首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite almost 30 years of research, no effective vaccine has yet been developed against HIV-1. Probably such a vaccine would need to induce both an effective T cell and antibody response. Any vaccine component focused on inducing humoral immunity requires the HIV-1 envelope (Env) glycoprotein complex as it is the only viral protein exposed on the virion surface. HIV-1 has evolved several mechanisms to evade broadly reactive neutralizing antibodies. One such a mechanism involves variable loop domains, which are highly flexible structures that shield the underlying conserved epitopes. We hypothesized that removal of such loops would increase the exposure and immunogenicity of these conserved regions. Env variable loop deletion however often leads to protein misfolding and aggregation because hydrophobic patches becoming solvent accessible. We have therefore previously used virus evolution to acquire functional Env proteins lacking the V1V2 loop. We then expressed them in soluble (uncleaved) gp140 forms. Three mutants were found to perform optimally in terms of protein expression, stability, trimerization and folding. In this study, we characterized the immune responses to these antigens in rabbits. The V1V2 deletion mutant ΔV1V2.9.VK induced a prominent response directed to epitopes that are not fully available on the other Env proteins tested but that effectively bound and neutralized the ΔV1V2 Env virus. This Env variant also induced more efficient neutralization of the tier 1 virus SF162. The immune refocusing effect was lost after booster immunization with a full-length gp140 protein with intact V1V2 loops. Collectively, this result suggests that deletion of variable domains could alter the specificity of the humoral immune response, but did not result in broad neutralization of neutralization-resistant virus isolates.  相似文献   

2.
The antibody responses elicited in rhesus macaques immunized with soluble human immunodeficiency virus (HIV) Env gp140 proteins derived from the R5-tropic HIV-1 SF162 virus were analyzed and compared to the broadly reactive neutralizing antibody responses elicited during chronic infection of a macaque with a simian/human immunodeficiency virus (SHIV) expressing the HIV-1 SF162 Env, SHIV(SF162P4), and humans infected with heterologous HIV-1 isolates. Four gp140 immunogens were evaluated: SF162gp140, DeltaV2gp140 (lacking the crown of the V2 loop), DeltaV3gp140 (lacking the crown of the V3 loop), and DeltaV2DeltaV3gp140 (lacking both the V2 and V3 loop crowns). SF162gp140 and DeltaV2gp140 have been previously evaluated by our group in a pilot study, but here, a more comprehensive analysis of their immunogenic properties was performed. All four gp140 immunogens elicited stronger anti-gp120 than anti-gp41 antibodies and potent homologous neutralizing antibodies (NAbs) that primarily targeted the first hypervariable region (V1 loop) of gp120, although SF162gp140 also elicited anti-V3 NAbs. Heterologous NAbs were elicited by SF162gp140 and DeltaV2gp140 but were weak in potency and narrow in specificity. No heterologous NAbs were elicited by DeltaV3gp140 or DeltaV2DeltaV3gp140. In contrast, the SHIV(SF162P4)-infected macaque and HIV-infected humans generated similar titers of anti-gp120 and anti-gp41 antibodies and NAbs of significant breadth against primary HIV-1 isolates, which did not target the V1 loop. The difference in V1 loop immunogenicity between soluble gp140 and virion-associated gp160 Env proteins derived from SF162 may be the basis for the observed difference in the breadth of neutralization in sera from the immunized and infected animals studied here.  相似文献   

3.
The human immunodeficiency virus type 1 envelope glycoprotein (Env) complex is the principal focus of neutralizing antibody-based vaccines. The functional Env complex is a trimer consisting of six individual subunits: three gp120 molecules and three gp41 molecules. The individual subunits have proven unsuccessful as vaccines presumably because they do not resemble the functional Env complex. Variable domains and carbohydrates shield vulnerable neutralization epitopes on the functional Env complex. The deletion of variable loops has been shown to improve gp120's immunogenicity; however, problems have been encountered when introducing such modifications in stabilized Env trimer constructs. To address these issues, we have created a set of V1/V2 and V3 loop deletion variants in the context of complete virus to allow optimization by forced virus evolution. Compensatory second-site substitutions included the addition and/or removal of specific carbohydrates, changes in the disulfide-bonded architecture of the V1/V2 stem, the replacement of hydrophobic residues by hydrophilic and charged residues, and changes in distal parts of gp120 and gp41. These viruses displayed increased sensitivity to neutralizing antibodies, demonstrating the improved exposure of conserved domains. The results show that we can select for functionally improved Env variants with loop deletions through forced virus evolution. Selected evolved Env variants were transferred to stabilized Env trimer constructs and were shown to improve trimer expression and secretion. Based on these findings, we can make recommendations on how to delete the V1/V2 domain from recombinant Env trimers for vaccine and X-ray crystallography studies. In general, virus evolution may provide a powerful tool to optimize Env vaccine antigens.  相似文献   

