首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The p38 pathway is an evolutionarily conserved signaling pathway that responds to a variety of stresses. However, the underlying mechanisms are largely unknown. In the present study, we demonstrate that p38b is a major p38 MAPK involved in the regulation of oxidative stress tolerance in addition to p38a and p38c in Drosophila. We further show the importance of MK2 as a p38-activated downstream kinase in resistance to oxidative stresses. Furthermore, we identified the iron-sulfur cluster scaffold protein IscU as a new substrate of MK2 both in Drosophila cells and in mammalian cells. These results imply a new mechanistic connection between the p38 pathway and mitochondria iron-sulfur clusters.  相似文献   

6.
7.
Tristetraprolin (TTP) directs its target AU-rich element (ARE)-containing mRNAs for degradation by promoting removal of the poly(A) tail. The p38 MAPK pathway regulates mRNA stability via the downstream kinase MAPK-activated protein kinase 2 (MAPKAP kinase 2 or MK2), which phosphorylates and prevents the mRNA-destabilizing function of TTP. We show that deadenylation of endogenous ARE-containing tumor necrosis factor mRNA is inhibited by p38 MAPK. To investigate whether phosphorylation of TTP by MK2 regulates TTP-directed deadenylation of ARE-containing mRNAs, we used a cell-free assay that reconstitutes the mechanism in vitro. We find that phosphorylation of Ser-52 and Ser-178 of TTP by MK2 results in inhibition of TTP-directed deadenylation of ARE-containing RNA. The use of 14-3-3 protein antagonists showed that regulation of TTP-directed deadenylation by MK2 is independent of 14-3-3 binding to TTP. To investigate the mechanism whereby TTP promotes deadenylation, it was necessary to identify the deadenylases involved. The carbon catabolite repressor protein (CCR)4·CCR4-associated factor (CAF)1 complex was identified as the major source of deadenylase activity in HeLa cells responsible for TTP-directed deadenylation. CAF1a and CAF1b were found to interact with TTP in an RNA-independent fashion. We find that MK2 phosphorylation reduces the ability of TTP to promote deadenylation by inhibiting the recruitment of CAF1 deadenylase in a mechanism that does not involve sequestration of TTP by 14-3-3. Cyclooxygenase-2 mRNA stability is increased in CAF1-depleted cells in which it is no longer p38 MAPK/MK2-regulated.  相似文献   

8.
9.
Cell growth is influenced by environmental stress. Mammalian target of rapamycin (mTOR), the central regulator of cell growth, can be positively or negatively regulated by various stresses through different mechanisms. The p38 MAP kinase pathway is essential in cellular stress responses. Activation of MK2, a downstream kinase of p38α, enhances mTOR complex 1 (mTORC1) activity by preventing TSC2 from inhibiting mTOR activation. The p38β-PRAK cascade targets Rheb to inhibit mTORC1 activity upon glucose depletion. Here we show the activation of p38β participates in activation of mTOR complex 1 (mTORC1) induced by arsenite but not insulin, nutrients, anisomycin, or H(2)O(2). Arsenite treatment of cells activates p38β and induces interaction between p38β and Raptor, a regulatory component of mTORC1, resulting in phosphorylation of Raptor on Ser(863) and Ser(771). The phosphorylation of Raptor on these sites enhances mTORC1 activity, and contributes largely to arsenite-induced mTORC1 activation. Our results shown here and in previous work demonstrate that the p38 pathway can regulate different components of the mTORC1 pathway, and that p38β can target different substrates to either positively or negatively regulate mTORC1 activation when a cell encounters different environmental stresses.  相似文献   

10.
Although PKD is broadly expressed and involved in numerous cellular processes, its function in osteoclasts has not been previously reported. In this study, we found that PKD2 is the main PKD isoform expressed in osteoclastic cells. PKD phosphorylation, indicative of the activated state, increased after 2–3 days of treatment of bone marrow macrophages with M-CSF and RANKL, corresponding to the onset of preosteoclast fusion. RNAi against PKD2 and treatment with the PKD inhibitor CID755673 showed that PKD activity is dispensable for induction of bone marrow macrophages into tartrate-resistant acid phosphatase-positive preosteoclasts in culture but is required for the transition from mononucleated preosteoclasts to multinucleated osteoclasts. Loss of PKD activity reduced expression of DC-STAMP in RANKL-stimulated cultures. Overexpression of DC-STAMP was sufficient to rescue treatment with CID755673 and restore fusion into multinucleated osteoclasts. From these data, we conclude that PKD activity promotes differentiation of osteoclast progenitors through increased expression of DC-STAMP.  相似文献   

