wild type, possibly involving an interaction of lipoteichoic acid with Toll-like receptor 2. In contrast, an L. rhamnosus GG mutant without exopolysaccharides but with an increased exposure of pili leads to the reduced expression of IL-8. Using Transwells to partition bacteria from Caco-2 cells, IL-8 induction is blocked completely regardless of whether wild-type or mutant L. rhamnosus GG cells are used. Taken together, our data suggest that L. rhamnosus GG SpaCBA pili, while promoting strong adhesive interactions with IECs, have a functional role in balancing IL-8 mRNA expression induced by surface molecules such as lipoteichoic acid.  相似文献   

6.
The influence of the industrial process on the properties of probiotics, administered as complex manufactured products, has been poorly investigated. In the present study, we comparatively assessed the cell wall characteristics of the probiotic strain Lactobacillus rhamnosus Lcr35® together with three of its commercial formulations with intestinal applications. Putative secreted and transmembrane-protein-encoding genes were initially searched in silico in the genome of L. rhamnosus Lcr35®. A total of 369 candidate genes were identified which expressions were followed using a custom Lactobacillus DNA chip. Among them, 60 or 67 genes had their expression either upregulated or downregulated in the Lcr Restituo® packet or capsule formulations, compared to the native Lcr35® strain. Moreover, our data showed that the probiotic formulations (Lcr Lenio®, Lcr restituo® capsule and packet) showed a better capacity to adhere to intestinal epithelial Caco-2 cells than the native Lcr35® strain. Microbial (MATS) tests showed that the probiotic was an electron donor and that they were more hydrophilic than the native strain. The enhanced adhesion capacity of the active pharmaceutical ingredients (APIs) to epithelial Caco-2 cells and their antipathogen effect could be due to this greater surface hydrophilic character. These findings suggest that the manufacturing process influences the protein composition and the chemical properties of the cell wall. It is therefore likely that the antipathogen effect of the formulation is modulated by the industrial process. Screening of the manufactured products’ properties would therefore represent an essential step in evaluating the effects of probiotic strains.  相似文献   

7.

Background

For a good probiotic candidate, the abilities to adhere to intestinal epithelium and to fortify barrier function are considered to be crucial for colonization and functionality of the strain. The strain Lactobacillus acidophilus LAB20 was isolated from the jejunum of a healthy dog, where it was found to be the most pre-dominant lactobacilli. In this study, the adhesion ability of LAB20 to intestinal epithelial cell (IECs) lines, IECs isolated from canine intestinal biopsies, and to canine, porcine and human intestinal mucus was investigated. Further, we studied the ability of LAB20 to fortify the epithelial cell monolayer and to reduce LPS-induced interleukin (IL-8) release from enterocytes.

Results

We found that LAB20 presented higher adhesion to canine colonic mucus as compared to mucus isolated from porcine colon. LAB20 showed adhesion to HT-29 and Caco-2 cell lines, and importantly also to canine IECs isolated from canine intestinal biopsies. In addition, LAB20 increased the transepithelial electrical resistance (TER) of enterocyte monolayers and thus strengthened the intestinal barrier function. The strain showed also anti-inflammatory capacity in being able to attenuate the LPS-induced IL-8 production of HT-29 cells.

Conclusion

In conclusion, canine indigenous strain LAB20 is a potential probiotic candidate for dogs adhering to the host epithelium and showing intestinal barrier fortifying and anti-inflammatory effects.

Electronic supplementary material

The online version of this article (doi:10.1186/s12866-014-0337-9) contains supplementary material, which is available to authorized users.  相似文献   

8.
We established an automated screening method to characterize adhesion of Escherichia coli to intestinal porcine epithelial cells (IPEC-J2) and their probiotic activity against infection by enteropathogenic E. coli (EPEC). 104 intestinal E. coli isolates from domestic pigs were tested by PCR for the occurrence of virulence-associated genes, genes coding for resistances to antimicrobial agents and metals, and for phylogenetic origin by PCR. Adhesion rates and probiotic activity were examined for correlation with the presence of these genes. Finally, data were compared with those from 93 E. coli isolates from wild boars.Isolates from domestic pigs carried a broad variety of all tested genes and showed great diversity in gene patterns. Adhesions varied with a maximum of 18.3 or 24.2 mean bacteria adherence per epithelial cell after 2 or 6 hours respectively. Most isolates from domestic pigs and wild boars showed low adherence, with no correlation between adhesion/probiotic activity and E. coli genes or gene clusters. The gene sfa/foc, encoding for a subunit of F1C fimbriae did show a positive correlative association with adherence and probiotic activity; however E. coli isolates from wild boars with the sfa/foc gene showed less adhesion and probiotic activity than E. coli with the sfa/foc gene isolated from domestic pigs after 6 hour incubation.In conclusion, screening porcine E. coli for virulence associated genes genes, adhesion to intestinal epithelial cells, and probiotic activity revealed a single important adhesion factor, several probiotic candidates, and showed important differences between E. coli of domestic pigs and wild boars.  相似文献   