4.
HIV-1 gp140 envelope immunogens express conserved epitopes that are targeted by broadly cross-reactive neutralizing antibodies, but they fail to elicit similar antibodies upon immunization. The poor immunogenicity of conserved epitopes on gp140 could be linked to the high immunogenicity of variable Env regions on such constructs. Previous studies have shown that the first hypervariable region (V1 loop) is immunogenic on soluble gp140s but elicits type-specific antibodies. To address issues related to the high immunogenicity of the V1 loop, two conceptually opposite approaches were tested. In the first approach, we eliminated the V1 loop from our gp140 construct and examined how V1 deletion altered the immunogenic properties of other Env regions. In the second approach, we took advantage of the high immunogenicity of the V1 loop and engrafted four diverse V1 loops onto a common gp140 Env “scaffold.” These four scaffolds were used as a cocktail of immunogens to elicit diverse anti-V1 antibodies, under the hypothesis that eliciting diverse anti-V1 antibodies would expand the neutralizing breadth of immune sera. Our study indicates that three of four heterologous V1 loops were immunogenic on the common Env backbone “scaffold,” but heterologous anti-V1 neutralizing responses were observed in only one case. Both types of V1 modification dampened the immunogenicity of the V3 loop, differentially altered the immunogenicity of the transmembrane gp41 subunit, and altered the relative immunogenicities of unknown Env regions, including potentially the CD4-binding site (CD4-bs) and trimer-specific targets, which elicited cross-reactive neutralizing antibodies but of limited breadth.An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will need to incorporate an envelope-derived immunogen capable of eliciting potent and broadly cross-reactive neutralizing antibody responses against diverse primary HIV-1 isolates. The target of anti-HIV neutralizing antibodies (NAbs), the viral envelope (Env) glycoprotein, is expressed as a single transmembrane polypeptide precursor (gp160) that is glycosylated and cleaved into an extracellular subunit (gp120) and a transmembrane subunit (gp41) during intracellular processing (10, 20, 21, 54). The functional Env form on virion surfaces is a trimer composed of three noncovalently associated gp120-gp41 heterodimers. Soluble forms of the trimeric Env have been generated by introducing stop codons immediately upstream of the transmembrane domain of gp41. These constructs are commonly referred to as gp140 proteins and have been tested extensively as immunogens to elicit anti-HIV-1 NAbs. Soluble gp140s express epitopes that are targets of NAbs, including cross-reactive NAbs such as b12, 4E10, and 2G12 (5, 17, 34, 45, 47, 49, 50, 52, 57). Immunization with gp140 immunogens nonetheless does not result in a broadly cross-reactive neutralizing antibody response (2, 3, 17, 18, 26, 56, 58).Epitope mapping analyses of the Abs elicited by soluble trimeric gp140 immunogens revealed that a large fraction of the gp140-induced neutralization response targets the first hypervariable region of gp120 (the V1 loop). In our hands, ∼40 to 70% of the neutralizing activity of sera from animals immunized with SF162 gp140 constructs is due to anti-V1 antibodies (17). In a study by Li et al. with YU2 gp140 (30) and a study by Wu et al. with HxB2/BaL gp145 (56), ∼10 to 80% of anti-YU2 neutralizing activity and 100% of anti-HxB2 neutralizing activity, respectively, were due to anti-V1 Abs. These anti-V1 Abs, however, are not cross-reactive. Previously, we also demonstrated that the diverse positionings of the V1 across heterologous strains limit access of broadly cross-reactive monoclonal antibodies (MAbs) to their targets (12).Here, taking into consideration the V1 loop''s high immunogenicity, we employed two opposing approaches aimed at the elicitation of cross-reactive neutralizing antibody responses to HIV-1. In the first approach, we deleted the V1 loop on our soluble trimeric gp140 construct (ΔV1SF162 gp140) and examined whether and how this modification altered the immunogenic properties of other Env regions. In the second approach, we substituted the V1 loop on our SF162 gp140 construct with the V1 loops from four heterologous HIV-1 viruses (89.6, YU2, JRFL, and HxB2) that differ in their amino acid compositions and in the number of potential N-linked glycosylation sites (PNGs). These four heterologous viruses display various neutralization phenotypes (7) and coreceptor utilization profiles (15, 35, 36, 48, 51). A total of four SF162 Env-based gp140 “scaffolds” expressing four different V1 loops were created and used as immunogens in a cocktail to test as a “proof of principle” the hypothesis that if diverse V1 loops are presented to the immune system simultaneously, the elicitation of anti-V1 NAbs with diverse specificities would broaden the overall neutralizing activity of immune sera. We also immunized animals with each of the four V1 chimeric scaffolds individually to ensure that all V1 loops were immunogenic when presented on the heterologous SF162 Env background.All immunogens (including wild-type [WT] SF162 gp140 and ΔV1SF162 gp140) elicited homologous anti-SF162 NAbs. All immunogens except the scaffold construct expressing the YU2 V1 also elicited heterologous NAbs against the sensitive lab-adapted strain HxB2. The heterologous YU2, 89.6, and HxB2 V1 loops, but not the JRFL V1 loop, were immunogenic on the background of the SF162 Env scaffold. However, only anti-V1 neutralizing activity against the HxB2 virus was observed. Although neither approach resulted in the development of broad anti-HIV-1 cross-neutralizing antibody responses, cross-neutralizing antibody responses of narrow breadth were elicited. These responses were not due to antibodies that target to variable regions of gp120 but were due to antibodies that target either epitopes of the CD4-binding site (CD4-bs) or epitopes that are not present on monomeric gp120. These observations have implications for guiding rational Env-based immunogen design and for potentially eliciting broadly cross-reactive NAb responses.  相似文献   

