首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We have recently shown in a patient with mild bleeding that the PDZ-binding motif of the platelet G protein-coupled P2Y(12) receptor (P2Y(12)R) is required for effective receptor traffic in human platelets. In this study we show for the first time that the PDZ motif-binding protein NHERF1 exerts a major role in potentiating G protein-coupled receptor (GPCR) internalization. NHERF1 interacts with the C-tail of the P2Y(12)R and unlike many other GPCRs, NHERF1 interaction is required for effective P2Y(12)R internalization. In vitro and prior to agonist stimulation P2Y(12)R/NHERF1 interaction requires the intact PDZ binding motif of this receptor. Interestingly on receptor stimulation NHERF1 no longer interacts directly with the receptor but instead binds to the receptor via the endocytic scaffolding protein arrestin. These findings suggest a novel model by which arrestin can serve as an adaptor to promote NHERF1 interaction with a GPCR to facilitate effective NHERF1-dependent receptor internalization.  相似文献   

2.
The chemokine receptor CXCR4 is a widely expressed G protein-coupled receptor that has been implicated in a number of diseases including human immunodeficiency virus, cancer, and WHIM syndrome, with the latter two involving dysregulation of CXCR4 signaling. To better understand the role of phosphorylation in regulating CXCR4 signaling, tandem mass spectrometry and phospho-specific antibodies were used to identify sites of agonist-promoted phosphorylation. These studies demonstrated that Ser-321, Ser-324, Ser-325, Ser-330, Ser-339, and two sites between Ser-346 and Ser-352 were phosphorylated in HEK293 cells. We show that Ser-324/5 was rapidly phosphorylated by protein kinase C and G protein-coupled receptor kinase 6 (GRK6) upon CXCL12 treatment, whereas Ser-339 was specifically and rapidly phosphorylated by GRK6. Ser-330 was also phosphorylated by GRK6, albeit with slower kinetics. Similar results were observed in human astroglia cells, where endogenous CXCR4 was rapidly phosphorylated on Ser-324/5 by protein kinase C after CXCL12 treatment, whereas Ser-330 was slowly phosphorylated. Analysis of CXCR4 signaling in HEK293 cells revealed that calcium mobilization was primarily negatively regulated by GRK2, GRK6, and arrestin3, whereas GRK3, GRK6, and arrestin2 played a primary role in positively regulating ERK1/2 activation. In contrast, GRK2 appeared to play a negative role in ERK1/2 activation. Finally, we show that arrestin association with CXCR4 is primarily driven by the phosphorylation of far C-terminal residues on the receptor. These studies reveal that site-specific phosphorylation of CXCR4 is dynamically regulated by multiple kinases resulting in both positive and negative modulation of CXCR4 signaling.  相似文献   

3.
Barker BL  Benovic JL 《Biochemistry》2011,50(32):6933-6941
Regulation of the magnitude, duration, and localization of G protein-coupled receptor (GPCR) signaling responses is controlled by desensitization, internalization, and downregulation of the activated receptor. Desensitization is initiated by the phosphorylation of the activated receptor by GPCR kinases (GRKs) and the binding of the adaptor protein arrestin. In addition to phosphorylating activated GPCRs, GRKs have been shown to phosphorylate a variety of additional substrates. An in vitro screen for novel GRK substrates revealed Hsp70 interacting protein (Hip) as a substrate. GRK5, but not GRK2, bound to and stoichiometrically phosphorylated Hip in vitro. The primary binding domain of GRK5 was mapped to residues 303-319 on Hip, while the major site of phosphorylation was identified to be Ser-346. GRK5 also bound to and phosphorylated Hip on Ser-346 in cells. While Hip was previously implicated in chemokine receptor trafficking, we found that the phosphorylation of Ser-346 was required for proper agonist-induced internalization of the chemokine receptor CXCR4. Taken together, Hip has been identified as a novel substrate of GRK5 in vitro and in cells, and phosphorylation of Hip by GRK5 plays a role in modulating CXCR4 internalization.  相似文献   

