首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and Aims

Floral scent may play a key role as a selective attractant in plants with specialized pollination systems, particularly in cases where floral morphology does not function as a filter of flower visitors. The pollination systems of two African Eucomis species (E. autumnalis and E. comosa) were investigated and a test was made of the importance of scent and visual cues as floral attractants.

Methods and Key Results

Visitor observations showed that E. autumnalis and E. comosa are visited primarily by pompilid wasps belonging to the genus Hemipepsis. These wasps carry considerably more Eucomis pollen and are more active on flowers than other visiting insects. Furthermore, experiments involving virgin flowers showed that these insects are capable of depositing pollen on the stigmas of E. autumnalis, and, in the case of E. comosa, pollen deposited during a single visit is sufficient to result in seed set. Experimental hand-pollinations showed that both species are genetically self-incompatible and thus reliant on pollinators for seed set. Choice experiments conducted in the field and laboratory with E. autumnalis demonstrated that pompilid wasps are attracted to flowers primarily by scent and not visual cues. Measurement of spectral reflectance by flower petals showed that flowers are cryptically coloured and are similar to the background vegetation. Analysis of headspace scent samples using coupled gas chromatography–mass spectrometry revealed that E. autumnalis and E. comosa scents are dominated by aromatic and monoterpene compounds. One hundred and four volatile compounds were identified in the floral scent of E. autumnalis and 83 in the floral scent of E. comosa, of which 57 were common to the scents of both species.

Conclusions

This study showed that E. autumnalis and E. comosa are specialized for pollination by pompilid wasps in the genus Hemipepsis and achieve specialization through cryptic colouring and the use of scent as a selective floral attractant.Key words: Eucomis, Pompilidae, wasp pollination, breeding system, pollination syndrome, pollinator shift, floral volatile, floral filter  相似文献   

2.
Floral evolution often involves suites of traits, including morphology, colour and scent, but these traits are seldom analysed together in comparative studies. We investigated the associations between floral traits and pollination systems in Schizochilus, a southern African orchid genus with small nectar-producing flowers that has not been studied previously with respect to pollination biology. Field observations indicated the presence of distinct pollination systems in the four species which occur in the Drakensberg, including pollination by muscid flies in Schizochilus angustifolius, tachinid flies in Schizochilus zeyheri, various small flies in Schizochilus bulbinella and bees and wasps in Schizochilus flexuosus. Pollination success and pollen transfer efficiency clearly differed among the four species but were not correlated with the quantity of nectar rewards. Multivariate analysis of floral morphology and floral scent chemistry based on GC-MS data revealed significant differences among species as well as populations within species. The floral scent of S. angustifolius was dominated by the benzenoid compounds benzaldehyde and phenylacetaldehyde. Samples of one population of S. bulbinella were relatively similar to S. angustifolius but samples of another population were very distinct due to the occurrence of the nitrogen-containing compounds 3-methyl-butyl aldoxime (syn/anti) and the higher amounts of aliphatic esters, alcohols and acids. In contrast, the floral scent of S. flexuosus and S. zeyheri was characterized by high relative amounts of methyl benzoate. We conclude that Schizochilus has distinct, specialized pollination systems associated with subtle but significant variation in floral morphology and scent chemistry. We also caution that sampling of several populations may be required to characterize floral scent composition at the species-level in plants.  相似文献   

3.
Floral orientation may affect pollinator attraction and pollination effectiveness, and its influences may differ among pollinator species. We, therefore, hypothesized that, for plant species with a generalized pollination system, changes in floral orientation would affect the composition of pollinators and their relative contribution to pollination. Geranium refractum, an alpine plant with downward floral orientation was used in this study. We created upward-facing flowers by altering the flower angle. We compared the pollinator diversity, pollination effectiveness, and pollinator importance, as well as female reproductive success between flowers with downward- and upward-facing orientation. Results indicated that the upward-facing flowers were visited by a wider spectrum of pollinators (classified into functional groups), with higher pollinator diversity than natural flowers. Moreover, due to influences on visitation number and pollen removal, the pollinator importance exhibited by the main pollinator groups differed between flower types. Compared with natural flowers, the pollination contribution of principal pollinators (i.e., bumblebees) decreased in upward-facing flowers and other infrequent pollinators, such as solitary bees and muscoid flies, removed more pollen. Consequently, stigmatic pollen loads were lower in upward- than in downward-facing flowers. These findings reveal that floral orientation may affect the level of generalization of a pollination system and the relative importance of diverse pollinators. In this species, the natural downward-facing floral orientation may increase pollen transfer by effective pollinators and reduce interference by inferior pollinators.  相似文献   

4.