5.
Recent studies have shown that natural infection by HIV-2 leads to the elicitation of high titers of broadly neutralizing antibodies (NAbs) against primary HIV-2 strains (T. I. de Silva, et al., J. Virol. 86:930–946, 2012; R. Kong, et al., J. Virol. 86:947–960, 2012; G. Ozkaya Sahin, et al., J. Virol. 86:961–971, 2012). Here, we describe the envelope (Env) binding and neutralization properties of 15 anti-HIV-2 human monoclonal antibodies (MAbs), 14 of which were newly generated from 9 chronically infected subjects. All 15 MAbs bound specifically to HIV-2 gp120 monomers and neutralized heterologous primary virus strains HIV-27312A and HIV-2ST. Ten of 15 MAbs neutralized a third heterologous primary virus strain, HIV-2UC1. The median 50% inhibitory concentrations (IC50s) for these MAbs were surprisingly low, ranging from 0.007 to 0.028 μg/ml. Competitive Env binding studies revealed three MAb competition groups: CG-I, CG-II, and CG-III. Using peptide scanning, site-directed mutagenesis, chimeric Env constructions, and single-cycle virus neutralization assays, we mapped the epitope of CG-I antibodies to a linear region in variable loop 3 (V3), the epitope of CG-II antibodies to a conformational region centered on the carboxy terminus of V4, and the epitope(s) of CG-III antibodies to conformational regions associated with CD4- and coreceptor-binding sites. HIV-2 Env is thus highly immunogenic in vivo and elicits antibodies having diverse epitope specificities, high potency, and wide breadth. In contrast to the HIV-1 Env trimer, which is generally well shielded from antibody binding and neutralization, HIV-2 is surprisingly vulnerable to broadly reactive NAbs. The availability of 15 human MAbs targeting diverse HIV-2 Env epitopes can facilitate comparative studies of HIV/SIV Env structure, function, antigenicity, and immunogenicity.  相似文献   

6.
HIV-1 envelope (Env) glycoprotein is a trimer of heterodimer of gp120 and gp41, and derives from a trimeric glycoprotein precursor, gp160. Gp120 contains five conserved regions that are interspersed with 5 variable loop regions (V1–V5). Env variations in variable loop length and amino acid composition may associate with virus pathogenesis, virus sensitivity to neutralizing antibodies (nAbs) and disease progression. To investigate the role of each variable loop in Env function, we generated a panel of JRFL gp160 loop deletion mutants and examined the effects of each loop deletion on Env expression, Env cell surface display and Env-mediated virus entry into permissive cells. We found that deletion of V1 and V2 (ΔV1V2), or loop D (ΔlpD) abolished virus entry, the same effect as deletion of V3 (ΔV3), while deletion of V3 crown (ΔV3C) significantly enhanced virus assembly and entry. We further found that deletion of V4 (ΔV4) or V5 (ΔV5), or replacement of V4 or V5 with flexible linkers of the same lengths knocked out the receptor and coreceptor binding sites in gp120, but significantly enhanced the exposure of the N-trimer structure and the membrane proximal external region (MPER) in gp41. Although deletion of V4 or V5 did not affect Env expression, they negatively affected Env cell surface display, leading to the failure in virus assembly and subsequent entry. Taken together, we found that Env variable loops were indispensable for Env structural integrity and virus entry. Our findings may have implications for development of HIV-1 vaccine immunogens and therapeutics.  相似文献   