4.
IL-8 (or CXCL8) activates the receptors CXCR1 (IL-8RA) and CXCR2 (IL-8RB) to induce chemotaxis in leukocytes, but only CXCR1 mediates cytotoxic and cross-regulatory signals. This may be due to the rapid internalization of CXCR2. To investigate the roles of the intracellular domains in receptor regulation, wild-type, chimeric, phosphorylation-deficient, and cytoplasmic tail (C-tail) deletion mutants of both receptors were expressed in RBL-2H3 cells and studied for cellular activation, receptor phosphorylation, desensitization, and internalization. All but one chimeric receptor bound IL-8 and mediated signal transduction, chemotaxis, and exocytosis. Upon IL-8 activation, the chimeric receptors underwent receptor phosphorylation and desensitization. One was resistant to internalization, yet it mediated normal levels of beta-arrestin 2 (beta arr-2) translocation. The lack of internalization by this receptor may be due to its reduced association with beta arr-2 and the adaptor protein-2 beta. The C-tail-deleted and phosphorylation-deficient receptors were resistant to receptor phosphorylation, desensitization, arrestin translocation, and internalization. They also mediated greater phosphoinositide hydrolysis and exocytosis and sustained Ca(2+) mobilization, but diminished chemotaxis. These data indicate that phosphorylation of the C-tails of CXCR1 and CXCR2 are required for arrestin translocation and internalization, but are not sufficient to explain the rapid internalization of CXCR2 relative to CXCR1. The data also show that receptor internalization is not required for chemotaxis. The lack of receptor phosphorylation was correlated with greater signal transduction but diminished chemotaxis, indicating that second messenger production, not receptor internalization, negatively regulates chemotaxis.  相似文献   

5.
β-Arrestins are crucial regulators of G-protein coupled receptor (GPCR) signaling, desensitization, and internalization. Despite the long-standing paradigm that agonist-promoted receptor phosphorylation is required for β-arrestin2 recruitment, emerging evidence suggests that phosphorylation-independent mechanisms play a role in β-arrestin2 recruitment by GPCRs. Several PDZ proteins are known to interact with GPCRs and serve as cytosolic adaptors to modulate receptor signaling and trafficking. Na+/H+ exchange regulatory factors (NHERFs) exert a major role in GPCR signaling. By combining imaging and biochemical and biophysical methods we investigated the interplay among NHERF1, β-arrestin2, and the parathyroid hormone receptor type 1 (PTHR). We show that NHERF1 and β-arrestin2 can independently bind to the PTHR and form a ternary complex in cultured human embryonic kidney cells and Chinese hamster ovary cells. Although NHERF1 interacts constitutively with the PTHR, β-arrestin2 binding is promoted by receptor activation. NHERF1 interacts directly with β-arrestin2 without using the PTHR as an interface. Fluorescence resonance energy transfer studies revealed that the kinetics of PTHR and β-arrestin2 interactions were modulated by NHERF1. These findings suggest a model in which NHERF1 may serve as an adaptor, bringing β-arrestin2 into close proximity to the PTHR, thereby facilitating β-arrestin2 recruitment after receptor activation.  相似文献   

6.
The signaling mediated by the chemokine receptor CXC chemokine receptor 2 (CXCR2) plays an important role in promoting the progression of many cancers, including pancreatic cancer, one of the most lethal human malignancies. CXCR2 possesses a consensus PSD-95/DlgA/ZO-1 (PDZ) motif at its carboxyl termini, which might interact with potential PDZ scaffold/adaptor proteins. We have previously reported that CXCR2 PDZ motif-mediated protein interaction is an important regulator for neutrophil functions. Here, using a series of biochemical assays, we demonstrate that CXCR2 is physically coupled to its downstream effector phospholipase C-β3 (PLC-β3) that is mediated by PDZ scaffold protein Na+/H+ exchange regulatory factor 1 (NHERF1) into a macromolecular signaling complex both in vitro and in pancreatic cancer cells. We also observe that disrupting the CXCR2 complex, by gene delivery or peptide delivery of exogenous CXCR2 C-tail, significantly inhibits the biologic functions of pancreatic cancer cells (i.e., proliferation and invasion) in a PDZ motif-dependent manner. In addition, using a human pancreatic tumor xenograft model, we show that gene delivery of CXCR2 C-tail sequence (containing the PDZ motif) by adeno-associated virus type 2 viral vector potently suppresses human pancreatic tumor growth in immunodeficient mice. In summary, our results suggest the existence of a physical and functional coupling of CXCR2 and PLC-β3 mediated through NHERF1, forming a macromolecular complex that is critical for efficient and specific CXCR2 signaling in pancreatic cancer progression. Disrupting this CXCR2 complex could represent a novel and effective treatment strategy against pancreatic cancer.  相似文献   

