首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herpes simplex virus type 1 (HSV-1)-induced cell fusion is mediated by viral glycoproteins and other membrane proteins expressed on infected cell surfaces. Certain mutations in the carboxyl terminus of HSV-1 glycoprotein B (gB) and in the amino terminus of gK cause extensive virus-induced cell fusion. Although gB is known to be a fusogenic glycoprotein, the mechanism by which gK is involved in virus-induced cell fusion remains elusive. To delineate the amino-terminal domains of gK involved in virus-induced cell fusion, the recombinant viruses gKΔ31-47, gKΔ31-68, and gKΔ31-117, expressing gK carrying in-frame deletions spanning the amino terminus of gK immediately after the gK signal sequence (amino acids [aa] 1 to 30), were constructed. Mutant viruses gKΔ31-47 and gKΔ31-117 exhibited a gK-null (ΔgK) phenotype characterized by the formation of very small viral plaques and up to a 2-log reduction in the production of infectious virus in comparison to that for the parental HSV-1(F) wild-type virus. The gKΔ31-68 mutant virus formed substantially larger plaques and produced 1-log-higher titers than the gKΔ31-47 and gKΔ31-117 mutant virions at low multiplicities of infection. Deletion of 28 aa from the carboxyl terminus of gB (gBΔ28syn) caused extensive virus-induced cell fusion. However, the gBΔ28syn mutation was unable to cause virus-induced cell fusion in the presence of the gKΔ31-68 mutation. Transient expression of a peptide composed of the amino-terminal 82 aa of gK (gKa) produced a glycosylated peptide that was efficiently expressed on cell surfaces only after infection with the HSV-1(F), gKΔ31-68, ΔgK, or UL20-null virus. The gKa peptide complemented the gKΔ31-47 and gKΔ31-68 mutant viruses for infectious-virus production and for gKΔ31-68/gBΔ28syn-mediated cell fusion. These data show that the amino terminus of gK modulates gB-mediated virus-induced cell fusion and virion egress.Herpes simplex virus type 1 (HSV-1) specifies at least 11 virally encoded glycoproteins, as well as several nonglycosylated and lipid-anchored membrane-associated proteins, which serve important functions in virion infectivity and virus spread. Although cell-free enveloped virions can efficiently spread viral infection, virions can also spread by causing cell fusion of adjacent cellular membranes. Virus-induced cell fusion, which is caused by viral glycoproteins expressed on infected cell surfaces, enables transmission of virions from one cell to another, avoiding extracellular spaces and exposure of free virions to neutralizing antibodies (reviewed in reference 56). Most mutations that cause extensive virus-induced cell-to-cell fusion (syncytial or syn mutations) have been mapped to at least four regions of the viral genome: the UL20 gene (5, 42, 44); the UL24 gene (37, 58); the UL27 gene, encoding glycoprotein B (gB) (9, 51); and the UL53 gene, coding for gK (7, 15, 35, 53, 54, 57).Increasing evidence suggests that virus-induced cell fusion is mediated by the concerted action of glycoproteins gD, gB, and gH/gL. Recent studies have shown that gD interacts with both gB and gH/gL (1, 2). Binding of gD to its cognate receptors, including Nectin-1, HVEM, and others (12, 29, 48, 59, 60, 62, 63), is thought to trigger conformation changes in gH/gL and gB that cause fusion of the viral envelope with cellular membranes during virus entry and virus-induced cell fusion (32, 34). Transient coexpression of gB, gD, and gH/gL causes cell-to-cell fusion (49, 68). However, this phenomenon does not accurately model viral fusion, because other viral glycoproteins and membrane proteins known to be important for virus-induced cell fusion are not required (6, 14, 31). Specifically, gK and UL20 were shown to be absolutely required for virus-induced cell fusion (21, 46). Moreover, syncytial mutations within gK (7, 15, 35, 53, 54, 57) or UL20 (5, 42, 44) promote extensive virus-induced cell fusion, and viruses lacking gK enter more slowly than wild-type virus into susceptible cells (25). Furthermore, transient coexpression of gK carrying a syncytial mutation with gB, gD, and gH/gL did not enhance cell fusion, while coexpression of the wild-type gK with gB, gD, and gH/gL inhibited cell fusion (3).Glycoproteins gB and gH are highly conserved across all subfamilies of herpesviruses. gB forms a homotrimeric type I integral membrane protein, which is N glycosylated at multiple sites within the polypeptide. An unusual feature of gB is