首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
One aim for an HIV vaccine is to elicit neutralizing antibodies (Nab) that can limit replication of genetically diverse viruses and prevent establishment of a new infection. Thus, identifying the strengths and weaknesses of Nab during the early stages of natural infection could prove useful in achieving this goal. Here we demonstrate that viral escape readily occurred despite the development of high titer autologous Nab in two subjects with acute/early subtype C infection. To provide a detailed portrayal of the escape pathways, Nab resistant variants identified at multiple time points were used to create a series of envelope (Env) glycoprotein chimeras and mutants within the background of a corresponding newly transmitted Env. In one subject, Nab escape was driven predominantly by changes in the region of gp120 that extends from the beginning of the V3 domain to the end of the V5 domain (V3V5). However, Nab escape pathways in this subject oscillated and at times required cooperation between V1V2 and the gp41 ectodomain. In the second subject, escape was driven by changes in V1V2. This V1V2-dependent escape pathway was retained over time, and its utility was reflected in the virus''s ability to escape from two distinct monoclonal antibodies (Mabs) derived from this same patient via introduction of a single potential N-linked glycosylation site in V2. Spatial representation of the sequence changes in gp120 suggested that selective pressure acted upon the same regions of Env in these two subjects, even though the Env domains that drove escape were different. Together the findings argue that a single mutational pathway is not sufficient to confer escape in early subtype C HIV-1 infection, and support a model in which multiple strategies, including potential glycan shifts, direct alteration of an epitope sequence, and cooperative Env domain conformational masking, are used to evade neutralization.  相似文献   