7.
Human immunodeficiency virus type 1 (HIV-1) entry into CD4(+) cells requires the chemokine receptors CCR5 or CXCR4 as co-fusion receptors. We have previously demonstrated that chemokine receptors are capable of cross-regulating the functions of each other and, thus, affecting cellular responsiveness at the site of infection. To investigate the effects of chemokine receptor cross-regulation in HIV-1 infection, monocytes and MAGIC5 and rat basophilic leukemia (RBL-2H3) cell lines co-expressing the interleukin-8 (IL-8 or CXCL8) receptor CXCR1 and either CCR5 (ACCR5) or CXCR4 (ACXCR4) were generated. IL-8 activation of CXCR1, but not the IL-8 receptor CXCR2, cross-phosphorylated CCR5 and CXCR4 and cross-desensitized their responsiveness to RANTES (regulated on activation normal T cell expressed and secreted) (CCL5) and stromal derived factor (SDF-1 or CXCL12), respectively. CXCR1 activation internalized CCR5 but not CXCR4 despite cross-phosphorylation of both. IL-8 pretreatment also inhibited CCR5- but not CXCR4-mediated virus entry into MAGIC5 cells. A tail-deleted mutant of CXCR1, DeltaCXCR1, produced greater signals upon activation (Ca(2+) mobilization and phosphoinositide hydrolysis) and cross-internalized CXCR4, inhibiting HIV-1 entry. The protein kinase C inhibitor staurosporine prevented phosphorylation and internalization of the receptors by CXCR1 activation. Taken together, these results indicate that chemokine receptor-mediated HIV-1 cell infection is blocked by receptor internalization but not desensitization alone. Thus, activation of chemokine receptors unrelated to CCR5 and CXCR4 may play a cross-regulatory role in the infection and propagation of HIV-1. Since DeltaCXCR1, but not CXCR1, cross-internalized and cross-inhibited HIV-1 infection to CXCR4, the data indicate the importance of the signal strength of a receptor and, as a consequence, protein kinase C activation in the suppression of HIV-1 infection by cross-receptor-mediated internalization.  相似文献   

8.
The IL-8 (or CXCL8) chemokine receptors, CXCR1 and CXCR2, activate protein kinase C (PKC) to mediate leukocyte functions. To investigate the roles of different PKC isoforms in CXCL8 receptor activation and regulation, human mononuclear phagocytes were treated with CXCL8 or CXCL1 (melanoma growth-stimulating activity), which is specific for CXCR2. Plasma membrane association was used as a measure of PKC activation. Both receptors induced time-dependent association of PKCalpha, -beta1, and -beta2 to the membrane, but only CXCR1 activated PKCepsilon. CXCL8 also failed to activate PKCepsilon in RBL-2H3 cells stably expressing CXCR2. DeltaCXCR2, a cytoplasmic tail deletion mutant of CXCR2 that is resistant to internalization, activated PKCepsilon as well as CXCR1. Expression of the PKCepsilon inhibitor peptide epsilonV1 in RBL-2H3 cells blocked PKCepsilon translocation and inhibited receptor-mediated exocytosis, but not phosphoinositide hydrolysis or peak intracellular Ca(2+) mobilization. epsilonV1 also inhibited CXCR1-, CCR5-, and DeltaCXCR2-mediated cross-regulatory signals for GTPase activity, Ca(2+) mobilization, and internalization. Peritoneal macrophages from PKCepsilon-deficient mice (PKCepsilon(-/-)) also showed decreased CCR5-mediated cross-desensitization of G protein activation and Ca(2+) mobilization. Taken together, the results indicate that CXCR1 and CCR5 activate PKCepsilon to mediate cross-inhibitory signals. Inhibition or deletion of PKCepsilon decreases receptor-induced exocytosis and cross-regulatory signals, but not phosphoinositide hydrolysis or peak intracellular Ca(2+) mobilization, suggesting that cross-regulation is a Ca(2+)-independent process. Because DeltaCXCR2, but not CXCR2, activates PKCepsilon and cross-desensitizes CCR5, the data further suggest that signal duration leading to activation of novel PKC may modulate receptor-mediated cross-inhibitory signals.  相似文献   