that syncytial mutations that enhance virus-induced cell fusion are located exclusively in the carboxyl terminus of gB, which is predicted to be located intracellularly (51). Single-amino-acid substitutions within two regions of the intracellular cytoplasmic domain of gB were shown to cause syncytium formation and were designated region I (amino acid [aa] positions 816 and 817) and region II (aa positions 853, 854, and 857) (9, 10, 28, 69). Furthermore, deletion of 28 aa from the carboxyl terminus of gB, disrupting the small predicted alpha-helical domain H17b, causes extensive virus-induced cell fusion as well as extensive glycoprotein-mediated cell fusion in the gB, gD, and gH/gL transient-coexpression system (22, 49, 68). The X-ray structure of the ectodomain of gB has been determined and is predicted to assume at least two major conformations, one of which may be necessary for the fusogenic properties of gB. Therefore, perturbation of the carboxyl terminus of gB may alter the conformation of the amino terminus of gB, thus favoring one of the two predicted conformational structures that causes membrane fusion (34).The UL53 (gK) and UL20 genes encode multipass transmembrane proteins of 338 and 222 aa, respectively, which are conserved in all alphaherpesviruses (15, 42, 55). Both proteins have multiple sites where posttranslational modification can occur; however, only gK is posttranslationally modified by N-linked carbohydrate addition (15, 35, 55). The specific membrane topologies of both gK and UL20 protein (UL20p) have been predicted and experimentally confirmed using epitope tags inserted within predicted intracellular and extracellular domains (18, 21, 44). Syncytial mutations in gK map predominantly within extracellular domains of gK and particularly within the amino-terminal portion of gK (domain I) (18), while syncytial mutations of UL20 are located within the amino terminus of UL20p, shown to be located intracellularly (44). A series of recent studies have shown that HSV-1 gK and UL20 functionally and physically interact and that these interactions are necessary for their coordinate intracellular transport and cell surface expression (16, 18, 21, 26, 45). Specifically, direct protein-protein interactions between the amino terminus of HSV-1 UL20 and gK domain III, both of which are localized intracellularly, were recently demonstrated by two-way coimmunoprecipitation experiments (19).According to the most prevalent model for herpesvirus intracellular morphogenesis, capsids initially assemble within the nuclei and acquire a primary envelope by budding into the perinuclear spaces. Subsequently, these virions lose their envelope through fusion with the outer nuclear lamellae. Within the cytoplasm, tegument proteins associate with the viral nucleocapsid and final envelopment occurs by budding of cytoplasmic capsids into specific trans-Golgi network (TGN)-associated membranes (8, 30, 47, 70). Mature virions traffic to cell surfaces, presumably following the cellular secretory pathway (33, 47, 61). In addition to their significant roles in virus-induced cell fusion, gK and UL20 are required for cytoplasmic virion envelopment. Viruses with deletions in either the gK or the UL20 gene are unable to translocate from the cytoplasm to extracellular spaces and accumulated as unenveloped virions in the cytoplasm (5, 15, 20, 21, 26, 35, 36, 38, 44, 55). Current evidence suggests that the functions of gK and UL20 in cytoplasmic virion envelopment and virus-induced cell fusion are carried out by different, genetically separable domains of UL20p. Specifically, UL20 mutations within the amino and carboxyl termini of UL20p allowed cotransport of gK and UL20p to cell surfaces, virus-induced cell fusion, and TGN localization, while effectively inhibiting cytoplasmic virion envelopment (44, 45).In this paper, we demonstrate that the amino terminus of gK expressed as a free peptide of 82 aa (gKa) is transported to infected cell surfaces by viral proteins other than gK or UL20p and facilitates virus-induced cell fusion caused by syncytial mutations in the carboxyl terminus of gB. Thus, functional domains of gK can be genetically separated, as we have shown previously (44, 45), as well as physically separated into different peptide portions that retain functional activities of gK. These results are consistent with the hypothesis that the amino terminus of gK directly or indirectly interacts with and modulates the fusogenic properties of gB.  相似文献   

2.