11.
12.
Dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein (DSPP) are essential for the formation of dentin. Previous in vitro studies have indicated that DMP1 might regulate the expression of DSPP during dentinogenesis. To examine whether DMP1 controls dentinogenesis through the regulation of DSPP in vivo, we cross-bred transgenic mice expressing normal DSPP driven by a 3.6-kb rat Col1a1 promoter with Dmp1 KO mice to generate mice expressing the DSPP transgene in the Dmp1 KO genetic background (referred to as “Dmp1 KO/DSPP Tg mice”). We used morphological, histological, and biochemical techniques to characterize the dentin and alveolar bone of Dmp1 KO/DSPP Tg mice compared with Dmp1 KO and wild-type mice. Our analyses showed that the expression of endogenous DSPP was remarkably reduced in the Dmp1 KO mice. Furthermore, the transgenic expression of DSPP rescued the tooth and alveolar bone defects of the Dmp1 KO mice. In addition, our in vitro analyses showed that DMP1 and its 57-kDa C-terminal fragment significantly up-regulated the Dspp promoter activities in a mesenchymal cell line. In contrast, the expression of DMP1 was not altered in the Dspp KO mice. These results provide strong evidence that DSPP is a downstream effector molecule that mediates the roles of DMP1 in dentinogenesis.  相似文献   

13.
The small heat shock protein (sHSP) αB-crystallin is a new oncoprotein in breast carcinoma that predicts poor clinical outcome in breast cancer. However, although several reports have demonstrated that phosphorylation of sHSPs modify their structural and functional properties, the significance of αB-crystallin phosphorylation in cancer cells has not yet been investigated. In this study, we have characterized the phosphorylation status of αB-crystallin in breast epithelial carcinoma cells line MCF7 submitted to anti-cancer agents like vinblastine. We have showed that the main phosphorylation site of αB-crystallin in response to vinblastine is serine 59 and determined a correlation between this post-translational modification and higher apoptosis level. The overexpression of the serine 59 “pseudophosphorylated” mutant (S59E) induces a significant increase in the apoptosis level of vinblastine-treated MCF7 cells. In contrast, overexpression of wild-type αB-crystallin or “nonphosphorylatable” mutant (S59A) result in a resistance to this microtubule-depolymerizing agent, while inhibition of endogenous levels of αB-crystallin by expression of shRNA lowers it. Analyzing further the molecular mechanism of this phenomenon, we report for the first time that phosphorylated αB-crystallin preferentially interacts with Bcl-2, an anti-apoptotic protein, and this interaction prevents the translocation of Bcl-2 to mitochondria. Hence, this study identifies serine 59 phosphorylation as an important key in the down-regulation of αB-crystallin anti-apoptotic function in breast cancer and suggests new strategies to improve anti-cancer treatments.  相似文献   

14.
Phosphorylation is the most important post-translational event at a cellular level that is regulated by protein kinases. MAPK is a key player in the important cellular signaling pathway. It has been hypothesized that phosphorylation might have a role in the induction of break tolerance against some autoantigens such as SRP72. The aim of this study was to explore the pathways of phosphorylation and overexpression of the SRP72 polypeptide, using an in vitro model of Jurkat cells stimulated by recombinant human (rh)IL-1β in the presence of MAPK inhibitors. We used Jurkat cells as a substrate stimulated with rhIL-1β in the presence of MAPK inhibitors at different concentrations in a time course in vitro experiment by immunoprecipitation, immunoprecipitation-Western blotting, and real time PCR. Our results showed that rhIL-1β causes up-regulation of protein expression and phosphorylation of SRP72 in Jurkat cells. Inhibitors of the MAPK pathway ERK1/2 or p38α/β down-regulate the expression of SRP72 autoantigen in Jurkat cells stimulated by rhIL-1β. Our results highlight the importance of studying the pathways of activation and overexpression of autoantigens. It will be necessary to perform careful research on various kinases pathways, including MAPK in dermatomyositis and other rheumatic diseases, to help to explain the routes of activation and inhibition of autoantigens. The understanding of this process may help to develop new therapies to prevent and control the loss of tolerance toward own normal proteins.  相似文献   

15.
Bipolar mitotic spindle organization is fundamental to faithful chromosome segregation. Furry (Fry) is an evolutionarily conserved protein implicated in cell division and morphology. In human cells, Fry localizes to centrosomes and spindle microtubules in early mitosis, and depletion of Fry causes multipolar spindle formation. However, it remains unknown how Fry controls bipolar spindle organization. This study demonstrates that Fry binds to polo-like kinase 1 (Plk1) through the polo-box domain of Plk1 in a manner dependent on the cyclin-dependent kinase 1-mediated Fry phosphorylation at Thr-2516. Fry also binds to Aurora A and promotes Plk1 activity by binding to the polo-box domain of Plk1 and by facilitating Aurora A-mediated Plk1 phosphorylation at Thr-210. Depletion of Fry causes centrosome and centriole splitting in mitotic spindles and reduces the kinase activity of Plk1 in mitotic cells and the accumulation of Thr-210-phosphorylated Plk1 at the spindle poles. Our results suggest that Fry plays a crucial role in the structural integrity of mitotic centrosomes and in the maintenance of spindle bipolarity by promoting Plk1 activity at the spindle poles in early mitosis.  相似文献   