Background and Aims

Studies of local floral adaptation in response to geographically divergent pollinators are essential for understanding floral evolution. This study investigated local pollinator adaptation and variation in floral traits in the rewarding orchid Gymnadenia odoratissima, which spans a large altitudinal gradient and thus may depend on different pollinator guilds along this gradient.

Methods

Pollinator communities were assessed and reciprocal transfer experiments were performed between lowland and mountain populations. Differences in floral traits were characterized by measuring floral morphology traits, scent composition, colour and nectar sugar content in lowland and mountain populations.

Key Results

The composition of pollinator communities differed considerably between lowland and mountain populations; flies were only found as pollinators in mountain populations. The reciprocal transfer experiments showed that when lowland plants were transferred to mountain habitats, their reproductive success did not change significantly. However, when mountain plants were moved to the lowlands, their reproductive success decreased significantly. Transfers between populations of the same altitude did not lead to significant changes in reproductive success, disproving the potential for population-specific adaptations. Flower size of lowland plants was greater than for mountain flowers. Lowland plants also had significantly higher relative amounts of aromatic floral volatiles, while the mountain plants had higher relative amounts of other floral volatiles. The floral colour of mountain flowers was significantly lighter compared with the lowland flowers.

Conclusions

Local pollinator adaptation through pollinator attraction was shown in the mountain populations, possibly due to adaptation to pollinating flies. The mountain plants were also observed to receive pollination from a greater diversity of pollinators than the lowland plants. The different floral phenotypes of the altitudinal regions are likely to be the consequence of adaptations to local pollinator guilds.  相似文献   

5.
Many insect-pollinated plants use floral scent signals to attract and guide the effective pollinators, and temporal patterns of their floral scent emission may be tuned to respond to the pollinator's activity and pollination status. In the intimate nursery pollination mutualism between monoecious Glochidion trees (Phyllanthaceae) and Epicephala moths (Gracillariidae), floral scent signals mediate species-specific interactions and influence the moth's efficient pollen-collecting and pollen-depositing behaviors on male and female flowers, respectively. We tested the hypotheses that both sexes of flowers of Epicephala-pollinated Glochidion rubrum exhibit a diel pattern of scent emission matching the activity period of the nocturnally active pollinator, and that female flowers change the chemical signal after pollination to reduce further visits and oviposition by the pollinator. We investigated the diel change of floral scent emissions during two consecutive days and the influence of pollination on the floral scent by conducting hand-pollinations in the field. The total scent emission of male and female flowers was higher at night than in the day, which would be expected from the nocturnal visitations of Epicephala moths. Some compounds exhibited a clear nocturnal emission rhythm. Hand-pollination experiments revealed that emission of two compounds, nerolidol and eugenol, drastically decreased in pollinated flowers, suggesting that these compounds may function as key attractants for the pollinator; however, the total scent emission of the female flower was not influenced by hand-pollination. The pattern of the floral scent emission of G. rubrum may be optimized to attract nocturnal pollinators and reduce oviposition.  相似文献   

6.
  1. Flowering plants in tropical rainforests rely heavily on pollen vectors for successful reproduction. Research into pollination systems in tropical rainforests is dominated by canopy species, while subcanopy plant–pollinator interactions remain under‐represented. The microclimate beneath the rainforest canopy is characterized by low light levels and is markedly different from the canopy environment that receives more light energy.
  2. We studied the floral attractants and floral visitors of a dioecious, subcanopy tree, Fontainea picrosperma (Euphorbiaceae), in the Wet Tropics bioregion of northern Queensland, Australia.
  3. We found that wind pollination is rare and male and female flowers do not produce nectar. Female flowers are likely pollinated due to their perceptual similarity to pollen‐offering male flowers. Female flowers had the same scent profile as male flowers, and floral scent was an important floral attractant that acted to regulate pollinator behavior. The two most abundant scent compounds present in the floral bouquet were benzyl alcohol and 4‐oxoisophorone. These compounds are ubiquitous in nature and are known to attract a wide variety of insects. Both day‐time and night‐time pollinators contributed to successful pollen deposition on the stigma, and diurnal flower visitors were identified from several orders of insects including beetles, flies, predatory wasps, and thrips. Fontainea picrosperma is therefore likely to be pollinated by a diverse array of small insects.
  4. Synthesis. Our data indicate that F. picrosperma has a generalist, entomophilous pollination syndrome. The rainforest subcanopy is a distinctive environment characterized by low light levels, low or turbulent wind speeds, and relatively high humidity. Female flowers of F. picrosperma exhibit cost‐saving strategies by not producing nectar and mimicking the smell of reward‐offering male flowers. Insects opportunistically forage on or inhabit flowers, and pollination occurs from a pool of small insects with low energy requirements that are found beneath the rainforest canopy.
  相似文献   