Herpes simplex virus type 1 (HSV-1) glycoprotein K (gK) and the UL20 protein (UL20p) are strictly required for virus-induced cell fusion, and mutations within either the gK or UL20 gene cause extensive cell fusion (syncytium formation). We have shown that gK forms a functional protein complex with UL20p, which is required for all gK and UL20p-associated functions in the HSV-1 life cycle. Recently, we showed that the amino-terminal 82 amino acids (aa) of gK (gKa) were required for the expression of the syncytial phenotype of the mutant virus gBΔ28 lacking the carboxyl-terminal 28 amino acids of gB (V. N. Chouljenko, A. V. Iyer, S. Chowdhury, D. V. Chouljenko, and K. G. Kousoulas, J. Virol. 83:12301-12313, 2009). This work suggested that the amino terminus of gK may directly or indirectly interact with gB and/or other viral glycoproteins. Two-way coimmunoprecipitation experiments revealed that UL20p interacted with gB in infected cells. Furthermore, the gKa peptide was coimmunoprecipitated with gB but not gD. Three recombinant baculoviruses were constructed, expressing the amino-terminal 82 aa of gKa together with either the extracellular portion of gB (30 to 748 aa), gD (1 to 340 aa), or gH (1 to 792 aa), respectively. Coimmunoprecipitation experiments revealed that gKa physically interacted with the extracellular portions of gB and gH but not gD. Three additional recombinant baculoviruses expressing gKa and truncated gBs encompassing aa 30 to 154, 30 to 364, and 30 to 500 were constructed. Coimmunoprecipitation experiments showed that gKa physically interacted with all three truncated gBs. Computer-assisted prediction of possible gKa binding sites on gB suggested that gKa may interact predominantly with gB domain I (E. E. Heldwein, H. Lou, F. C. Bender, G. H. Cohen, R. J. Eisenberg, and S. C. Harrison, Science 313:217-220, 2006). These results imply that the gK/UL20p protein complex modulates the fusogenic properties of gB and gH via direct physical interactions.Herpes simplex virus type 1 (HSV-1) can enter into cells via the fusion of its viral envelope with cellular membranes. Also, the virus can spread from infected to uninfected cells by causing virus-induced cell fusion, allowing virions to enter into uninfected cells without being exposed to extracellular spaces. These membrane fusion phenomena are known to be mediated by viral glycoproteins and other viral proteins (reviewed in reference 36). Although wild-type viruses cause a limited amount of virus-induced cell fusion, certain mutations cause extensive virus-induced cell-to-cell fusion (syncytial, or syn, mutations). These syncytial mutations are located predominantly within the UL20 gene (5, 27, 28); the UL24 gene (25, 38); the UL27 gene, encoding glycoprotein gB (7, 15, 18, 32); and the UL53 gene, coding for gK (6, 11, 24, 34, 35, 37).The presence of syncytial mutations within different viral genes, as well as other accumulating evidence, suggests that virus-induced cell fusion is mediated by the concerted action and interactions of the viral glycoproteins gD, gB, and gH/gL as well as gK and the membrane protein UL20p. Specifically, recent studies have shown that gD interacts with both gB and gH/gL (1, 2, 21). However, gB and gH/gL can also interact with each other even in the absence of gD (3). In this membrane fusion model, the binding of gD to its cognate receptors, including nectin-1, herpesvirus entry mediator (HVEM), and other receptors (8, 19, 30, 39-42), is thought to trigger sequential conformational changes in gH/gL and gB causing the fusion of the viral envelope with cellular membranes during virus entry as well as fusion among cellular membranes (22, 23). The transient coexpression of gB, gD, and gH/gL causes cell-to-cell fusion (31, 43), suggesting that these four viral glycoproteins are necessary and sufficient for membrane fusion. However, this transient fusion system does not accurately depict virus-induced cell fusion. Specifically, viral glycoprotein K (gK) and the UL20 membrane protein (UL20p) have been shown to be strictly required for virus-induced cell fusion (10, 27, 29). Moreover, syncytial mutations within gK (6, 11, 24, 34, 35, 37) or UL20 (5, 27, 28) promote extensive virus-induced cell fusion, and viruses lacking gK enter more slowly than the wild-type virus into susceptible cells (17). In contrast, the transient coexpression of gK carrying a syncytial mutation with gB, gD, and gH/gL did not enhance cell fusion, while the coexpression of wild-type gK with gB, gD, and gH/gL was reported previously to inhibit cell fusion in certain