9.
Chemokine receptors CCR5 and CXCR4 are the major coreceptors of HIV-1 infection and also play fundamental roles in leukocyte trafficking, metastasis, angiogenesis, and embyogenesis. Here, we show that transfection of CCR5 into CXCR4 and CD4 expressing 3T3 cells enhances the cell surface level of CXCR4. In CCR5 high expressing cells, cell surface level of CXCR4 was incompletely modulated in the presence of the CXCR4 ligand CXCL12/SDF-1alpha. CCR5 was resistant to ligand-dependent modulation with the CCR5 ligand CCL5/RANTES. Confocal laser microscopy revealed that CCR5 was colocalized with CXCR4 on the cell surface. In CD4 expressing CCR5 and CXCR4 double positive NIH 3T3 cells, immunoprecipitation followed by Western blot analysis revealed that CCR5 was associated with CXCR4 and CD4. CXCR4 and CCR5 were not co-immunoprecipitated in cells expressing CCR5 and CXCR4 but without CD4 expression. Compared to NIH 3T3CD4 cells expressing CXCR4, the entry of an HIV-1 X4 isolate (HCF) into NIH 3T3CD4 expressing both CXCR4 and CCR5 was reduced. Our data indicate that chemokine receptors interact with each other, which may modulate chemokine-chemokine receptor interactions and HIV-1 coreceptor functions.  相似文献   

10.
CXCL8 (interleukin-8) interacts with two receptors, CXCR1 and CXCR2, to activate leukocytes. Upon activation, CXCR2 internalizes very rapidly relative to CXCR1 ( approximately 90% versus approximately 10% after 5 min). The C termini of the receptors have been shown to be necessary for internalization but are not sufficient to explain the distinct kinetics of down-regulation. To determine the structural determinant(s) that modulate receptor internalization, various chimeric and point mutant receptors were generated by progressively exchanging specific domains or amino acids between CXCR1 and CXCR2. The receptors were stably expressed in rat basophilic leukemia 2H3 cells and characterized for receptor binding, intracellular Ca(2+) mobilization, phosphoinositide hydrolysis, phosphorylation, internalization, and MAPK activation. The data herein indicate that the second extracellular loop (2ECL) of the receptors is critical for the distinct rate of internalization. Replacing the 2ECL of CXCR2 with that of CXCR1 (B(2ECL)A) or Asp(199) with its CXCR1 valine counterpart (B(D199V)A) delayed CXCR2 internalization similarly to CXCR1. Replacing Asp(199) with Asn (B(D199N)) restored CXCR2 rapid internalization. Structure modeling of the 2ECL of the receptors also suggested that Asp(199) plays a critical role in stabilizing and modulating CXCR2 rapid internalization relative to CXCR1. B(D199N) internalized rapidly but migrated as a single phosphorylated form like CXCR1 ( approximately 75 kDa), whereas B(2ECL)A and B(D199V)A showed slow and fast migrating forms like CXCR2 ( approximately 45 and approximately 65 kDa, respectively) but internalized like CXCR1. These data further undermine the role of receptor oligomerization in CXCL8 receptor internalization. Like CXCR1, B(D199V)A also induced sustained ERK activation and cross-desensitized Ca(2+) mobilization to CCR5 relative to B(D199N) and CXCR2. Altogether, the data suggest that the 2ECL of the CXCL8 receptors is important in modulating their distinct rate of down-regulation and thereby signal length and post-internalization activities.  相似文献   

