首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Kaposi's sarcoma had been recognized as unique human cancer for a century before it manifested as an AIDS-defining illness with a suspected infectious etiology. The discovery of Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8, in 1994 by using representational difference analysis, a subtractive method previously employed for cloning differences in human genomic DNA, was a fitting harbinger for the powerful bioinformatic approaches since employed to understand its pathogenesis in KS. Indeed, the discovery of KSHV was rapidly followed by publication of its complete sequence, which revealed that the virus had coopted a wide armamentarium of human genes; in the short time since then, the functions of many of these viral gene variants in cell growth control, signaling apoptosis, angiogenesis, and immunomodulation have been characterized. This critical literature review explores the pathogenic potential of these genes within the framework of current knowledge of the basic herpesvirology of KSHV, including the relationships between viral genotypic variation and the four clinicoepidemiologic forms of Kaposi's sarcoma, current viral detection methods and their utility, primary infection by KSHV, tissue culture and animal models of latent- and lytic-cycle gene expression and pathogenesis, and viral reactivation from latency. Recent advances in models of de novo endothelial infection, microarray analyses of the host response to infection, receptor identification, and cloning of full-length, infectious KSHV genomic DNA promise to reveal key molecular mechanisms of the candidate pathogeneic genes when expressed in the context of viral infection.  相似文献   

5.
6.
7.
8.
Deregulation of the TNF-like weak inducer of apoptosis (TWEAK)-fibroblast growth factor-inducible 14 (Fn14) signaling pathway is observed in many diseases, including inflammation, autoimmune diseases, and cancer. Activation of Fn14 signaling by TWEAK binding triggers cell invasion and survival and therefore represents an attractive pathway for therapeutic intervention. Based on structural studies of the TWEAK-binding cysteine-rich domain of Fn14, several homology models of TWEAK were built to investigate plausible modes of TWEAK-Fn14 interaction. Two promising models, centered on different anchoring residues of TWEAK (tyrosine 176 and tryptophan 231), were prioritized using a data-driven strategy. Site-directed mutagenesis of TWEAK at Tyr176, but not Trp231, resulted in the loss of TWEAK binding to Fn14 substantiating Tyr176 as the anchoring residue. Importantly, mutation of TWEAK at Tyr176 did not disrupt TWEAK trimerization but failed to induce Fn14-mediated nuclear factor κ-light chain enhancer of activated B cell (NF-κB) signaling. The validated structural models were utilized in a virtual screen to design a targeted library of small molecules predicted to disrupt the TWEAK-Fn14 interaction. 129 small molecules were screened iteratively, with identification of molecules producing up to 37% inhibition of TWEAK-Fn14 binding. In summary, we present a data-driven in silico study revealing key structural elements of the TWEAK-Fn14 interaction, followed by experimental validation, serving as a guide for the design of small molecule inhibitors of the TWEAK-Fn14 ligand-receptor interaction. Our results validate the TWEAK-Fn14 interaction as a chemically tractable target and provide the foundation for further exploration utilizing chemical biology approaches focusing on validating this system as a therapeutic target in invasive cancers.  相似文献   

9.
Kaposi''s sarcoma (KS) is common in Africa, but economic constraints hinder successful treatment in most patients. Propranolol, a generic β-adrenergic antagonist, decreased proliferation of KS-associated herpesvirus (KSHV)-infected cells. Downregulation of cyclin A2 and cyclin-dependent kinase 1 (CDK1) recapitulated this phenotype. Additionally, propranolol induced lytic gene expression in association with downregulation of CDK6. Thus, propranolol has diverse effects on KSHV-infected cells, and this generic drug has potential as a therapeutic agent for KS.  相似文献   

10.
Cellular inhibitor of apoptosis (cIAP) proteins, cIAP1 and cIAP2, are important regulators of tumor necrosis factor (TNF) superfamily (SF) signaling and are amplified in a number of tumor types. They are targeted by IAP antagonist compounds that are undergoing clinical trials. IAP antagonist compounds trigger cIAP autoubiquitylation and degradation. The TNFSF member TWEAK induces lysosomal degradation of TRAF2 and cIAPs, leading to elevated NIK levels and activation of non-canonical NF-κB. To investigate the role of the ubiquitin ligase RING domain of cIAP1 in these pathways, we used cIAP-deleted cells reconstituted with cIAP1 point mutants designed to interfere with the ability of the RING to dimerize or to interact with E2 enzymes. We show that RING dimerization and E2 binding are required for IAP antagonists to induce cIAP1 degradation and protect cells from TNF-induced cell death. The RING functions of cIAP1 are required for full TNF-induced activation of NF-κB, however, delayed activation of NF-κB still occurs in cIAP1 and -2 double knock-out cells. The RING functions of cIAP1 are also required to prevent constitutive activation of non-canonical NF-κB by targeting NIK for proteasomal degradation. However, in cIAP double knock-out cells TWEAK was still able to increase NIK levels demonstrating that NIK can be regulated by cIAP-independent pathways. Finally we show that, unlike IAP antagonists, TWEAK was able to induce degradation of cIAP1 RING mutants. These results emphasize the critical importance of the RING of cIAP1 in many signaling scenarios, but also demonstrate that in some pathways RING functions are not required.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
The hepatitis C virus (HCV) core protein is known to be a multifunctional protein, besides being a component of viral nucleocapsids. Previously, we have shown that the core protein binds to the cytoplasmic domain of lymphotoxin β receptor, which is a member of tumor necrosis factor receptor (TNFR) family. In this study, we demonstrated that the core protein also binds to the cytoplasmic domain of TNFR 1. The interaction was demonstrated both by glutathione S-transferase fusion protein pull-down assay in vitro and membrane flotation method in vivo. Both the in vivo and in vitro binding required amino acid residues 345 to 407 of TNFR 1, which corresponds to the “death domain” of this receptor. We have further shown that stable expression of the core protein in a mouse cell line (BC10ME) or human cell lines (HepG2 and HeLa cells) sensitized them to TNF-induced apoptosis, as determined by the TNF cytotoxicity or annexin V apoptosis assay. The presence of the core protein did not alter the level of TNFR 1 mRNA in the cells or expression of TNFR 1 on the cell surface, suggesting that the sensitization of cells to TNF by the viral core protein was not due to up-regulation of TNFR 1. Furthermore, we observed that the core protein blocked the TNF-induced activation of RelA/NF-κB in murine BC10ME cells, thus at least partially accounting for the increased sensitivity of BC10ME cells to TNF. However, NF-κB activation was not blocked in core protein-expressing HeLa or HepG2 cells, implying another mechanism of TNF sensitization by core protein. These results together suggest that the core protein can promote cell death during HCV infection via TNF signaling pathways possibly as a result of its interaction with the cytoplasmic tail of TNFR 1. Therefore, TNF may play a role in HCV pathogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号