2.
The mechanisms underlying HIV-1 control by protective HLA class I alleles are not fully understood and could involve selection of escape mutations in functionally important Gag epitopes resulting in fitness costs. This study was undertaken to investigate, at the population level, the impact of HLA-mediated immune pressure in Gag on viral fitness and its influence on HIV-1 pathogenesis. Replication capacities of 406 recombinant viruses encoding plasma-derived Gag-protease from patients chronically infected with HIV-1 subtype C were assayed in an HIV-1-inducible green fluorescent protein reporter cell line. Viral replication capacities varied significantly with respect to the specific HLA-B alleles expressed by the patient, and protective HLA-B alleles, most notably HLA-B*81, were associated with lower replication capacities. HLA-associated mutations at low-entropy sites, especially the HLA-B*81-associated 186S mutation in the TL9 epitope, were associated with lower replication capacities. Most mutations linked to alterations in replication capacity in the conserved p24 region decreased replication capacity, while most in the highly variable p17 region increased replication capacity. Replication capacity also correlated positively with baseline viral load and negatively with baseline CD4 count but did not correlate with the subsequent rate of CD4 decline. In conclusion, there is evidence that protective HLA alleles, in particular HLA-B*81, significantly influence Gag-protease function by driving sequence changes in Gag and that conserved regions of Gag should be included in a vaccine aiming to drive HIV-1 toward a less fit state. However, the long-term clinical benefit of immune-driven fitness costs is uncertain given the lack of correlation with longitudinal markers of disease progression.There is broad heterogeneity in the ability of HIV-infected individuals to control virus replication, ranging from elite controllers, who maintain undetectable viral loads without treatment, to rapid progressors, who progress to AIDS within 2 years of infection (9, 22, 32). Many interrelated factors, including host and viral genetic factors involved in antiviral immunity and the viral life cycle, may partially account for the differences in the course of disease progression (10, 11, 30, 41). The complex interplay between host genetic factors and viral factors is exemplified by human leukocyte antigen (HLA) class I-restricted cytotoxic T-lymphocyte (CTL) responses, which exert considerable immune pressure on the virus, resulting in escape mutations that affect the interaction of viral and host proteins, thereby influencing infection outcome.The exact mechanisms by which some HLA class I alleles, such as HLA-B*57 and HLA-B*27, are associated with slower progression to AIDS, while others, such as B*5802 and B*18, are associated with accelerated disease progression (6, 20, 42), are unclear. The magnitude and/or breadth of HLA-restricted CTL responses to the conserved Gag protein has been correlated inversely with disease progression or markers of disease progression in several studies (12, 21, 28, 31, 35, 43, 46), although there are some exceptions (4, 16, 37), while preferential targeting of the highly variable envelope protein (as occurs in HLA-B*5802-positive individuals) correlates with higher viral loads (21, 29). Protective HLA alleles restrict CTL responses that impose a strong selection pressure on a few specific Gag p24 epitopes, resulting in escape mutations (14) for which fitness costs have been demonstrated either through site-directed mutations introduced into a reference strain background (2, 8, 25, 38) or through in vivo reversion of these mutations after transmission to an HLA-mismatched individual (8, 24). Recent evidence suggests that Gag escape mutations with a fitness cost, particularly those in p24, are a significant determinant of disease progression: the transmitted number of HLA-B-associated polymorphisms in Gag was found to significantly impact the viral set point in recipients (although an associated fitness cost was not shown) (7, 15), and in a small number of infants, decreased fitness of the transmitted virus with HLA-B*5703/5801-selected mutations in Gag p24 epitopes resulted in slower disease progression (33, 39). Also, the number of reverting Gag mutations (thought to revert as a consequence of fitness costs) associated with individual HLA-B alleles was strongly correlated with the HLA-linked viral set point in chronically infected patients (26). A recent in vitro study showed that HLA-associated variation in Gag-protease, with resulting reduced replication capacity, may contribute to viral control in HIV-1 subtype B-infected elite controllers (27). Taken together, these studies suggest that CTL responses restricted by favorable HLA alleles select for escape mutations in conserved epitopes, particularly those in Gag, resulting in a fitness cost to HIV and therefore at least partly explaining the slower disease progression in individuals carrying these alleles.To date, many of the studies investigating the fitness cost of Gag escape mutations and their clinical relevance have concentrated on escape mutations associated with protective HLA alleles, have not assessed fitness consequences in the natural sequence background (in the presence of other escape and compensatory mutations), and/or have focused on a limited number of patients. Most importantly, the majority of studies have focused on HIV-1 subtype B. The present study is the first to use a large population-based approach and clinically derived Gag-protease sequences to investigate comprehensively the relationships between immune-driven sequence variation in Gag, viral replication capacity, and markers of disease progression in chronic infection with HIV-1 subtype C, the most predominant subtype in the epidemic. We assayed the replication capacity of recombinant viruses encoding patient Gag-protease in an HIV-1-inducible green fluorescent protein (GFP) reporter cell line and found associations between lower replication capacities, protective HLA alleles, protective HLA-associated mutations, lower baseline viral loads, and higher baseline CD4 counts. However, Gag-protease replication capacity did not correlate with the subsequent rate of CD4 decline.  相似文献   

3.
We previously showed that HIV-1 subtype C viruses elicit potent but highly type-specific neutralizing antibodies (nAb) within the first year of infection. In order to determine the specificity and evolution of these autologous nAbs, we examined neutralization escape in four individuals whose responses against the earliest envelope differed in magnitude and potency. Neutralization escape occurred in all participants, with later viruses showing decreased sensitivity to contemporaneous sera, although they retained sensitivity to new nAb responses. Early nAb responses were very restricted, occurring sequentially and targeting only two regions of the envelope. In V1V2, limited amino acid changes often involving indels or glycans, mediated partial or complete escape, with nAbs targeting the V1V2 region directly in 2 cases. The alpha-2 helix of C3 was also a nAb target, with neutralization escape associated with changes to positively charged residues. In one individual, relatively high titers of anti-C3 nAbs were required to drive genetic escape, taking up to 7 weeks for the resistant variant to predominate. Thereafter titers waned but were still measurable. Development of this single anti-C3 nAb specificity was associated with a 7-fold drop in HIV-1 viral load and a 4-fold rebound as the escape mutation emerged. Overall, our data suggest the development of a very limited number of neutralizing antibody specificities during the early stages of HIV-1 subtype C infection, with temporal fluctuations in specificities as escape occurs. While the mechanism of neutralization escape appears to vary between individuals, the involvement of limited regions suggests there might be common vulnerabilities in the HIV-1 subtype C transmitted envelope.  相似文献   

4.