11.
Adaptor protein interaction with specific peptide motifs found within the intracellular, carboxyl terminus of chemokine receptor CXCR2 has been shown to modulate intracellular trafficking and receptor function. Efficient ligand-induced internalization of this receptor is dependent on the binding of adaptor protein 2 to the specific LLKIL motif found within the carboxyl terminus (1). In this study we show that the carboxyl-terminal type 1 PDZ ligand motif (-STTL) of CXCR2 plays an essential role in both proper intracellular receptor trafficking and efficient cellular chemotaxis. First, we show that CXCR2 is sorted to and degraded in the lysosome upon long-term ligand stimulation. We also show that receptor degradation is not dependent upon receptor ubiquitination, but is instead modulated by the carboxyl-terminal type I PDZ ligand of CXCR2. Deletion of this ligand results in increased degradation, earlier co-localization with the lysosome, and enhanced sorting to the Rab7-positive late endosome. We also show that deletion of this ligand effects neither receptor internalization nor receptor recycling. Furthermore, we demonstrate that deletion of the PDZ ligand motif results in impaired chemotactic response. The data presented here demonstrate that the type I PDZ ligand of CXCR2 acts to both delay lysosomal sorting and facilitate proper chemotactic response.  相似文献   

12.
Much is known about G protein coupled receptor trafficking and internalization following agonist stimulation. However, much less is known about outward trafficking of receptors from synthesis in the endoplasmic reticulum to the plasma membrane, or the role that trafficking might play in the assembly of receptor signaling complexes, important for targeting, specificity, and rapidity of subsequent signaling events. Up to now, very little is understood about receptor hetero-oligomers other than the fact that their assembly is done rapidly after biosynthesis. In our study we use bimolecular fluorescence complementation to selectively follow receptor dimers when expressed in Jurkat cells in order to clarify the trafficking itinerary those receptors follow to reach the plasma membrane and the resulting effect on signal transduction. CXCR4 and CCR5, previously shown to form both homo and hetero-oligomers, were used as our model to understand the specificities of trafficking along the anterograde pathway. The CXCR4 homodimer relies on Rabs2, 6 and 8 for anterograde transport regardless of the presence of endogenous CD4. The CCR5 homodimer relies on Rabs1 and 11 when CD4 is absent, but Rabs1 and 8 when CD4 was present. Interestingly, similar to the CCR5 homodimer, the CXCR4-CCR5 heterodimer relied on Rabs1 and 11 but also required Rab2 when CD4 was absent, and only Rab 1 when CD4 was present. Our results demonstrate that, although the receptors composing the heterodimeric complex are the same as in the homodimeric ones, the heterodimer traffics and signals differently than each homodimer. Our study demonstrates the importance of considering the receptor heterodimers as distinct signaling entities that should be carefully and individually characterized.  相似文献   

13.
HIV-1 infects target cells via a receptor complex formed by CD4 and a chemokine receptor, primarily CCR5 or CXCR4 (ref. 1). Commonly, HIV-1 transmission is mediated by CCR5-tropic variants, also designated slow/low, non-syncytia-inducer or macrophage-tropic, which dominate the early stages of HIV-1 infection and frequently persist during the entire course of the disease. In contrast, HIV-1 variants that use CXCR4 are typically detected at the later stages, and are associated with a rapid decline in CD4+ T cells and progression to AIDS (refs. 2,7-11). Disease progression is also associated with the emergence of concurrent infections that may affect the course of HIV disease by unknown mechanisms. A lymphotropic agent frequently reactivated in HIV-infected patients is human herpesvirus 6 (HHV-6), which has been proposed as a cofactor in AIDS progression. Here we show that in human lymphoid tissue ex vivo, HHV-6 affects HIV-1 infection in a coreceptor-dependent manner, suppressing CCR5-tropic but not CXCR4-tropic HIV-1 replication, as shown with both uncloned viral isolates and isogenic molecular chimeras. Furthermore, we demonstrate that HHV-6 increases the production of the CCR5 ligand RANTES ('regulated upon activation, normal T-cell expressed and secreted'), the most potent HIV-inhibitory CC chemokine, and that exogenous RANTES mimics the effects of HHV-6 on HIV-1, providing a mechanism for the selective blockade of CCR5-tropic HIV-1. Our data suggest that HHV-6 may profoundly influence the course of HIV-1 infection.  相似文献   