7.
Specialized pollination by prey-hunting wasps is poorly documented in rewarding plants. Furthermore, the mechanisms of achieving specialization are not clear since flowers typically produce exposed nectar and have no morphological adaptations (such as long spurs) to exclude non-pollinating visitors. We investigated the pollination of Xysmalobium orbiculare and explored the functional roles of floral scent and nectar in attracting pollinators and deterring nectar robbers. Floral visitor observations showed that this milkweed is visited almost exclusively by pompilid wasps in the genus Hemipepsis. These wasps were the only insects to carry pollinia, and a cage experiment confirmed their effectiveness in removing and inserting pollinia on flowers. Hand-pollinations showed that plants are genetically self-incompatible and thus reliant on pollinators for seed set. Palatability experiments with honeybees showed that nectar is distasteful to non-pollinating insects and is therefore likely to play a functional role in deterring nectar thieves. Choice experiments in the field showed that the wasp pollinators are attracted primarily by floral scent rather than visual cues. Analysis of spectral reflectance of flowers revealed that flowers are dull colored and are unlikely to stand out from the background vegetation. We conclude that X. orbiculare is specialized for pollination by spider-hunting wasps in the genus Hemipepsis and utilizes floral scent to selectively attract its pollinators and unpalatable nectar to deter non-pollinating visitors.  相似文献   

8.
Radiation of pollination systems in the Iridaceae of sub-Saharan Africa   总被引:1,自引:0,他引:1  
BACKGROUND: Seventeen distinct pollination systems are known for genera of sub-Saharan African Iridaceae and recurrent shifts in pollination system have evolved in those with ten or more species. Pollination by long-tongued anthophorine bees foraging for nectar and coincidentally acquiring pollen on some part of their bodies is the inferred ancestral pollination strategy for most genera of the large subfamilies Iridoideae and Crocoideae and may be ancestral for the latter. Derived strategies include pollination by long-proboscid flies, large butterflies, night-flying hovering and settling moths, hopliine beetles and sunbirds. Bee pollination is diverse, with active pollen collection by female bees occurring in several genera, vibratile systems in a few and non-volatile oil as a reward in one species. Long-proboscid fly pollination, which is apparently restricted to southern Africa, includes four separate syndromes using different sets of flies and plant species in different parts of the subcontinent. Small numbers of species use bibionid flies, short-proboscid flies or wasps for their pollination; only about 2 % of species use multiple pollinators and can be described as generalists. SCOPE: Using pollination observations for 375 species and based on repeated patterns of floral attractants and rewards, we infer pollination mechanisms for an additional 610 species. Matching pollination system to phylogeny or what is known about species relationships based on shared derived features, we infer repeated shifts in pollination system in some genera, as frequently as one shift for every five or six species of southern African Babiana or Gladiolus. Specialized systems using pollinators of one pollination group, or even a single pollinator species are the rule in the family. Shifts in pollination system are more frequent in genera of Crocoideae that have bilaterally symmetric flowers and a perianth tube, features that promote adaptive radiation by facilitating precise shifts in pollen placement, in conjunction with changes in flower colour, scent and tube length. CONCLUSIONS: Diversity of pollination systems explains in part the huge species diversity of Iridaceae in sub-Saharan Africa, and permits species packing locally. Pollination shifts are, however, seen as playing a secondary role in speciation by promoting reproductive isolation in peripheral, ecologically distinct populations in areas of diverse topography, climate and soils. Pollination of Iridaceae in Eurasia and the New World, where the family is also well represented, is poorly studied but appears less diverse, although pollination by both pollen- and oil-collecting bees is frequent and bird pollination rare.  相似文献   