cell lines (4). To date, there is no direct evidence that either gK or UL20p interacts with gB, gD, gH, or gL.The X-ray structure of the ectodomain of HSV-1 gB has been determined and was predicted to assume at least two major conformations, one of which may be necessary for the fusogenic properties of gB (23). Single-amino-acid changes within the carboxyl terminus of gB located intracellularly as well as the deletion of the terminal 28 amino acids (aa) of gB cause extensive virus-induced cell fusion, presumably because they alter the extracellular conformation of gB (15, 31, 43). We have previously shown that HSV-1 gK and UL20p functionally and physically interact and that these interactions are absolutely necessary for their coordinate intracellular transport, cell surface expression, and functions in the HSV-1 life cycle (13, 16). In contrast to gB, syncytial mutations in gK map predominantly within extracellular domains of gK and particularly within the amino-terminal portion of gK (domain I) (12), while syncytial mutations of UL20 are located within the amino terminus of UL20p shown to be located intracellularly (27).Recently, we showed that the a peptide composed of the amino-terminal 82 amino acids of gK (gKa) can complement in trans for gB-mediated cell fusion caused by the deletion of the carboxyl-terminal 28 amino acids of gB, suggesting that the gKa peptide interacted with gB or other viral glycoproteins involved in virus-induced cell fusion (10). In this work, we demonstrate that UL20p and the amino terminus of gKa physically interact with gB in infected cells, while the gKa peptide is also capable of binding to the extracellular portion of gH, suggesting that gK/UL20p modulates virus-induced cell fusion via direct interactions with gB and gH.  相似文献   

3.
4.
Genital herpes, caused by herpes simplex virus type 2 (HSV-2), is one of the most prevalent sexually transmitted diseases worldwide and a risk factor for acquiring human immunodeficiency virus. Although many vaccine candidates have shown promising results in animal models, they have failed to be effective in human trials. In this study, a humanized mouse strain was evaluated as a potential preclinical model for studying human immune responses to HSV-2 infection and vaccination. Immunodeficient mouse strains were examined for their abilities to develop human innate and adaptive immune cells after transplantation of human umbilical cord stem cells. A RAG2−/− γc−/− mouse strain with a BALB/c background was chosen as the most appropriate model and was then examined for its ability to mount innate and adaptive immune responses to intravaginal HSV-2 infection and immunization. After primary infection, human cells in the lymph nodes were able to generate a protective innate immune response and produce gamma interferon (IFN-γ). After intravaginal immunization and infection, human T cells and NK cells were found in the genital tract and iliac lymph nodes. In addition, human T cells in the spleen, lymph nodes, and vaginal tract were able to respond to stimulation with HSV-2 antigens by replicating and producing IFN-γ. Human B cells were also able to produce HSV-2-specific immunoglobulin G. These adaptive responses were also shown to be protective and reduce local viral replication in the genital tract. This approach provides a means for studying human immune responses in vivo using a small-animal model and may become an important preclinical tool.Genital herpes, caused primarily by herpes simplex virus type 2 (HSV-2), is one of the most prevalent sexually transmitted diseases in the world and is associated with substantial morbidity (13). After initial infection of the genital tract, the virus establishes latency within the nervous system and thus maintains lifelong infection in humans. Latent virus can reactivate and cause recurrent symptoms, including genital lesions; however, subclinical infection and asymptomatic viral shedding also occur (11, 35, 40, 53). HSV-2 has gained increasing interest in the light of evidence that it is a major risk factor for human immunodeficiency virus type 1 (HIV-1) acquisition and transmission and for the progression of HIV-1 infection (8, 9, 17, 25, 37, 55, 56). In addition, there is evidence that anti-HSV therapy can reduce the amount of infectious HIV-1 in the genital tracts of women (9, 45). Although antiviral treatment is available and can reduce the severity of the infection, compliance problems, as well as difficulty in diagnosing infection in patients, have hampered efforts to control the disease. A vaccine would