Background

Aiming to answer the broad question “When does mutation occur?” this study examined the time of appearance, dominance, and completeness of in vivo Gag mutations in primary HIV-1 subtype C infection.

Methods

A primary HIV-1C infection cohort comprised of 8 acutely and 34 recently infected subjects were followed frequently up to 500 days post-seroconversion (p/s). Gag mutations were analyzed by employing single-genome amplification and direct sequencing. Gag mutations were determined in relation to the estimated time of seroconversion. Time of appearance, dominance, and completeness was compared for different types of in vivo Gag mutations.

Results

Reverse mutations to the wild type appeared at a median (IQR) of 62 (44;139) days p/s, while escape mutations from the wild type appeared at 234 (169;326) days p/s (p<0.001). Within the subset of mutations that became dominant, reverse and escape mutations appeared at 54 (30;78) days p/s and 104 (47;198) days p/s, respectively (p<0.001). Among the mutations that reached completeness, reverse and escape mutations appeared at 54 (30;78) days p/s and 90 (44;196) days p/s, respectively (p = 0.006). Time of dominance for reverse mutations to and escape mutations from the wild type was 58 (44;105) days p/s and 219 (90;326) days p/s, respectively (p<0.001). Time of completeness for reverse and escape mutations was 152 (100;176) days p/s and 243 (101;370) days p/s, respectively (p = 0.001). Fitting a Cox proportional hazards model with frailties confirmed a significantly earlier time of appearance (hazard ratio (HR): 2.6; 95% CI: 2.3–3.0), dominance (4.8 (3.4–6.8)), and completeness (3.6 (2.3–5.5)) of reverse mutations to the wild type Gag than escape mutations from the wild type. Some complex mutational pathways in Gag included sequential series of reversions and escapes.

Conclusions

The study identified the timing of different types of in vivo Gag mutations in primary HIV-1 subtype C infection in relation to the estimated time of seroconversion. Overall, the in vivo reverse mutations to the wild type occurred significantly earlier than escape mutations from the wild type. This shorter time to incidence of reverse mutations remained in the subsets of in vivo Gag mutations that reached dominance or completeness.  相似文献   

5.
Naive T cells in untreated HIV-1 infected individuals have a reduced T-cell receptor excision circle (TREC) content. Previous mathematical models have suggested that this is due to increased naive T-cell division. It remains unclear, however, how reduced naive TREC contents can be reconciled with a gradual loss of naive T cells in HIV-1 infection. We performed longitudinal analyses in humans before and after HIV-1 seroconversion, and used a mathematical model to investigate which processes could explain the observed changes in naive T-cell numbers and TRECs during untreated HIV-1 disease progression. Both CD4+ and CD8+ naive T-cell TREC contents declined biphasically, with a rapid loss during the first year and a much slower loss during the chronic phase of infection. While naive CD8+ T-cell numbers hardly changed during follow-up, naive CD4+ T-cell counts continually declined. We show that a fine balance between increased T-cell division and loss in the peripheral naive T-cell pool can explain the observed short- and long-term changes in TRECs and naive T-cell numbers, especially if T-cell turnover during the acute phase is more increased than during the chronic phase of infection. Loss of thymic output, on the other hand, does not help to explain the biphasic loss of TRECs in HIV infection. The observed longitudinal changes in TRECs and naive T-cell numbers in HIV-infected individuals are most likely explained by a tight balance between increased T-cell division and death, suggesting that these changes are intrinsically linked in HIV infection.  相似文献   