7.
HIV-1 gp120 binds the primary receptor CD4. Recently, a plethora of broadly neutralizing antibodies to the gp120 CD4-binding site (CD4bs) validated this region as a target for immunogen design. Here, we asked if modified HIV-1 envelope glycoproteins (Env) designed to increase CD4 recognition might improve recognition by CD4bs neutralizing antibodies and more efficiently elicit such reactivities. We also asked if CD4bs stabilization, coupled with altering the Env format (monomer to trimer or cross-clade), might better elicit neutralizing antibodies by focusing the immune response on the functionally conserved CD4bs. We produced monomeric and trimeric Envs stabilized by mutations within the gp120 CD4bs cavity (pocket-filling; PF2) or by appending heterologous trimerization motifs to soluble Env ectodomains (gp120/gp140). Recombinant glycoproteins were purified to relative homogeneity, and ligand binding properties were analyzed by ELISA, surface plasmon resonance, and isothermal titration microcalorimetry. In some formats, the PF2 substitutions increased CD4 affinity, and importantly, PF2-containing proteins were better recognized by the broadly neutralizing CD4bs mAbs, VRC01 and VRC-PG04. Based on this analysis, we immunized selected Env variants into rabbits using heterologous or homologous regimens. Analysis of the sera revealed that homologous inoculation of the PF2-containing, variable region-deleted YU2 gp120 trimers (ΔV123/PF2-GCN4) more rapidly elicited CD4bs-directed neutralizing antibodies compared with other regimens, whereas homologous trimers elicited increased neutralization potency, mapping predominantly to the gp120 third major variable region (V3). These results suggest that some engineered Env proteins may more efficiently direct responses toward the conserved CD4bs and be valuable to elicit antibodies of greater neutralizing capacity.  相似文献   

8.
Current vaccine efforts to elicit cross-reactive neutralizing antibodies (NAbs) against human immunodeficiency virus (HIV) focus on the engineering of soluble mimetics of the trimeric HIV Env glycoprotein (commonly termed gp140 immunogens). Such immunogens are thought to be more effective than previously tested monomeric gp120 immunogens at eliciting cross-reactive NAbs. Still, the breadth of neutralizing antibody responses elicited by gp140 immunogens is narrow. Understanding why antibodies elicited by gp140 immunogens fail to neutralize a wide range of heterologous primary HIV isolates is necessary for improving the design of such immunogens. We previously reported that antibodies elicited in macaques by SF162 Env-derived gp140 immunogens fail to neutralize several heterologous “neutralization-resistant” primary HIV type 1 isolates, such as JRFL, ADA, and YU2. Here we show that by replacing the V1 region of Env on these heterologous viruses with that of SF162, we render them highly susceptible to neutralization by the SF162gp140-elicited antibodies. We observed that viral neutralization was mediated not only by vaccine-elicited anti-V1 but also by anti-V3 antibodies and antibodies directed against as yet unidentified Env regions, depending on the heterologous Env background. Our study indicates that common neutralization epitopes are differentially exposed on diverse primary HIV isolates and that the V1 loop contributes to this differential exposure. Therefore, the antibody responses elicited by soluble gp140 immunogens will have to overcome several distinct obstacles in order to neutralize diverse primary HIV isolates.  相似文献   

9.
The envelope proteins (Env) of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) form homo-oligomers in the endoplasmic reticulum. The oligomeric structure of Env is maintained, but is less stable, after cleavage in a Golgi compartment and transport to the surface of infected cells. Functional, virion-associated HIV-1 and SIV Env have an almost exclusively trimeric structure. In addition, a soluble form of SIV Env (gp140) forms a nearly homogeneous population of trimers. Here, we describe the oligomeric structure of soluble, uncleaved HIV-1 gp140 and modifications that promote a stable trimeric structure. Biochemical and biophysical analyses, including sedimentation equilibrium and scanning transmission electron microscopy, revealed that unmodified HIV-1 gp140 purified as a heterogeneous range of oligomeric species, including dimers and aggregates. Deletion of the V2 domain alone or, especially, both the V1 and V2 domains reduced dimer formation but promoted aggregation rather than trimerization. Expressing gp140 with mannose-only oligosaccharides did not eliminate heterogeneity. Replacement of the entire gp41 segment of HIV-1 gp140 or just the N-terminal half (85 amino acids) of this segment with the corresponding region of SIV was sufficient to confer efficient trimerization for gp140 derived from clade B and C isolates. Importantly, the relatively small segment of the HIV Env replaced by SIV sequences contains no known targets of neutralizing antibody. The soluble trimeric form of HIV-1 Env should prove useful for assessment of antigenic structure and immunogenicity.  相似文献   

10.
Broadly neutralizing antibodies to HIV-1 usually develops in chronic infections. Here, we examined the basis of enhanced sensitivity of an env clone amplified from cross neutralizing plasma of an antiretroviral naïve chronically infected Indian patient (ID50 >600-fold higher compared to other autologous env clones). The enhanced autologous neutralization of pseudotyped viruses expressing the sensitive envelope (Env) was associated with increased sensitivity to reagents and monoclonal antibodies targeting distinct sites in Env. Chimeric viruses constructed by swapping fragments of sensitive Env into resistant Env backbone revealed that the presence of unique residues within C2V3 region of gp120 governed increased neutralization. The enhanced virus neutralization was also associated with low CD4 dependence as well as increased binding of Env trimers to IgG1b12 and CD4-IgG2 and was independent of gp120 shedding. Our data highlighted vulnerabilities in the Env obtained from cross neutralizing plasma associated with the exposure of discontinuous neutralizing epitopes and enhanced autologous neutralization. Such information may aid in Env-based vaccine immunogen design.  相似文献   