9.
Flowers or inflorescences often deploy various signals, including visual, olfactory, and gustatory cues, that can be detected by their pollinators. In many plants, these cues and their functions are poorly understood. Deciphering the interactions between floral cues and pollinators is crucial for analyzing the reproductive success of flowering plants. In this study, we examined the composition of the fetid floral scents produced by several Stemona species, including nine S. tuberosa populations from across China, using dynamic headspace adsorption, gas chromatography, and mass spectrometry techniques. We compared variations in floral phenotype, including floral longevity, nectar rewards, pollinator behavior, and flower length and color among the Stemona species. Of the 54 scent compounds identified, the major compounds include fetid dimethyl disulfide, dimethyl trisulfide, 1‐pyrroline, butyric acid, p‐cresol, isoamyl alcohol, and indole. We detected striking differentiation in floral scent at both the species and population level, and even within a population of plants with different colored flowers. Floral characteristics related to sapromyophily and deceptive pollination, including flower color mimicking livor mortis and a lack of nectar, were found in five Stemona species, indicating that Stemona is a typical sapromyophilous taxon. Species of this monocot genus might employ evolutionary tactics to exploit saprophilous flies for pollination.  相似文献   

10.

Background and Aims

Sexually deceptive orchids achieve cross-pollination by mimicking the mating signals of female insects, generally hymenopterans. This pollination mechanism is often highly specific as it is based primarily on the mimicry of mating signals, especially the female sex pheromones of the targeted pollinator. Like many deceptive orchids, the Mediterranean species Ophrys arachnitiformis shows high levels of floral trait variation, especially in the colour of the perianth, which is either green or white/pinkinsh within populations. The adaptive significance of perianth colour polymorphism and its influence on pollinator visitation rates in sexually deceptive orchids remain obscure.

Methods

The relative importance of floral scent versus perianth colour in pollinator attraction in this orchid pollinator mimicry system was evaluated by performing floral scent analyses by gas chromatography-mass spectrometry (GC-MS) and behavioural bioassays with the pollinators under natural conditions were performed.

Key Results

The relative and absolute amounts of behaviourally active compounds are identical in the two colour morphs of O. arachnitiformis. Neither presence/absence nor the colour of the perianth (green versus white) influence attractiveness of the flowers to Colletes cunicularius males, the main pollinator of O. arachnitiformis.

Conclusion

Chemical signals alone can mediate the interactions in highly specialized mimicry systems. Floral colour polymorphism in O. arachnitiformis is not subjected to selection imposed by C. cunicularius males, and an interplay between different non-adaptive processes may be responsible for the maintenance of floral colour polymorphism both within and among populations.  相似文献   

11.
Floral scent is a key mediator in many plant–pollinator interactions. It is known to vary not only among plant species, but also within species among populations. However, there is a big gap in our knowledge of whether such variability is the result of divergent selective pressures exerted by a variable pollinator climate or alternative scenarios (e.g., genetic drift). Cypripedium calceolus is a Eurasian deceptive lady’s-slipper orchid pollinated by bees. It is found from near sea level to altitudes of 2500 m. We asked whether pollinator climate and floral scents vary in a concerted manner among different altitudes. Floral scents of four populations in the Limestone Alps were collected by dynamic headspace and analyzed by gas chromatography coupled to mass spectrometry (GC/MS). Flower visitors and pollinators (the subset of visitors with pollen loads) were collected and identified. Preliminary coupled gas chromatographic and electroantennographic measurements with floral scents and pollinators revealed biologically active components. More than 70 compounds were detected in the scent samples, mainly aliphatics, terpenoids, and aromatics. Although several compounds were found in all samples, and all samples were dominated by linalool and octyl acetate, scents differed among populations. Similarly, there were strong differences in flower visitor spectra among populations with most abundant flower visitors being bees and syrphid flies at low and high altitudes, respectively. Pollinator climate differed also among populations; however, independent of altitude, most pollinators were bees of Lasioglossum, Andrena, and Nomada. Only few syrphids acted as pollinators and this is the first record of flies as pollinators in C. calceolus. The electrophysiological tests showed that bees and syrphid flies sensed many of the compounds released by the flowers, among them linalool and octyl acetate. Overall, we found that both floral scent and visitor/pollinator climate differ among populations. We discuss whether interpopulation variation in scent is a result of pollinator-mediated selection.  相似文献   