6.
Although HLA-B*57 (B57) is associated with slow progression to disease following HIV-1 infection, B57 heterozygotes display a wide spectrum of outcomes, including rapid progression, viremic slow progression, and elite control. Efforts to identify differences between B57-positive (B57(+)) slow progressors and B57(+) rapid progressors have largely focused on cytotoxic T lymphocyte (CTL) phenotypes and specificities during chronic stages of infection. Although CTL responses in the early months of infection are likely to be the most important for the long-term rate of HIV-1 disease progression, few data on the early CTL responses of eventual slow progressors have been available. Utilizing the Multicenter AIDS Cohort Study (MACS), we retrospectively examined the early HIV-1-specific CTL responses of 14 B57(+) individuals whose time to development of disease ranged from 3.5 years to longer than 25 years after infection. In general, a greater breadth of targeting of epitopes from structural proteins, especially Gag, as well as of highly conserved epitopes from any HIV-1 protein, correlated with longer times until disease. The single elite controller in the cohort was an outlier on several correlations of CTL targeting and time until disease, consistent with reports that elite control is typically not achieved solely by protective HLA-mediated CTLs. When targeting of individual epitopes was analyzed, we found that early CTL responses to the IW9 (ISPRTLNAW) epitope of Gag, while generally subdominant, correlated with delayed progression to disease. This is the first study to identify early CTL responses to IW9 as a correlate of protection in persons with HLA-B*57.  相似文献   

7.
T cell activation levels, viral load and CD4+ T cell counts at early stages of HIV-1 infection are predictive of the rate of progression towards AIDS. We evaluated whether the inflammatory profile during primary HIV-1 infection is predictive of the virological and immunological set-points and of disease progression. We quantified 28 plasma proteins during acute and post-acute HIV-1 infection in individuals with known disease progression profiles. Forty-six untreated patients, enrolled during primary HIV-1 infection, were categorized into rapid progressors, progressors and slow progressors according to their spontaneous progression profile over 42 months of follow-up. Already during primary infection, rapid progressors showed a higher number of increased plasma proteins than progressors or slow progressors. The plasma levels of TGF-β1 and IL-18 in primary HIV-1 infection were both positively associated with T cell activation level at set-point (6 months after acute infection) and together able to predict 74% of the T cell activation variation at set-point. Plasma IP-10 was positively and negatively associated with, respectively, T cell activation and CD4+ T cell counts at set-point and capable to predict 30% of the CD4+ T cell count variation at set-point. Moreover, plasma IP-10 levels during primary infection were predictive of rapid progression. In primary infection, IP-10 was an even better predictor of rapid disease progression than viremia or CD4+ T cell levels at this time point. The superior predictive capacity of IP-10 was confirmed in an independent group of 88 HIV-1 infected individuals. Altogether, this study shows that the inflammatory profile in primary HIV-1 infection is associated with T cell activation levels and CD4+ T cell counts at set-point. Plasma IP-10 levels were of strong predictive value for rapid disease progression. The data suggest IP-10 being an earlier marker of disease progression than CD4+ T cell counts or viremia levels.  相似文献   

8.
HIV-1 subtype B replication in the CNS can occur in CD4+ T cells or macrophages/microglia in adults. However, little is known about CNS infection in children or the ability of subtype C HIV-1 to evolve macrophage-tropic variants. In this study, we examined HIV-1 variants in ART-naïve children aged three years or younger to determine viral genotypes and phenotypes associated with HIV-1 subtype C pediatric CNS infection. We examined HIV-1 subtype C populations in blood and CSF of 43 Malawian children with neurodevelopmental delay or acute neurological symptoms. Using single genome amplification (SGA) and phylogenetic analysis of the full-length env gene, we defined four states: equilibrated virus in blood and CSF (n = 20, 47%), intermediate compartmentalization (n = 11, 25%), and two distinct types of compartmentalized CSF virus (n = 12, 28%). Older age and a higher CSF/blood viral load ratio were associated with compartmentalization, consistent with independent replication in the CNS. Cell tropism was assessed using pseudotyped reporter viruses to enter a cell line on which CD4 and CCR5 receptor expression can be differentially induced. In a subset of compartmentalized cases (n = 2, 17%), the CNS virus was able to infect cells with low CD4 surface expression, a hallmark of macrophage-tropic viruses, and intermediate compartmentalization early was associated with an intermediate CD4 entry phenotype. Transmission of multiple variants was observed for 5 children; in several cases, one variant was sequestered within the CNS, consistent with early stochastic colonization of the CNS by virus. Thus we hypothesize two pathways to compartmentalization: early stochastic sequestration in the CNS of one of multiple variants transmitted from mother to child, and emergence of compartmentalized variants later in infection, on average at age 13.5 months, and becoming fully apparent in the CSF by age 18 months. Overall, compartmentalized viral replication in the CNS occurred in half of children by year three.  相似文献   