11.
We describe methods to improve the properties of soluble, cleaved gp140 trimers of the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) for use in structural studies and as immunogens. In the absence of nonionic detergents, gp140 of the KNH1144 genotype, terminating at residue 681 in gp41 (SOSIP.681), has a tendency to form higher-order complexes or aggregates, which is particularly undesirable for structure-based research. We found that this aggregation in the absence of detergent does not involve the V1, V2, or V3 variable regions of gp120. Moreover, we observed that detergent forms micelles around the membrane-proximal external region (MPER) of the SOSIP.681 gp140 trimers, whereas deletion of most of the MPER residues by terminating the gp140 at residue 664 (SOSIP.664) prevented the aggregation that otherwise occurs in SOSIP.681 in the absence of detergent. Although the MPER can contribute to trimer formation, truncation of most of it only modestly reduced trimerization and lacked global adverse effects on antigenicity. Thus, the MPER deletion minimally influenced the kinetics of the binding of soluble CD4 and a CD4-binding site antibody to immobilized trimers, as detected by surface plasmon resonance. Furthermore, the MPER deletion did not alter the overall three-dimensional structure of the trimers, as viewed by negative-stain electron microscopy. Homogeneous and aggregate-free MPER-truncated SOSIP Env trimers are therefore useful for immunogenicity and structural studies.  相似文献   

12.
The V1 and V2 variable regions of the primate immunodeficiency viruses contribute to the trimer association domain of the gp120 exterior envelope glycoprotein. A pair of V2 cysteine residues at 183 and 191 (“twin cysteines”) is present in several simian immunodeficiency viruses, human immunodeficiency virus type 2 (HIV-2) and some SIVcpz lineages, but not in HIV-1. To examine the role of this potentially disulfide-bonded twin-cysteine motif, the cysteine residues in the SIVmac239 envelope glycoproteins were individually and pairwise substituted by alanine residues. All of the twin-cysteine mutants exhibited decreases in gp120 association with the Env trimer, membrane-fusing activity, and ability to support virus entry. Thus, the twin-cysteine motif plays a role in Env trimer stabilization in SIV and may do so in HIV-2 and some SIVcpz as well. This implies that HIV-1 lost the twin-cysteines, and may have relatively unstable Env trimers compared to SIV and HIV-2.  相似文献   

13.
Experimental vaccine antigens based upon the HIV-1 envelope glycoproteins (Env) have failed to induce neutralizing antibodies (NAbs) against the majority of circulating viral strains as a result of antibody evasion mechanisms, including amino acid variability and conformational instability. A potential vaccine design strategy is to stabilize Env, thereby focusing antibody responses on constitutively exposed, conserved surfaces, such as the CD4 binding site (CD4bs). Here, we show that a largely trimeric form of soluble Env can be stably cross-linked with glutaraldehyde (GLA) without global modification of antigenicity. Cross-linking largely conserved binding of all potent broadly neutralizing antibodies (bNAbs) tested, including CD4bs-specific VRC01 and HJ16, but reduced binding of several non- or weakly neutralizing antibodies and soluble CD4 (sCD4). Adjuvanted administration of cross-linked or unmodified gp140 to rabbits generated indistinguishable total gp140-specific serum IgG binding titers. However, sera from animals receiving cross-linked gp140 showed significantly increased CD4bs-specific antibody binding compared to animals receiving unmodified gp140. Moreover, peptide mapping of sera from animals receiving cross-linked gp140 revealed increased binding to gp120 C1 and V1V2 regions. Finally, neutralization titers were significantly elevated in sera from animals receiving cross-linked gp140 rather than unmodified gp140. We conclude that cross-linking favors antigen stability, imparts antigenic modifications that selectively refocus antibody specificity and improves induction of NAbs, and might be a useful strategy for future vaccine design.  相似文献   

14.
The mature human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) comprises the non-covalently associated gp120 and gp41 subunits generated from the gp160 precursor. Recent structural analyses have provided quaternary structural models for gp120/gp41 trimers, including the variable loops (V1–V5) of gp120. In these models, the V3 loop is located under V1/V2 at the apical center of the Env trimer, and the V4 and V5 loops project outward from the trimeric protomers. In addition, the V4 and V5 loops are predicted to have less movement upon receptor binding during membrane fusion events. We performed insertional mutagenesis using a GFP variant, GFPOPT, placed into the variable loops of HXB2 gp120. This allowed us to evaluate the current structural models and to simultaneously generate a GFP-tagged HIV-1 Env, which was useful for image analyses. All GFP-inserted mutants showed similar levels of whole-cell expression, although certain mutants, particularly V3 mutants, showed lower levels of cell surface expression. Functional evaluation of their fusogenicities in cell-cell and virus-like particle-cell fusion assays revealed that V3 was the most sensitive to the insertion and that the V1/V2 loops were less sensitive than V3. The V4 and V5 loops were the most tolerant to insertion, and certain tag proteins other than GFPOPT could also be inserted without functional consequences. Our results support the current structural models and provide a GFPOPT-tagged Env construct for imaging studies.  相似文献   