9.
Ileal lesions in 36.4% of patients with Crohn's disease are colonized by pathogenic adherent-invasive Escherichia coli. The aim of this study was to determine the in vitro inhibitory effects of the probiotic strain, Lactobacillus casei DN-114 001, on adhesion to and invasion of human intestinal epithelial cells by adherent-invasive E. coli isolated from Crohn's disease patients. The experiments were performed with undifferentiated Intestine-407 cells and with undifferentiated or differentiated Caco-2 intestinal epithelial cells. Bacterial adhesion to and invasion of intestinal epithelial cells were assessed by counting CFU. The inhibitory effects of L. casei were determined after coincubation with adherent-invasive E. coli or after preincubation of intestinal cells with L. casei prior to infection with adherent-invasive E. coli. Inhibitory effects of L. casei on adherent-invasive E. coli adhesion to differentiated and undifferentiated intestinal epithelial cells reached 75% to 84% in coincubation and 43% to 62% in preincubation experiments, according to the cell lines used. Addition of L. casei culture supernatant to the incubation medium increased L. casei adhesion to intestinal epithelial cells and enhanced the inhibitory effects of L. casei. The inhibitory effects on E. coli invasion paralleled those on adhesion. This effect was not due to a bactericidal effect on adherent-invasive E. coli or to a cytotoxic effect on epithelial intestinal cells. As Lactobacillus casei DN-114 001 strongly inhibits interaction of adherent-invasive E. coli with intestinal epithelial cells, this finding suggests that the probiotic strain could be of therapeutic value in Crohn's disease.  相似文献   

10.
Although the colonic cell line Caco-2 is widely used as a model of the small intestinal barrier function, it has limitations such as overestimated transepithelial electrical resistance (TEER) compared to in vivo conditions. Therefore, we investigated Human Intestinal Epithelial Cells (HIECs) as an alternative in vitro model.We explored whether cell seeding number of HIEC-6, and the number of incubation days for HIEC and Caco-2 cells had an impact on TEER, and tight junction expression was examined for both cell lines via immunofluorescence in the presence and absence of probiotic bacteria.We observed no significant difference in TEER readings for either cell lines when cultured for different days. Further, the HIEC TEER readings did not change with increased seeding number and were not significantly different from a control with no cells. HIECs expressed Claudin-1 and Zonula Occludens-1 but not Occludin. Caco-2 co-culture with probiotic bacteria demonstrated a significant increase in TEER, particularly for the lactobacillus strains, whereas HIEC TEER did not respond to bacterial co-incubation.Our study shows that although HIECs express certain TJ proteins, a significant TEER was not observed, likely due to the embryonic origin of the cells, which limits the application of this cell line as a suitable model for small intestinal barrier function.  相似文献   

11.
Abstract Salmonella typhimurium and enteropathogenic Escherichia coli (EPEC) were found to adhere to the brush border of differentiated human intestinal epithelial Caco-2 cells in culture, whereas Yersinia pseudotuberculosis and Listeria monocytogenes adhered to the periphery of undifferentiated Caco-2 cells. All these enterovirulent strains invaded the Caco-2 cells. Using a heat-killed human Lactobacillus acidophilus (strain LB) which strongly adheres both to undifferentiated and differentiated Caco-2 cells, we have studied inhibition of cell association with and invasion within Caco-2 cells by enterovirulent bacteria. Living and heat-killed Lactobacillus acidophilus strain LB inhibited both cell association and invasion of Caco-2 cells by enterovirulent bacteria in a concentration-dependent manner. The mechanism of inhibition of both adhesion and invasion appears to be due to steric hindrance of human enterocytic pathogen receptors by whole-cell lactobacilli rather than to a specific blockade of receptors.  相似文献   

12.
13.
Lactobacilli are major inhabitants of the normal microflora of the gastrointestinal tract, and some select species have been used extensively as probiotic cultures. One potentially important property of these organisms is their ability to interact with epithelial cells in the intestinal tract, which may promote retention and host-bacterial communication. However, the mechanisms by which they attach to intestinal epithelial cells are unknown. The objective of this study was to investigate cell surface proteins in Lactobacillus acidophilus that may promote attachment to intestinal tissues. Using genome sequence data, predicted open reading frames were searched against known protein and protein motif databases to identify four proteins potentially involved in adhesion to epithelial cells. Homologous recombination was used to construct isogenic mutations in genes encoding a mucin-binding protein, a fibronectin-binding protein, a surface layer protein, and two streptococcal R28 homologs. The abilities of the mutants to adhere to intestinal epithelial cells were then evaluated in vitro. Each strain was screened on Caco-2 cells, which differentiate and express markers characteristic of normal small-intestine cells. A significant decrease in adhesion was observed in the fibronectin-binding protein mutant (76%) and the mucin-binding protein mutant (65%). A surface layer protein mutant also showed reduction in adhesion ability (84%), but the effect of this mutation is likely due to the loss of multiple surface proteins that may be embedded in the S-layer. This study demonstrated that multiple cell surface proteins in L. acidophilus NCFM can individually contribute to the organism's ability to attach to intestinal cells in vitro.  相似文献   