9.
Human immunodeficiency virus type 1 (HIV-1)-infected subjects treated early after infection have preserved HIV-1-specific CD4+ T-cell function. We studied the effect of highly active antiretroviral therapy (HAART) on the frequency of HIV-1-specific CD8+ T cells in patients treated during early (n = 31) or chronic (n = 23) infection. The degree of viral suppression and time of initiation of treatment influenced the magnitude of the CD8+ T-cell response. HIV-1-specific CD8+ T cells can increase in number after HAART in subjects treated early after infection who have episodes of transient viremia.  相似文献   

10.
Several clinical studies have shown that, relative to disease progression, HIV-1 isolates that are less fit are also less pathogenic. The aim of the present study was to investigate the relationship between viral fitness and control of viral load (VL) in acute and early HIV-1 infection. Samples were obtained from subjects participating in two clinical studies. In the PULSE study, antiretroviral therapy (ART) was initiated before, or no later than six months following seroconversion. Subjects then underwent multiple structured treatment interruptions (STIs). The PHAEDRA study enrolled and monitored a cohort of individuals with documented evidence of primary infection. The subset chosen were individuals identified no later than 12 months following seroconversion to HIV-1, who were not receiving ART. The relative fitness of primary isolates obtained from study participants was investigated ex vivo. Viral DNA production was quantified using a novel real time PCR assay. Following intermittent ART, the fitness of isolates obtained from 5 of 6 PULSE subjects decreased over time. In contrast, in the absence of ART the fitness of paired isolates obtained from 7 of 9 PHAEDRA subjects increased over time. However, viral fitness did not correlate with plasma VL. Most unexpected was the high relative fitness of isolates obtained at Baseline from PULSE subjects, before initiating ART. It is widely thought that the fitness of strains present during the acute phase is low relative to strains present during chronic HIV-1 infection, due to the bottleneck imposed upon transmission. The results of this study provide evidence that the relative fitness of strains present during acute HIV-1 infection may be higher than previously thought. Furthermore, that viral fitness may represent an important clinical parameter to be considered when deciding whether to initiate ART during early HIV-1 infection.  相似文献   

11.
We use a mathematical model to determine the factors affecting the delayed or rare coreceptor switch in HIV-1 subtype C infected individuals. The model takes into account the two main target cells for the CXCR4-tropic and CCR5-tropic virus and includes the the lytic and non-lytic immune responses. Computer-based simulations and a sensitivity analysis of the model predict that a persistent immune response suppresses the CXCR4-tropic virus to low levels and hence preventing a phenotypic switch. However, not only should the immune response be persistent, but it should have an efficient lytic immune response rather that an efficient non-lytic response. In addition, we also find that the availability of macrophage cells and enhanced viral kinetics are also crucial for the dominance of the R5 strain. We suggest that an altered host environment probably as a result of immune activation may explain the difference in coreceptor switching kinetics between HIV-1 subtype B and subtype C individuals.  相似文献   