provide a more effective way of preventing or limiting infection and would therefore greatly reduce the social and economic burdens caused by HSV-2 infection.Several vaccine candidates exist; however, they have proven to be less successful in clinical trials than anticipated, and new strategies may need to be developed (24, 61). A key concern is that preclinical vaccine strategies have been evaluated largely by using studies performed with mouse models of HSV-2 infection and, thus, the immune responses observed were mediated by murine cells. As a consequence, the results of these studies may not accurately represent the human immune response to infection. In order to develop an effective vaccine and/or treatment, it is necessary to understand which immune mechanisms provide protection against infection at the site of viral entry, the vaginal tract, and how these immune responses can be induced in humans.Innate and adaptive immune responses are both important for controlling HSV-2 infection. Innate immune cells such as NK and NKT cells are required for protection against genital HSV-2 infection in mice (1) and in humans; NK cells accumulate at sites of HSV-2 infection and can lyse HSV-infected cells (30, 67). Adaptive immune responses to HSV-2 include the cellular response mediated by CD4+ and CD8+ T cells and the humoral response mediated by B cells and antibodies. There is much evidence that T cells play a crucial role in protection against HSV-2 in mice and humans (28). T cells are present in herpes lesions, and depletion of T cells in mice greatly reduces protection (16, 27, 29, 30, 44, 51, 70). Gamma interferon (IFN-γ), which is produced early after infection by NK cells and later by CD4+ T cells, has been shown to be a crucial cytokine for the control of HSV (43, 52, 58, 63). Although HSV-2-specific antibodies are produced in response to infection and vaccination, a correlation with protection in humans has not been established (2, 3, 7, 10, 11, 48). In mice, a role for antibodies early after infection has been shown; however, if B cells are knocked out, mice are still able to eventually clear the virus (16, 50). Although we do not have a complete understanding of the components that are necessary for protection, it appears that both innate and adaptive immune responses will be required and that it will be important to elicit these responses at the site of infection in the genital tract.The lack of an effective vaccine and accurate translation of results obtained with mice to humans indicates a need for a more relevant preclinical model to study human immune responses and disease. Substantial improvements in the development of humanized mice have made them a novel tool for the study of human diseases (69). Human CD34+ stem cells have been injected into several immunodeficient mouse strains, such as NOD/SCID/γc−/− and RAG2−/− γc−/− mice, in which superior engraftment has resulted in multilineage differentiation of the human cells (23, 64). These novel humanized mice have been shown to develop human immune responses to pathogens such as Epstein-Barr virus, dengue virus, and influenza virus and to immunization with cholera toxin (33, 64, 66, 68). In addition, humanized mice can support infection with HIV after systemic or mucosal challenge in the vaginal tract and rectum (4-6, 62, 65). HSV-2 infection in humanized mice has not been examined, and mucosal immunization that can provide protection from infection with wild-type virus has also not been demonstrated. In addition, although it is clear that adaptive immune responses can be generated in humanized mice, innate responses to viral infection have not been extensively examined.In this study, we evaluated three immunodeficient mouse strains for their abilities to engraft human umbilical cord-derived stem cells and support the differentiation of these cells into important innate and adaptive immune cells. The most appropriate model was then used to examine mucosal immune responses following primary HSV-2 infection, immunization, and secondary HSV-2 challenge. We show for the first time that the humanized mice can mount protective human NK cell-mediated innate immune responses to primary mucosal infection with HSV-2. In addition, mucosal immunization and infection can induce HSV-2-specific antibody production and, to a greater extent, T-cell-mediated responses both systemically and locally in the genital tracts of humanized mice. We further show that mucosal immunization can provide protection against a lethal intravaginal (IVAG) challenge with HSV-2.  相似文献   

5.