12.
Floral scent is a key functional trait for pollinator attraction to flowers, but is poorly documented in many plant lineages and pollination systems. In South African grasslands, chafer beetles (Scarabaeidae: Cetoniinae), particularly Atrichelaphinis tigrina, Cyrtothyrea marginalis and Leucoscelis spp., are common floral visitors and specialized pollination by these beetles has recently been established in several asclepiad, orchid and protea species. Chafer beetles are known to be attracted by a variety of floral volatile compounds and scent has been suggested to be an important signal in these chafer-operated pollination systems. In this study, we used dynamic headspace extraction methods and coupled gas chromatography–mass spectrometry (GC–MS) to examine the chemical composition of the floral scents of seven putatively chafer-pollinated asclepiad species in the genera Asclepias, Pachycarpus and Xysmalobium. We identified 15–57 compounds in the scents of these species, of which seven were common to all species examined. The scent profiles of each species separate into discrete clusters in two dimensional space based on non-metric multidimensional scaling (NMDS), indicating clear distinctions between species and suggesting that plants may use different combinations of volatiles to attract beetles. Two plants suspected to be intergeneric hybrids were also examined. Data on pollination systems, morphology and scent chemistry are consistent with the hypothesis that these plants are hybrids between the chafer-pollinated species Asclepias woodii and Pachycarpus concolor. The results of this study are discussed in relation to the role of chafer beetles as generalist pollinators of specialized asclepiads.  相似文献   

13.
Flowers that mimic carrion or faeces exhibit unusual traits, the evolution and functional significance of which remain poorly understood. Odour is an important pollinator attractant, but visual traits and interactions between visual and scent traits have seldom been considered. We studied pollination of the “carrion flowers” of Ceropegia mixta [= Orbea variegata], analysed floral traits and used manipulative experiments to explore the contributions of visual and scent traits to pollinator attraction. Flowers were pollinated primarily by Musca domestica (Muscidae), with lesser contributions by Calliphoridae and Sarcophagidae flies. The floral odour (analysed using gas chromatography–mass spectrometry) was dominated by oligosulphides and phenol. Comparison of floral and abiotic background colours (analysed using reflectance spectrometry) using a fly colour vision model suggested that flowers would be chromatically indistinguishable from the background. Comparison of fly arrival rates at concealed (but still scented) versus exposed flowers showed that flies can locate flowers without visual cues, but visitation was higher when the flowers were visible. Experiments using model flowers with odour supplied by real flowers (to explore the significance of dark flowers and dark spots on a pale background, which both occur frequently in flowers that mimic carrion or faeces) showed that scented black flowers attracted significantly more flies than similarly scented human-yellow flowers, while the presence or size of black spots on the corolla had no effect on the attraction of flies. Our results suggest that there is a visual component to fly attraction, but some traits, such as the mottled patterning, may not have evolved to enhance pollinator attraction.  相似文献   

14.
Volatile organic compounds (VOCs) emitted by flowers play an essential role in mediating the attraction of pollinators. However, they also attract other species exploiting resources associated with flowers. For instance, VOCs emitted by figs play a major role in encounters between Ficus spp., their mutualistic pollinating wasps, and all the members of the community of non-pollinating fig wasps (NPFWs) that exploit the mutualistic interaction. Because pollinators might be in limited supply for a tree bearing many inflorescences, the plant might maximize its individual reproductive success by reducing the attractiveness of inflorescences once they are pollinated, so that pollinators orient only towards the tree's unpollinated figs. Changes in VOCs emission that bring this about could represent an important cue for NPFWs that exploit particular stages of fig development. In this study, by monitoring precisely the presence of fig-associated wasps on figs of F. racemosa, a common widespread fig species, we demonstrated that 4–5 days and 15 days following pollination represent two critical transitional steps in the succession of different wasp species. Then, focusing on the first one of these transitional steps, by investigating the composition of fig VOCs at receptivity and from 1 to 5 days following pollination, we detected progressive quantitative and qualitative variation of floral scent following pollination. These changes are significant at 5 days following pollination. The qualitative changes are mainly due to an increase in the relative proportions of two monoterpenes (α-pinene and limonene). These variations of the floral VOCs following pollination could explain why pollinating wasps stop visiting figs very shortly after the first pollinators enter receptive figs. They also possibly explain the succession of non-pollinating wasps on the figs following pollination.  相似文献   