14.
15.
Numb is highly expressed throughout the crypt-villus axis of intestinal mucosa and functions as cell fate determinant and integrator of cell-to-cell adhesion. Increased paracellular permeability of intestinal epithelial cells is associated with the epithelial barrier dysfunction of inflammatory bowel diseases (IBDs). The apical junctional complex (AJC) assembly and myosin light chain (MLC) phosphorylation regulate adherens junctions (AJ) and tight junctions (TJ). We determined whether and how Numb modulate the paracellular permeability of intestinal epithelial cells. Caco-2 intestinal epithelial cells and their Numb-interfered counterparts were used in the study for physiological, morphological and biological analyses. Numb, expressed in intestinal epithelial cells and located at the plasma membrane of Caco-2 cells in a basolateral to apical distribution, increased in the intestinal epithelial cells with the formation of the intestinal epithelial barrier. Numb expression decreased and accumulated in the cytoplasm of intestinal epithelial cells in a DSS-induced colitis mouse model. Numb co-localized with E-cadherin, ZO-1 and Par3 at the plasma membrane and interacted with E-cadherin and Par3. Knockdown of Numb in Caco-2 cells altered the F-actin structure during the Ca2+ switch assay, enhanced TNFα-/INF-γ-induced intestinal epithelial barrier dysfunction and TJ destruction, and increased the Claudin-2 protein level. Immunofluorescence experiments revealed that NMIIA and F-actin co-localized at the cell surface of Caco-2 cells. Numb knockdown in Caco-2 cells increased F-actin contraction and the abundance of phosphorylated MLC. Numb modulated the intestinal epithelial barrier in a Notch signaling-independent manner. These findings suggest that Numb modulates the paracellular permeability by affecting AJC assembly and MLC phosphorylation.  相似文献   

16.

Background

Probiotic microorganisms favorably alter the intestinal microflora balance, promote intestinal integrity and mobility, inhibit the growth of harmful bacteria and increase resistance to infection. Probiotics are increasingly used in nutraceuticals, functional foods or in microbial interference treatment. However, the effectiveness of probiotic organism is considered to be population-specific due to variation in gut microflora, food habits and specific host-microbial interactions. Most of the probiotic strains available in the market are of western or European origin, and a strong need for exploring new indigenous probiotic organisms is felt.

Methods and Findings

An indigenous isolate Lp9 identified as Lactobacillus plantarum by molecular-typing methods was studied extensively for its functional and probiotic attributes, viz., acid and bile salt tolerance, cell surface hydrophobicity, autoaggregation and Caco-2 cell-binding as well as antibacterial and antioxidative activities. Lp9 isolate could survive 2 h incubation at pH 1.5–2.0 and toxicity of 1.5–2.0% oxgall bile. Lp9 could deconjugate major bile salts like glycocholate and deoxytaurocholate, indicating its potential to cause hypocholesterolemia. The isolate exhibited cell-surface hydrophobicity of ∼37% and autoaggregation of ∼31%. Presence of putative probiotic marker genes like mucus-binding protein (mub), fibronectin-binding protein (fbp) and bile salt hydrolase (bsh) were confirmed by PCR. Presence of these genes suggested the possibility of specific interaction and colonization potential of Lp9 isolate in the gut, which was also suggested by a good adhesion ratio of 7.4±1.3% with Caco-2 cell line. The isolate demonstrated higher free radical scavenging activity than standard probiotics L. johnsonii LA1 and L. acidophilus LA7. Lp9 also exhibited antibacterial activity against E. coli, L. monocytogenes, S. typhi, S. aureus and B. cereus.

Conclusion

The indigenous Lactobacillus plantarum Lp9 exhibited high resistance against low pH and bile and possessed antibacterial, antioxidative and cholesterol lowering properties with a potential for exploitation in the development of indigenous functional food or nutraceuticals.  相似文献   

17.
Probiotic bacteria are microorganisms that benefit the host by preventing or ameliorating disease. However, little information is known regarding the scientific rationale for using probiotics as alternative medicine. The purpose of this paper is to investigate the mechanisms of probiotic beneficial effects on intestinal cell homeostasis. We now report that one such probiotic, Lactobacillus rhamnosus GG (LGG), prevents cytokine-induced apoptosis in two different intestinal epithelial cell models. Culture of LGG with either mouse or human colon cells activates the anti-apoptotic Akt/protein kinase B. This model probiotic also inhibits activation of the pro-apoptotic p38/mitogen-activated protein kinase by tumor necrosis factor, interleukin-1alpha, or gamma-interferon. Furthermore, products recovered from LGG culture broth supernatant show concentration-dependent activation of Akt and inhibition of cytokine-induced apoptosis. These observations suggest a novel mechanism of communication between probiotic microorganisms and epithelia that increases survival of intestinal cells normally found in an environment of pro-apoptotic cytokines.  相似文献   

18.