6.
7.
Us3 protein kinases encoded by herpes simplex virus 1 (HSV-1) and 2 (HSV-2) are serine/threonine protein kinases and play critical roles in viral replication and pathogenicity in vivo. In the present study, we investigated differences in the biological properties of HSV-1 and HSV-2 Us3 protein kinases and demonstrated that HSV-2 Us3 did not have some of the HSV-1 Us3 kinase functions, including control of nuclear egress of nucleocapsids, localization of UL31 and UL34, and cell surface expression of viral envelope glycoprotein B. In agreement with the observations that HSV-2 Us3 was less important for these functions, the effect of HSV-2 Us3 kinase activity on virulence in mice following intracerebral inoculation was much lower than that of HSV-1 Us3. Furthermore, we showed that alanine substitution in HSV-2 Us3 at a site (aspartic acid at position 147) corresponding to one that can be autophosphorylated in HSV-1 Us3 abolished HSV-2 Us3 kinase activity. Thus, the regulatory and functional effects of Us3 kinase activity are different between HSV-1 and HSV-2.Us3 protein kinases encoded by herpes simplex virus 1 (HSV-1) and 2 (HSV-2) are serine/threonine protein kinases with amino acid sequences that are conserved in the subfamily Alphaherpesvirinae (6, 24, 36). Based on studies showing that recombinant Us3 mutants of HSV-1 and HSV-2 have significantly impaired viral replication and virulence in mice models, it has been concluded that both HSV-1 and HSV-2 Us3 protein kinases play important roles in viral replication and pathogenicity in vivo (25, 33, 41). In contrast, HSV-1 and HSV-2 Us3 protein kinases are not essential for growth in tissue culture cells (33, 36). Thus, recombinant Us3 mutants grow as well as wild-type viruses in Vero cells, and the mutants exhibit modestly impaired replication in HEp-2 cells (33, 36, 39, 40). The possible functions of Us3 have been extensively studied and gradually elucidated for HSV-1 Us3, but much less is known about HSV-2 Us3. These functions include (i) blocking apoptosis (1, 22, 30, 31, 35); (ii) promoting nuclear egress of progeny nucleocapsids through the nuclear membrane (39, 40, 45); (iii) redistributing and phosphorylating nuclear membrane-associated viral nuclear egress factors UL31 and UL34 (14, 37, 38) and cellular proteins, including lamin A/C and emerin (21, 27, 28); (iv) controlling infected cell morphology (13, 31, 32); and (v) downregulating cell surface expression of viral envelope glycoprotein B (gB) (12).To determine the molecular mechanisms for a viral protein kinase''s effects in infected cells, the kinase''s physiological substrates and its phosphorylation sites must be identified. This can involve studies showing that the altered phenotypes observed in cells infected with a mutant virus lacking the protein kinase activity is also detected in cells infected with a mutant virus in which the substrate''s phosphorylation sites have been modified by mutations. Although more than 15 potential HSV Us3 substrates have been reported, HSV-1 Us3 phosphorylation of only three substrates (Us3 itself, gB, and UL31) has been demonstrated to be linked directly with Us3 functions in infected cells (12, 13, 29, 41) as follows. (i) Us3 has been reported to autophosphorylate serine at position 147 (Ser-147), and this phosphorylation augments Us3''s kinase activity in infected cells (13, 41). Even though only a small fraction of Us3 is autophosphorylated at Ser-147 in infected cells, alanine replacement of Ser-147 in Us3 significantly reduced HSV-1 replication in the mouse cornea and pathogenic manifestations of herpes