15.
Ceropegia species (Apocynaceae, Asclepiadoideae) have pitfall flowers and are pollinated by small flies through deception. It has been suggested that these flies are attracted by floral scent. However, the scent that is emitted from Ceropegia flowers has not been studied using headspace and gas chromatography mass spectrometry methods. It has also been unclear whether or not the flowers are mimics of particular models that attract flies. In the present study, we determined the composition as well as the spatial and temporal patterns of floral scent emitted by C. dolichophylla. Furthermore, we determined the pollinators in the native (China) and non-native (Germany) range of this species, and tested the capability of the floral scent to attract flies in the non-native range. Our data demonstrate that the floral scent, which is emitted from morning until evening, primarily from the tips of the corolla lobes, consists mainly of spiroacetals and aliphatic compounds. Milichiid flies were common visitors/pollinators in the native as well as non-native range, and were attracted by floral scent in bioassays performed in the non-native range. The compounds emitted by C. dolichophylla are unusual for flowers, but are well known from insect pheromones and occur in the glandular secretions of insects. The milichiid flies that visit and pollinate the flowers are kleptoparasites that feed on the prey (haemolymph or other secretions) of predatory arthropods, e.g. spiders, to which they are attracted by scent. Our data thus suggest that the floral scent of C. dolichophylla mimics the feeding sites of kleptoparasitic flies.  相似文献   

16.
BACKGROUND AND AIMS: A comparative investigation was made of floral scent variation in the closely related, food-rewarding Anacamptis coriophora and the food-deceptive Anacamptis morio in order to identify patterns of variability of odour compounds in the two species and their role in pollinator attraction/avoidance learning. METHODS: Scent was collected from plants in natural populations and samples were analysed via quantitative gas chromatography and mass spectrometry. Combined gas chromatography and electroantennographic detection was used to identify compounds that are detected by the pollinators. Experimental reduction of scent variability was performed in the field with plots of A. morio plants supplemented with a uniform amount of anisaldehyde. KEY RESULTS: Both orchid species emitted complex odour bouquets. In A. coriophora the two main benzenoid compounds, hydroquinone dimethyl ether (1,4-dimethoxybenzene) and anisaldehyde (methoxybenzaldehyde), triggered electrophysiological responses in olfactory neurons of honey-bee and bumble-bee workers. The scent of A. morio, however, was too weak to elicit any electrophysiological responses. The overall variation in scent was significantly lower in the rewarding A. coriophora than in the deceptive A. morio, suggesting pollinator avoidance-learning selecting for high variation in the deceptive species. A. morio flowers supplemented with non-variable scent in plot experiments, however, did not show significantly reduced pollination success. CONCLUSIONS: Whereas in the rewarding A. coriophora stabilizing selection imposed by floral constancy of the pollinators may reduce scent variability, in the deceptive A. morio the emitted scent seems to be too weak to be detected by pollinators and thus its high variability may result from relaxed selection on this floral trait.  相似文献   

17.
Orchid species of Mediterranean genus Serapias often live in sympatry, exhibit similar floral morphology, bloom in the same period and share the same pollinators. Previous studies on Serapias species have ascertained that reproductive isolation is based on pre-pollination barriers, that secretory cells and trichomes are typically distributed on the floral labellum and that flowers produce aliphatic compounds. In this study we compare the floral scent composition of four widespread, co-occurring Serapias species, namely Serapias lingua, Serapias parviflora, Serapias vomeracea and Serapias cordigera. Our goals are to assess if differences in floral scent may act as interspecific pre-pollination barriers and if these olfactory signals may be involved in the pollination strategy of Serapias. We find that all the selected species produce C20–C29 alkanes and alkenes and, in addition, have detected the presence in S.?cordigera of large amounts of oleate and stearate ethyl ester. Our findings help to clarify that the sympatric Serapias species have slightly different floral scent signatures that may account for their relevant role as pre-pollination barriers. Therefore, the pollination strategy of Serapias relies not only on the tubular shape of their floral corolla but also on the production of olfactory signals that may lure potential pollinators and even assure a sufficient degree of pollinator fidelity.  相似文献   

18.

Background and Aims

Unrelated plants pollinated by the same group or guild of animals typically evolve similar floral cues due to pollinator-mediated selection. Related plant species, however, may possess similar cues either as a result of pollinator-mediated selection or as a result of sharing a common ancestor that possessed the same cues or traits. In this study, visual and olfactory floral cues in Lysimachia species exhibiting different pollination strategies were analysed and compared, and the importance of pollinators and phylogeny on the evolution of these floral cues was determined. For comparison, cues of vegetative material were examined where pollinator selection would not be expected.