15.
The biologically active form of the human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein is oligomeric. We previously described a soluble HIV-1 IIIB Env protein, gp140, with a stable oligomeric structure composed of uncleaved gp120 linked to the ectodomain of gp41 (P. L. Earl, C. C. Broder, D. Long, S. A. Lee, J. Peterson, S. Chakrabarti, R. W. Doms, and B. Moss, J. Virol. 68:3015-3026, 1994). Here we compared the antibody responses of rabbits to gp120 and gp140 that had been produced and purified in an identical manner. The gp140 antisera exhibited enhanced cross-reactivity with heterologous Env proteins as well as greater neutralization of HIV-1 compared to the gp120 antisera. To examine both immunogenicity and protective efficacy, we immunized rhesus macaques with oligomeric gp140. Strong neutralizing antibodies against a homologous virus and modest neutralization of heterologous laboratory-adapted isolates were elicited. No neutralization of primary isolates was observed. However, a substantial fraction of the neutralizing activity could not be blocked by a V3 loop peptide. After intravenous challenge with simian-HIV virus SHIV-HXB2, three of the four vaccinated macaques exhibited no evidence of virus replication.  相似文献   

16.
Currently there is limited information about the quality of immune responses elicited by candidate human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env)-based immunogens in primates. Here we describe a comprehensive analysis of neutralizing antibody and T-cell responses obtained in cynomolgus macaques by three selected immunization regimens. We used the previously described YU2-based gp140 protein trimers administered in an adjuvant, preceded by two distinct priming strategies: either alphavirus replicon particles expressing matched gp140 trimers or gp120 core proteins stabilized in the CD4-bound conformation. The rationale for priming with replicon particles was to evaluate the impact of the expression platform on trimer immunogenicity. The stable core proteins were chosen in an attempt to expand selectively lymphocytes recognizing common determinants between the core and trimers to broaden the immune response. The results presented here demonstrate that the platform by which Env trimers were delivered in the priming (either protein or replicon vector) had little impact on the overall immune response. In contrast, priming with stable core proteins followed by a trimer boost strikingly focused the T-cell response on the core sequences of HIV-1 Env. The specificity of the T-cell response was distinctly different from that of the responses obtained in animals immunized with trimers alone and was shown to be mediated by CD4+ T cells. However, this regimen showed limited or no improvement in the neutralizing antibody responses, suggesting that further immunogen design efforts are required to successfully focus the B-cell response on conserved neutralizing determinants of HIV-1 Env.  相似文献   

17.
An effective HIV-1 vaccine should ideally induce strong humoral and cellular immune responses that provide sterilizing immunity over a prolonged period. Current HIV-1 vaccines have failed in inducing such immunity. The viral envelope glycoprotein complex (Env) can be targeted by neutralizing antibodies to block infection, but several Env properties limit the ability to induce an antibody response of sufficient quantity and quality. We hypothesized that Env immunogenicity could be improved by embedding an immunostimulatory protein domain within its sequence. A stabilized Env trimer was therefore engineered with the granulocyte-macrophage colony-stimulating factor (GM-CSF) inserted into the V1V2 domain of gp120. Probing with neutralizing antibodies showed that both the Env and GM-CSF components of the chimeric protein were folded correctly. Furthermore, the embedded GM-CSF domain was functional as a cytokine in vitro. Mouse immunization studies demonstrated that chimeric Env(GM-CSF) enhanced Env-specific antibody and T cell responses compared with wild-type Env. Collectively, these results show that targeting and activation of immune cells using engineered cytokine domains within the protein can improve the immunogenicity of Env subunit vaccines.  相似文献   