16.
We previously reported the identification of small serine/threonine kinase (SSTK) that is expressed in postmeiotic germ cells, associates with HSP90, and is indispensable for male fertility. Sperm from SSTK-null mice cannot fertilize eggs in vitro and are incapable of fusing with eggs that lack zona pellucida. Here, using the yeast two-hybrid screen, we have discovered a novel SSTK-interacting protein (SIP) that is expressed exclusively in testis. The gene encoding SIP is restricted to mammals and encodes a 125-amino acid polypeptide with a predicted tetratricopeptide repeat domain. SIP is co-localized with SSTK in the cytoplasm of spermatids as they undergo restructuring and chromatin condensation, but unlike SSTK, is not retained in the mature sperm. SIP binds to SSTK with high affinity (Kd ∼10 nm), and the proteins associate with each other when co-expressed in cells. In vitro, SIP inhibited SSTK kinase activity, whereas the presence of SIP in cells resulted in enzymatic activation of SSTK without affecting Akt or MAPK activity. SIP was found to be associated with cellular HSP70, and analyses with purified proteins revealed that SIP directly bound HSP70. Importantly, SSTK recruited SIP onto HSP90, and treatment of cells with the specific HSP90 inhibitor, 17-allylamino-17-demethoxygeldanamycin, completely abolished SSTK catalytic activity. Hence, these findings demonstrate that HSP90 is essential for functional maturation of the kinase and identify SIP as a cochaperone that is critical to the HSP90-mediated activation of SSTK.  相似文献   

17.
PGC-1-related coactivator (PRC), a growth-regulated member of the PGC-1 coactivator family, contributes to the expression of the mitochondrial respiratory apparatus. PRC also orchestrates a robust response to metabolic stress by promoting the expression of multiple genes specifying inflammation, proliferation, and metabolic reprogramming. Here, we demonstrate that this PRC-dependent stress program is activated during apoptosis and senescence, two major protective mechanisms against cellular dysfunction. Both PRC and its targets (IL1α, SPRR2D, and SPRR2F) were rapidly induced by menadione, an agent that promotes apoptosis through the generation of intracellular oxidants. Menadione-induced apoptosis and the PRC stress program were blocked by the antioxidant N-acetylcysteine. The PRC stress response was also activated by the topoisomerase I inhibitor 7-ethyl-10-hydroxycamptothecin (SN-38), an inducer of premature senescence in tumor cells. Cells treated with SN-38 displayed morphological characteristics of senescence and express senescence-associated β-galactosidase activity. In contrast to menadione, the SN-38 induction of the PRC program occurred over an extended time course and was antioxidant-insensitive. The potential adaptive function of the PRC stress response was investigated by treating cells with meclizine, a drug that promotes glycolytic energy metabolism and has been linked to cardio- and neuroprotection against ischemia-reperfusion injury. Meclizine increased lactate production and was a potent inducer of the PRC stress program, suggesting that PRC may contribute to the protective effects of meclizine. Finally, c-MYC and PRC were coordinately induced under all conditions tested, implicating c-MYC in the biological response to metabolic stress. The results suggest a general role for PRC in the adaptive response to cellular dysfunction.  相似文献   

18.
19.
20.
The p38 MAPK signal transduction pathway plays an important role in inflammatory and stress responses. MAPKK6 (MKK6), a dual specificity protein kinase, is a p38 activator. Activation of the MKK6-p38 pathway is kept in check by multiple layers of regulations, including autoinhibition, dimerization, scaffold proteins, and Lys-63-linked polyubiquitination. However, the mechanisms underlying deactivation of MKK6-p38, which is crucial for maintaining the magnitude and duration of signal transduction, are not well understood. Lys-48-linked ubiquitination, which marks substrates for proteasomal degradation, is an important negative posttranslational regulatory machinery for signal pathway transduction. Here we report that the accumulation of F-box only protein 31 (FBXO31), a component of Skp1·Cul1·F-box protein E3 ligase, negatively regulated p38 activation in cancer cells upon genotoxic stresses. Our results show that FBXO31 binds to MKK6 and mediates its Lys-48-linked polyubiquitination and degradation, thereby functioning as a negative regulator of MKK6-p38 signaling and protecting cells from stress-induced cell apoptosis. Taken together, our findings uncover a new mechanism of deactivation of MKK6-p38 and substantiate a novel regulatory role of FBXO31 in stress response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号