Background

Listeria monocytogenes, an intracellular foodborne pathogen, infects immunocompromised hosts. The primary route of transmission is through contaminated food. In the gastrointestinal tract, it traverses the epithelial barrier through intracellular or paracellular routes. Strategies to prevent L. monocytogenes entry can potentially minimize infection in high-risk populations. Listeria adhesion protein (LAP) aids L. monocytogenes in crossing epithelial barriers via the paracellular route. The use of recombinant probiotic bacteria expressing LAP would aid targeted clearance of Listeria from the gut and protect high-risk populations from infection.

Methodology/Principal Findings

The objective was to investigate the ability of probiotic bacteria or LAP-expressing recombinant probiotic Lactobacillus paracasei (LbpLAP) to prevent L. monocytogenes adhesion, invasion, and transwell-based transepithelial translocation in a Caco-2 cell culture model. Several wild type probiotic bacteria showed strong adhesion to Caco-2 cells but none effectively prevented L. monocytogenes infection. Pre-exposure to LbpLAP for 1, 4, 15, or 24 h significantly (P<0.05) reduced adhesion, invasion, and transepithelial translocation of L. monocytogenes in Caco-2 cells, whereas pre-exposure to parental Lb. paracasei had no significant effect. Similarly, LbpLAP pre-exposure reduced L. monocytogenes translocation by as much as 46% after 24 h. LbpLAP also prevented L. monocytogenes-mediated cell damage and compromise of tight junction integrity. Furthermore, LbpLAP cells reduced L. monocytogenes-mediated cell cytotoxicity by 99.8% after 1 h and 79% after 24 h.

Conclusions/Significance

Wild type probiotic bacteria were unable to prevent L. monocytogenes infection in vitro. In contrast, LbpLAP blocked adhesion, invasion, and translocation of L. monocytogenes by interacting with host cell receptor Hsp60, thereby protecting cells from infection. These data show promise for the use of recombinant probiotics in preventing L. monocytogenes infection in high-risk populations.  相似文献   

19.
The probiotic potential of Lactobacillus plantarum and Lactobacillus fermentum strains, capable of overproducing riboflavin, was investigated. The riboflavin production was quantified in co-cultures of lactobacilli and human intestinal epithelial cells, and the riboflavin overproduction ability was confirmed. When milk and yogurt were used as carrier matrices, L. plantarum and L. fermentum strains displayed a significant ability to survive through simulated gastrointestinal transit. Adhesion was studied on both biotic and abiotic surfaces. Both strains adhered strongly on Caco-2 cells, negatively influenced the adhesion of Escherichia coli O157:H7, and strongly inhibited the growth of three reference pathogenic microbial strains. Resistance to major antibiotics and potential hemolytic activity were assayed. Overall, this study reveals that these Lactobacillus stains are endowed with promising probiotic properties and thus are candidates for the development of novel functional food which would be both enriched in riboflavin and induce additional health benefits, including a potential in situ riboflavin production, once the microorganisms colonize the host intestine.  相似文献   

20.
Bifidobacterium longum is a probiotic, known for its beneficial effects to the human gut and even for its immunomodulatory and antitumor activities. Recently, many studies have stressed out the intimate relation between probiotic bacteria and the GIT mucosa and their influence on human cellular homeostasis. We focused on the apoptotic deletion of cancer cells induced byB. longum. This has been valuedin vitro, performing the incubation of threeB. longum strains with enterocyte-like Caco-2 cells, to evidence DNA fragmentation, a cornerstone of apoptosis. The three strains tested were defined for their adhesion properties using adhesion and autoaggregation assays. These features are considered necessary to select a probiotic strain. The three strains named B12, B18 and B2990 resulted respectively: “strong adherent”, “adherent” and “non adherent”. Then, bacteria were incubated with Caco-2 cells to investigate apoptotic deletion. Cocultures of Caco-2 cells withB. longum resulted positive in DNA fragmentation test, only when adherent strains were used (B12 and B18). These results indicate that the interaction with adherentB. longum can induce apoptotic deletion of Caco-2 cells, suggesting a role in cellular homeostasis of the gastrointestinal tract and in restoring the ecology of damaged colon tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号