18.
In this study we examined whether human immunodeficiency virus type 1 (HIV-1) is equally susceptible to neutralization by a given antibody when the epitope of this antibody is introduced at different positions within the viral envelope glycoprotein (Env). To this end, we introduced two exogenous “epitope tags” at different locations within three major Env regions in two distinct HIV-1 isolates. We examined how the introduction of the exogenous epitopes affects Env expression, Env incorporation into virions, Env fusogenic potential, and viral susceptibility to neutralization. Our data indicate that even within the same Env region, the exact positioning of the epitope impacts the susceptibility of the virus to neutralization by the antibody that binds to that epitope. Our data also indicate that even if the same epitope is introduced in the exact same position on two different Envs, its exposure and, as a result, the neutralization susceptibility of the virus, can be very different. In contrast to the findings of previous studies conducted with HIV-1 isolates other than those used here, but in agreement with results obtained with simian immunodeficiency virus, we observed that tagging of the fourth variable region of Env (V4) did not result in neutralization by the anti-tag antibodies. Our data indicate that epitopes in V4 are not properly exposed within the functional HIV-1 trimeric Env spike, suggesting that V4 may not be a good target for vaccine-elicited neutralizing antibodies.The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) is expressed as a heavily glycosylated peptide of approximately 160 kDa (gp160), which is cleaved intracellularly into two noncovalently associated subunits: an extracellular subunit (gp120), responsible for CD4 and coreceptor (primarily CCR5 and/or CXCR4) binding, and a transmembrane subunit (gp41) that mediates fusion between viral and host cell membranes. Based on amino acid sequence homology analysis of gp120s derived from diverse HIV-1 isolates, gp120 is divided into five “constant” regions (C1 to C5) and five “variable” regions (also called “loops,” because most of them have cysteines in the N and C termini that form disulfide bonds). Despite their extensive amino acid variability, the variable loops of gp120 play central roles during the entry of the virus into the cell, for instance, by directly or indirectly modulating the interaction of Env with coreceptor molecules on the target surfaces during virus-cell fusion. They also offer protection from neutralizing antibodies (NAbs) by various mechanisms. The variable loops themselves are targets of NAbs, and during infection, the replicating virus accumulates mutations in the variable regions that allow it to escape the action of anti-variable loop-directed NAbs, while at the same time the variable loops are positioned within the Env trimer so that they prevent, or minimize, the binding of NAbs to more-conserved epitopes, such as the receptor and coreceptor binding sites (4, 5, 12, 15, 20, 23, 25, 27, 31).HIV-1 strains display distinct neutralization phenotypes. Some isolates, such as SF162, are generally susceptible to NAbs that bind to many distinct regions of Env, including the variable regions, while other isolates, such as YU2 or JRFL, are generally resistant to neutralization by the same NAbs (1). It has been proposed that irrespective of the overall neutralizing phenotype of HIV-1 isolates, the binding of only a single antibody per Env trimer on the virion surface can lead to neutralization, when all Env trimers present on the virion surface are bound by at least one antibody (32). This important observation also implies that the epitope specificity of an antibody may not be as important for neutralization as its ability to bind to its target within the trimeric Env structure. In fact, antibodies to diverse regions of Env, such as V1, V2, V3, and the receptor and coreceptor binding sites, can all neutralize HIV-1 (1, 3, 6, 8, 10, 18, 20, 23, 25, 27, 29, 30).In many cases, a given isolate will not be equally susceptible to neutralization by NAbs that bind to different Env regions, for example, the V3 loop and the CD4-binding site (CD4-BS). Whether differences in the neutralizing potentials of two antibodies that bind to distinct epitopes on HIV-1 Env are due to differences in the binding affinities of the two antibodies or whether they occur because the viruses are intrinsically more susceptible to NAbs that bind certain epitopes and not others (i.e., the relative importance of the various regions of Env in Env function and virus neutralization sensitivity differs) is not yet fully understood. One way to address these issues is to introduce small non-HIV Env amino acid sequences (tags) that are targets of known monoclonal antibodies (MAbs) at various positions within the viral Env and to examine how the placement of the same epitope at different positions within Env affects the neutralization phenotype of the virus.Foreign epitopes have been introduced into the variable regions of HIV and simian immunodeficiency virus (SIV) Envs, and their effects on viral neutralization potential have been examined (14, 19, 22, 33). Yang and colleagues (33) introduced the FLAG epitope into the V4 regions of three HIV-1 isolates (YU2, JRFL, and HxB2) displaying distinct neutralization phenotypes in response to anti-HIV NAbs; they found that all three pseudotyped viruses were equivalently neutralized by an anti-FLAG MAb. One important implication of that study is that neutralization-resistant isolates, such as YU2 or JRFL, are not intrinsically more resistant to neutralization than more-susceptible isolates, such as HxB2, so long as the antibody binds to its epitope on the functional virion-associated Env spike. A second implication is that since the FLAG epitope was exposed in the V4 loops of all three isolates, the V4 loop could theoretically be a good target for vaccine-elicited antibodies. In contrast, Pantophlet et al. (19) introduced the HA tag into various regions of the JRCSF (neutralization-resistant) and HxB2 (neutralization-sensitive) isolates and reported that JRCSF was intrinsically more resistant than HxB2 to anti-HA antibodies. This observation implies, therefore, that some HIV-1 strains (primary, neutralization-resistant strains) have developed mechanisms that limit the accessibility of multiple Env regions, including variable regions, to antibodies developed during infection. Laird and Desrosiers (14) introduced the FLAG epitope into two positions within each of the V1, V2, and V4 loops of SIV239 and SIV316. They reported that the functionality of Env was differentially affected by the precise location of the exogenous tag sequence within the variable loops examined. Importantly, and in contrast to what was reported for the HIV-1 isolates mentioned above, the SIV239 variants containing a V4 FLAG epitope were not neutralized by an anti-FLAG MAb. It appeared, however, that the FLAG epitope was not well exposed on the trimeric Env when introduced into the V4 loop of SIV but was exposed when introduced into the V1 loop of the same virus. Potentially, this means that the V4 loop is differentially exposed in the context of the HIV-1 and SIV Envs.The FLAG epitope (DYKDDDDK) is highly charged. Therefore, it is possible that the effect on Env function and epitope exposure could differ if a different exogenous epitope were inserted instead of FLAG. Here we examined the effect of variable loop tagging on the Env functions and viral neutralization phenotypes of two primary HIV-1 clade B isolates, SF162 (CCR5 tropic) and SF33 (CXCR4 tropic), using two exogenous epitopes (FLAG and hemagglutinin [HA] tags) positioned at multiple locations within the V1, V2, and V4 loops. By placing the same tag in several regions within each loop, we investigated the accessibilities of various parts of the same loop to a given NAb. By using two tags that differ significantly in amino acid composition (FLAG tag, DYKDDDDK; HA tag, YPYDVPDYA), we aimed at distinguishing between the effects of amino acid composition and the positioning of the tag on Env function and overall epitope exposure. Finally, identical evaluations of R5 and X4 Envs may provide information about the relative roles played in neutralization by variable loops in Envs displaying distinct coreceptor usage. We report that both the amino acid sequence and the position of the tag within and among the variable loops greatly affected the functionality of Env. In contrast to previous observations made with other HIV-1 Envs (33) but in agreement with what was reported for the SIV239 Env (14), we observed that tagging of the V4 loops of SF162 and SF33 did not render these isolates susceptible to neutralization by the corresponding anti-tag MAbs.  相似文献   