stroma keratitis and periocular skin disease in mice (41). These results indicated that Us3 kinase activity was, in part, regulated by autophosphorylation of Ser-147, and regulation of Us3 activity by autophosphorylation played a critical role in viral replication in vivo and HSV-1 pathogenesis. (ii) It has been reported that HSV-1 Us3 phosphorylates Thr-887 in the cytoplasmic tail of gB, and this phosphorylation downregulates the cell surface expression of gB (12). Us3 phosphorylation of gB at Thr-887 also has been proposed to be involved in the regulation of fusion of the nascent progeny virion envelope with the cell''s outer nuclear membrane, based on the observation that virions accumulated aberrantly in the perinuclear space in cells infected with mutant viruses carrying the amino acid substitution mutation T887A in gB and lacking the capacity to produce gH (45). The Us3 phosphorylation of gB at Thr-887 appeared to be critical for HSV-1 replication and pathogenesis in vivo, based on studies showing that the T887A substitution in the phosphorylation site in gB significantly reduced viral replication in the mouse cornea and pathogenic manifestations of herpes stroma keratitis and periocular skin disease in mice (Takahiko Imai, Ken Sagou, and Yasushi Kawaguchi, unpublished observations). (iii) It has been shown that Us3 phosphorylated some or all of the six serines in the UL31 N-terminal region, and this phosphorylation regulated the proper localization of UL31 and UL34 at the nuclear membrane and nuclear egress of nucleocapsids (29). Thus, the molecular basis of HSV-1 Us3 effects in infected cells have been gradually elucidated.However, the Us3 phosphorylation sites in Us3 itself and in gB are not conserved between HSV serotypes (12, 13). The amino acid residues in HSV-2 Us3 and gB corresponding to HSV-1 Us3 Ser-147 and gB Thr-887 are aspartic acid (Asp-147) and alanine (Ala-887), respectively. These results suggest that some HSV-1 Us3 functions, such as regulation of its own catalytic activity and control of gB expression on the cell surface, are not regulated by HSV-2 Us3 or are regulated in a manner(s) different from HSV-1 Us3. In agreement with this suggestion, there is a marked difference between HSV-1 and HSV-2 virulence in mice following intracerebral infection, with the HSV-1 Us3 null mutant being >104-fold less virulent than the parent wild-type virus (25), while the HSV-2 Us3 null mutant was only ∼10-fold less virulent (33). Although these results were from different reports and the mouse strains used in the studies were different, they indicate that some HSV-1 Us3 functions are different from those of HSV-2 Us3.Therefore, we investigated differences in the biological properties of HSV-1 and HSV-2 Us3 protein kinases. It was of particular interest to examine whether Asp-147 in HSV-2 Us3 is required for its own kinase activity, since it is well established that acidic amino acids such as Asp or glutamic acid sometimes mimic the negative charges produced by phosphorylation (29, 46). In the present study, using a genetic manipulation system of HSV-2 with our newly constructed HSV-2 bacterial artificial chromosome (BAC) clone, we have shown that HSV-2 Us3 exhibited marked differences from HSV-1 Us3 in its catalytic functions, including the regulation of UL31/UL34 localization, nuclear egress of nucleocapsids, cell surface expression of gB, and virulence in mice. We also found that Asp-147 in HSV-2 Us3 was critical for its kinase activity, raising a possibility that the activity of Us3 kinases was regulated differently in HSV-1 and HSV-2.  相似文献   

8.
9.