12.
13.
HIV-1-specific CD4+ and CD8+ T lymphocytes are important for HIV-1 replication control. F4/AS01 consists of F4 recombinant fusion protein (containing clade B Gag/p24, Pol/RT, Nef and Gag/p17) formulated in AS01 Adjuvant System, and was shown to induce F4-specific polyfunctional CD4+ T-cell responses in humans. While replication-incompetent recombinant HIV-1/SIV antigen-expressing human adenoviral vectors can elicit high-frequency antigen-specific CD8+ T-cell responses, their use is hampered by widespread pre-existing immunity to human serotypes. Non-human adenovirus serotypes associated with lower prevalence may offer an alternative strategy. We evaluated the immunogenicity of AdC7-GRN (‘A’), a recombinant chimpanzee adenovirus type 7 vector expressing clade B Gag, RT and Nef, and F4/AS01 (‘P’), when delivered intramuscularly in homologous (PP or AA) and heterologous (AAPP or PPAA) prime-boost regimens, in macaques and mice. Vaccine-induced HIV-1-antigen-specific T cells in peripheral blood (macaques), liver, spleen, and intestinal and genital mucosa (mice) were characterized by intracellular cytokine staining. Vaccine-specific IgG antibodies (macaques) were detected using ELISA. In macaques, only the heterologous prime-boost regimens induced polyfunctional, persistent and balanced CD4+ and CD8+ T-cell responses specific to each HIV-1 vaccine antigen. AdC7-GRN priming increased the polyfunctionality of F4/AS01-induced CD4+ T cells. Approximately 50% of AdC7-GRN-induced memory CD8+ T cells exhibited an effector-memory phenotype. HIV-1-specific antibodies were detected with each regimen. In mice, antigen-specific CD4+ and CD8+ T-cell responses were detected in the mucosal and systemic anatomical compartments assessed. When administered in heterologous prime-boost regimens, AdC7-GRN and F4/AS01 candidate vaccines acted complementarily in inducing potent and persistent peripheral blood HIV-1-specific CD4+ and CD8+ T-cell responses and antibodies in macaques. Besides, adenoviral vector priming modulated the cytokine-expression profile of the protein-induced CD4+ T cells. Each regimen induced HIV-1-specific T-cell responses in systemic/local tissues in mice. This suggests that prime-boost regimens combining adjuvanted protein and low-seroprevalent chimpanzee adenoviral vectors represent an attractive vaccination strategy for clinical evaluation.  相似文献   

14.
15.
Stromal cell-Derived Factor 1 (SDF1) is the natural ligand of CXCR4, the coreceptor of HIV-1 X4 viruses. This study investigated the role of the single nucleotide polymorphism (SNP) rs1801157 (NM_000609.5:c.*519G>A) of the SDF1 gene in the natural history of mother-to-child transmission of HIV-1 and disease progression of HIV-1-infected children. The study was conducted in 428 children born to HIV-1-seropositive mothers, who had not undergone antiretroviral therapy (ART) during pregnancy, and in 120 HIV-1-infected children for whom the end-point was the onset of AIDS or the initiation of ART; 16 children developed early AIDS (<24 months of life), 13 from 24 to 84 months of age, and 14 had late AIDS (>84 months). The rs1801157 SNP was not associated with risk of perinatal infection in any genetic models tested. By contrast, this SNP influenced disease progression in a time-dependent manner. rs1801157 GA heterozygous children had a higher risk of late AIDS (HR = 6.3, 95%CI 1.9–20.7, p = 0.002) than children with the rs1801157 GG genotype. Children were studied for viral coreceptor usage at birth, after 84 months of age and/or at AIDS onset. While R5 viruses using CCR5 coreceptor were predominant at birth (94%) and at early AIDS (85%), viruses using CXCR4 coreceptor emerged during the course of infection and were detected in 49% of children older than 84 months and in 62% of late AIDS. The rs1801157 SNP did not influence the emergence of R5X4 viruses, but children with the rs1801157 GA genotype and R5X4 viruses were at significantly higher risk of late AIDS than children with rs1801157 GG genotype (OR = 8.0, 95% CI 1.2–52.2, p = 0.029). Our results indicate that the rs1801157 SNP does not influence perinatal infection, but impacts disease progression. This effect is time-dependent and linked to the coreceptor-usage of viral variants that undergo evolution during the course of HIV-1 infection.  相似文献   

16.
The important role of the CD8+ T-cell response on HIV control is well established. Moreover, the acute phase of infection represents a proper scenario to delineate the antiviral cellular functions that best correlate with control. Here, multiple functional aspects (specificity, ex vivo viral inhibitory activity [VIA] and polyfunctionality) of the HIV-specific CD8+ T-cell subset arising early after infection, and their association with disease progression markers, were examined. Blood samples from 44 subjects recruited within 6 months from infection (primary HIV infection [PHI] group), 16 chronically infected subjects, 11 elite controllers (EC), and 10 healthy donors were obtained. Results indicated that, although Nef dominated the anti-HIV response during acute/early infection, a higher proportion of early anti-Gag T cells correlated with delayed progression. Polyfunctional HIV-specific CD8+ T cells were detected at early time points but did not associate with virus control. Conversely, higher CD4+ T-cell set points were observed in PHI subjects with higher HIV-specific CD8+ T-cell VIA at baseline. Importantly, VIA levels correlated with the magnitude of the anti-Gag cellular response. The advantage of Gag-specific cells may result from their enhanced ability to mediate lysis of infected cells (evidenced by a higher capacity to degranulate and to mediate VIA) and to simultaneously produce IFN-γ. Finally, Gag immunodominance was associated with elevated plasma levels of interleukin 2 (IL-2) and macrophage inflammatory protein 1β (MIP-1β). All together, this study underscores the importance of CD8+ T-cell specificity in the improved control of disease progression, which was related to the capacity of Gag-specific cells to mediate both lytic and nonlytic antiviral mechanisms at early time points postinfection.  相似文献   