19.
During human immunodeficiency virus type 1 (HIV-1) infection, patients develop various levels of neutralizing antibody (NAb) responses. In some cases, patient sera can potently neutralize diverse strains of HIV-1, but the antibody specificities that mediate this broad neutralization are not known, and their elucidation remains a formidable challenge. Due to variable and nonneutralizing determinants on the exterior envelope glycoprotein (Env), nonnative Env protein released from cells, and the glycan shielding that assembles in the context of the quaternary structure of the functional spike, HIV-1 Env elicits a myriad of binding antibodies. However, few of these antibodies can neutralize circulating viruses. We present a systematic analysis of the NAb specificities of a panel of HIV-1-positive sera, using methodologies that identify both conformational and continuous neutralization determinants on the HIV-1 Env protein. Characterization of sera included selective adsorption with native gp120 and specific point mutant variants, chimeric virus analysis, and peptide inhibition of viral neutralization. The gp120 protein was the major neutralizing determinant for most sera, although not all neutralization activity against all viruses could be identified. In some broadly neutralizing sera, the gp120-directed neutralization mapped to the CD4 binding region of gp120. In addition, we found evidence that regions of the gp120 coreceptor binding site may also be a target of neutralizing activity. Sera displaying limited neutralization breadth were mapped to the immunogenic V3 region of gp120. In a subset of sera, we also identified NAbs directed against the conserved, membrane-proximal external region of gp41. These data allow a more detailed understanding of the humoral responses to the HIV-1 Env protein and provide insights regarding the most relevant targets for HIV-1 vaccine design.  相似文献   

20.
The V3 epitope is a known target for HIV-1 neutralizing antibodies (NAbs), and V3-scaffold fusion proteins used as boosting immunogens after gp120 DNA priming were previously shown to induce NAbs in rabbits. Here, we evaluated whether the breadth and potency of the NAb response could be improved when boosted with rationally designed V3-scaffold immunogens. Rabbits were primed with codon-optimized clade C gp120 DNA and boosted with one of five V3-cholera toxin B fusion proteins (V3-CTBs) or with double combinations of these. The inserts in these immunogens were designed to display V3 epitopes shared by the majority of global HIV-1 isolates. Double combinations of V3-CTB immunogens generally induced more broad and potent NAbs than did boosts with single V3-CTB immunogens, with the most potent and broad NAbs elicited with the V3-CTB carrying the consensus V3 of clade C (V3(C)-CTB), or with double combinations of V3-CTB immunogens that included V3(C)-CTB. Neutralization of tier 1 and 2 pseudoviruses from clades AG, B, and C and of peripheral blood mononuclear cell (PBMC)-grown primary viruses from clades A, AG, and B was achieved, demonstrating that priming with gp120 DNA followed by boosts with V3-scaffold immunogens effectively elicits cross-clade NAbs. Focusing on the V3 region is a first step in designing a vaccine targeting protective epitopes, a strategy with potential advantages over the use of Env, a molecule that evolved to protect the virus by poorly inducing NAbs and by shielding the epitopes that are most critical for infectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号