In animal models of infection, glycoprotein E (gE) is required for efficient herpes simplex virus type 1 (HSV-1) spread from the inoculation site to the cell bodies of innervating neurons (retrograde direction). Retrograde spread in vivo is a multistep process, in that HSV-1 first spreads between epithelial cells at the inoculation site, then infects neurites, and finally travels by retrograde axonal transport to the neuron cell body. To better understand the role of gE in retrograde spread, we used a compartmentalized neuron culture system, in which neurons were infected in the presence or absence of epithelial cells. We found that gE-deleted HSV-1 (NS-gEnull) retained retrograde axonal transport activity when added directly to neurites, in contrast to the retrograde spread defect of this virus in animals. To better mimic the in vivo milieu, we overlaid neurites with epithelial cells prior to infection. In this modified system, virus infects epithelial cells and then spreads to neurites, revealing a 100-fold retrograde spread defect for NS-gEnull. We measured the retrograde spread defect of NS-gEnull from a variety of epithelial cell lines and found that the magnitude of the spread defect from epithelial cells to neurons correlated with epithelial cell plaque size defect, indicating that gE plays a similar role in both types of spread. Therefore, gE-mediated spread between epithelial cells and neurites likely explains the retrograde spread defect of gE-deleted HSV-1 in vivo.Herpes simplex virus type 1 (HSV-1) is an alphaherpesvirus that characteristically infects skin and mucosal surfaces before spreading to sensory neurons, where it establishes a lifelong persistent infection. The virus periodically returns to the periphery via sensory axons and causes recurrent lesions as well as asymptomatic shedding. This life cycle requires viral transport along axons in two directions: toward the neuron cell body (retrograde direction) and away from the neuron cell body (anterograde direction).Many studies of alphaherpesvirus neuronal spread have focused on pseudorabies virus (PRV), a virus whose natural host is the pig. Three PRV proteins, glycoprotein E (gE), gI, and Us9, have been shown to mediate anterograde neuronal spread both in animal models of infection and in cultured neurons. However, these three proteins are dispensable for retrograde spread (3, 8, 11, 12, 31, 46). In contrast, numerous animal models of infection have shown that HSV-1 gE is required for retrograde spread from the inoculation site to the cell bodies of innervating neurons (4, 9, 44, 56). In the murine flank model, wild-type (WT) virus replicates in the skin and then infects sensory neurons and spreads in a retrograde direction to the dorsal root ganglia (DRG). In this model, gE-deleted HSV-1 replicates in the skin but is not detected in the DRG (9, 44). This phenotype differs from gE-deleted PRV, which is able to reach the DRG at WT levels (8). Thus, unlike PRV, gE-deleted HSV-1 viruses have a retrograde spread defect in vivo.HSV-1 gE is a 552-amino-acid type I membrane protein found in the virion membrane as well as in the trans-Golgi and plasma membranes of infected cells (1). gE forms a heterodimer with another viral glycoprotein, gI. The gE/gI complex is important for HSV-1 immune evasion through its Fc receptor activity. gE/gI binds to the Fc domain of antibodies directed against other viral proteins, sequestering these antibodies and blocking antibody effector functions (27, 32, 40). Additionally, gE/gI promotes spread between epithelial cells. Viruses lacking either gE or gI form characteristically small plaques in cell culture and small inoculation site lesions in mice (4, 9, 18, 40, 58). In animal models, gE and gI also mediate viral spread in both anterograde and retrograde directions (4, 19, 44, 56).In order to better understand the role of gE in HSV-1 retrograde neuronal spread, we employed a compartmentalized neuron culture system that has been used to study directional neuronal spread of PRV and West Nile virus (12, 14, 45). In the Campenot chamber system, neurites are contained in a compartment that is separate from their corresponding cell bodies. Therefore, spread in an exclusively retrograde direction can be measured by infecting neurites and detecting spread to neuron cell bodies.HSV-1 replication requires retrograde transport of incoming viral genomes to the nucleus. In neurites, fusion between viral and cellular membranes occurs at the plasma membrane (43, 48). Upon membrane fusion, the capsid and a subset of tegument proteins (the inner tegument) dissociate from glycoproteins and outer tegument proteins, which remain at the plasma membrane (28, 38). Unenveloped capsids and the associated inner tegument proteins are then transported in the retrograde direction to the nucleus (7, 48, 49).For both neurons and epithelial cells, retrograde transport is dependent upon microtubules, ATP, the retrograde microtubule motor dynein, and the dynein cofactor dynactin (22, 34, 49, 52). Several viral proteins interact with components of the dynein motor complex (23, 39, 60). However, none of these proteins suggest a completely satisfactory mechanism by which viral retrograde transport occurs, either because they are not components of the complex that is transported to the nucleus (UL34, UL9, VP11/12) or because capsids lacking that protein retain retrograde transport activity (VP26) (2, 17, 21, 28, 37). This implies that additional viral proteins are involved in retrograde trafficking.We sought to better characterize the role of gE in retrograde spread and found that gE is dispensable for retrograde axonal transport; however, it promotes HSV-1 spread from epithelial cells to neurites. This epithelial cell-to-neuron spread defect provides a plausible explanation for the retrograde spread defect of gE-deleted HSV-1 in animal models of infection.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号