Methods

Floral and vegetative scents and colours in floral oil- and non-floral oil-secreting Lysimachia species were studied by chemical and spectrophotometric analyses, respectively, compared between oil- and non-oil-secreting species, and analysed by phylogenetically controlled methods.

Key Results

Vegetative and floral scent was species specific, and variability in floral but not vegetative scent was lower in oil compared with non-oil species. Overall, oil species did not differ in their floral or vegetative scent from non-oil species. However, a correlation was found between oil secretion and six floral scent constituents specific to oil species, whereas the presence of four other floral compounds can be explained by phylogeny. Four of the five analysed oil species had bee-green flowers and the pattern of occurrence of this colour correlated with oil secretion. Non-oil species had different floral colours. The colour of leaves was similar among all species studied.

Conclusions

Evidence was found for correlated evolution between secretion of floral oils and floral but not vegetative visual and olfactory cues. The cues correlating with oil secretion were probably selected by Macropis bees, the specialized pollinators of oil-secreting Lysimachia species, and may have evolved in order to attract these bees.  相似文献   

19.
A continuous 15 month study of the floral ecology of four syntopic understorey palm species of Genoma was conducted in Amazonian Peru lowland rainforest. The spicate inflorescences of G. macrostachys, G. acaulis and G. gracilis are strictly protandrous and the plants are functionally dioecious. Data suggest that in G. macrostachys and G. acaulis pollination is based on a mimicry system, the pistillate flowers mimicking the staminate ones in colour, shape and scent. Pollen-collecting meliponine bees (Hymenoptera, Apidae, Meliponinae) and pollen-feeding syrphid flies (Diptera, Syrphidae) which visit inflorescences during both sexual stages are the pollinators of G. macrostachys. Geonoma acaulis is pollinated by small pollen-feeding weevils (Coleoptera, Curculionidae, Derelomini) that visit male and female spikes. Additionally, in G. macrostachys another pollinator type, viz. euglossine bees (Hymenoptera, Apidae, Euglossinae), which are attracted and rewarded by both types of flowers may account for long-distance pollination. The palm G. gracilis shows a very distinct pollination system. Although opportunistic insect visitors are attracted to the inflorescences of this species it seems to be mainly anemophilous because pollen becomes powdery during an thesis. The branched inflorescences of G. interrupta are also protandrous, but unlike the other species of Geonoma observed, staminate and pistillate anthesis of individual flowers are, for the most, overlapping. A broad spectrum of visitors is attracted (bees, wasps, flies, and beetles), which all may act as pollinators. Outcrossing is especially encouraged during the purely female phase at the end of the flowering cycle when there are no more staminate flowers in the inflorescence. Effects on the reproductive biology and population structure of different pollination systems and breeding system are discussed.  相似文献   

20.

Background and Aims

Pollinator landscapes, as determined by pollinator morphology/behaviour, can vary inter- or intraspecifically, imposing divergent selective pressures and leading to geographically divergent floral ecotypes. Assemblages of plants pollinated by the same pollinator (pollinator guilds) should exhibit convergence of floral traits because they are exposed to similar selective pressures. Both convergence and the formation of pollination ecotypes should lead to matching of traits among plants and their pollinators.

Methods

We examined 17 floral guild members pollinated in all or part of their range by Prosoeca longipennis, a long-proboscid fly with geographic variation in tongue length. Attractive floral traits such as colour, and nectar properties were recorded in populations across the range of each species. The length of floral reproductive parts, a mechanical fit trait, was recorded in each population to assess possible correlation with the mouthparts of the local pollinator. A multiple regression analysis was used to determine whether pollinators or abiotic factors provided the best explanation for variation in floral traits, and pollinator shifts were recorded in extralimital guild member populations.

Key Results

Nine of the 17 species were visited by alternative pollinator species in other parts of their ranges, and these displayed differences in mechanical fit and attractive traits, suggesting putative pollination ecotypes. Plants pollinated by P. longipennis were similar in colour throughout the pollinator range. Tube length of floral guild members co-varied with the proboscis length of P. longipennis.

Conclusions

Pollinator shifts have resulted in geographically divergent pollinator ecotypes across the ranges of several guild members. However, within sites, unrelated plants pollinated by P. longipennis are similar in the length of their floral parts, most probably as a result of convergent evolution in response to pollinator morphology. Both of these lines of evidence suggest that pollinators play an important role in selecting for certain floral traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号