17.
Bangladesh has an overall low HIV prevalence of <0.1% in the general population and <1% among key affected populations, but it is one of few Asian countries that has yet to reverse the epidemic. In order to do this, it is important to understand the transmission dynamics in this country. The aim of this study was to investigate the phylogenetic relationships of HIV-1 subtype C strains from Bangladesh and related strains from other countries, and thereby clarify when and from where subtype C was introduced in the country and how it subsequently spread within Bangladesh. The phylogenetic analysis included 118 Bangladeshi gag sequences and 128 sequences from other countries and was performed using the BEAST package. Our analysis revealed that the vast majority of Bangladeshi sequences (97/118, 82%) fall into a large regional cluster of samples from Bangladesh, India, China and Myanmar, which dates back to the early 1960’s. Following its establishment in the region, this strain has entered Bangladesh multiple times from around 1975 and onwards, but extensive in-country transmission could only be detected among drug users and not through sexual transmission. In addition, there have been multiple (at least ten) introductions of subtype C to Bangladesh from outside this region, but no extensive spread could be detected for any of these. Since many HIV-infections remain undetected while asymptomatic, the true extent of the transmission of each strain remains unknown, especially among hard to reach groups such as clients of sex workers and returning migrants with families.  相似文献   

18.
CD4 CD25 Regulatory T cells (Treg) have been found to down-regulate immune activation in HIV-1 infection. However,whether the depletion of Treg benefits to the disease status of HIV infection remains undefined. To address this issue,we enumerated the Treg absolute counts and frequency in 75 antiviral-nave HIV-1-infected individuals in this study. It was found that HIV-infected patients displayed a significant decline in Treg absolute counts but a significant increase in Treg frequency. In addition,with disease progression indicated by CD4 T-cell absolute counts,circulating Treg frequency gradually increased; while Treg absolute counts were gradually decreased,suggesting that the alteration of Treg number closely correlated with disease progression in HIV infection. Functional analysis further showed that Treg efficiently inhibit both CD4 and CD8 T cell proliferation in vitro. Thus,our findings indicates that Treg actively participate in pathogenesis of chronic HIV infection,influencing the disease progression.  相似文献   

19.
20.
CD4+ central memory T cells play a critical role in the pathogenesis of simian immunodeficiency virus disease, and the CCR5 density on the surface of CD4 T cells is an important factor in human immunodeficiency virus (HIV)-1 disease progression. We hypothesized that quantifying central memory cells and CCR5 expression in the early stages of HIV-infection could provide useful prognostic information. We enrolled two different groups of acute HIV-infected subjects. One group progressed to CD4 T cell numbers below 250 cells/µl within 2 years (CD4 Low group), while the other group maintained CD4 cell counts above 450 cells/µl over 2 years (CD4 High group). We compared the CCR5 levels and percentage of CD4 subsets between the two groups during the 1st year of HIV infection. We found no differences between the two groups regarding the percentage of naïve, central memory and effector memory subsets of CD4 cells during the 1st year of HIV-1 infection. CCR5 levels on CD4+ CM subset was higher in the CD4 Low group compared with the CD4 High group during the 1st year of HIV-1 infection. High CCR5 levels on CD4 central memory cells in acute HIV infection are mostly associated with rapid disease progression. Our data suggest that low CCR5 expression on CD4 central memory cells protects CD4 cells from direct virus infection and favors the preservation of CD4+ T cell homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号