14.
Activation of CXCR2 IL-8 receptor leads to activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and rapid receptor endocytosis. Co-immunoprecipitation and co-localization experiments showed that arrestin and CXCR2 form complexes with components of the ERK1/2 cascade following ligand stimulation. However, in contrast to the activation of the beta2-adrenergic receptor, arrestin was not necessary for ERK1/2 phosphorylation or receptor endocytosis. In contrast, beta-arrestin 1/2 double knockout cells showed greatly enhanced phosphorylation of ERK1/2, as well as phosphorylation of the stress kinases p38 and c-Jun N-terminal protein kinase. The stimulation of stress kinases in arrestin double knockout cells could be attenuated in the presence of diphenylene iodonium (DPI), an inhibitor of the NADPH oxidase, suggesting that reactive oxidant species (ROS) participated in mitogen-activated protein kinase (MAPK) activation. ROS could indeed be detected in IL-8-stimulated beta-arrestin 1/2 knockout cells, and cytoplasmic Rac was translocated to the membrane fraction, which is a prerequisite for oxidant formation. The oxidative burst induced cell death within 6 h of IL-8 stimulation of these cells, which could be prevented in the presence of DPI. These results indicate a novel function for arrestin, which is protection from an excessive oxidative burst, resulting from the sustained stimulation of G-protein-coupled receptors that cause Rac translocation.  相似文献   

15.
The identification of chemokine receptors as HIV-1 coreceptors has focused research on developing strategies to prevent HIV-1 infection. We generated CCR2-01, a CCR2 receptor-specific monoclonal antibody that neither competes with the chemokine CCL2 for binding nor triggers signaling, but nonetheless blocks replication of monotropic (R5) and T-tropic (X4) HIV-1 strains. This effect is explained by the ability of CCR2-01 to induce oligomerization of CCR2 with the CCR5 or CXCR4 viral coreceptors. HIV-1 infection through CCR5 and CXCR4 receptors can thus be prevented in the absence of steric hindrance or receptor downregulation by acting in trans on a receptor that is rarely used by the virus to infect cells.  相似文献   

16.
Chemokine receptors belong to a class of integral membrane G-protein coupled receptors (GPCRs) and are responsible for transmitting signals from the extracellular environment. However, the structural changes in the receptor, connecting ligand binding to G-protein activation, remain elusive for most GPCRs due to the difficulty to produce them for structural and functional studies. We here report high-level production in E.coli of 4 human GPCRs, namely chemokine receptors (hCRs) CCR5, CCR3, CXCR4 and CX3CR1 that are directly involved in HIV-1 infection, asthma and cancer metastasis. The synthetic genes of CCR5, CCR3, CXCR4 and CX3CR1 were synthesized using a two-step assembly/amplification PCR method and inserted into two different kinds of expression systems. After systematic screening of growth conditions and host strains, TB medium was selected for expression of pEXP-hCRs. The low copy number pBAD-DEST49 plasmid, with a moderately strong promoter tightly regulated by L-arabinose, proved helpful for reducing toxicity of expressed membrane proteins. The synthetic Trx-hCR fusion genes in the pBAD-DEST49 vector were expressed at high levels in the Top10 strain. After a systematic screen of 96 detergents, the zwitterionic detergents of the Fos-choline series (FC9-FC16) emerged as the most effective for isolation of the hCRs. The FC14 was selected both for solubilization from bacterial lysates and for stabilization of the Trx-hCRs during purification. Thus, the FC-14 solubilized Trx-hCRs could be purified using size exclusion chromatography as monomers and dimers with the correct apparent MW and their alpha-helical content determined by circular dichroism. The identity of two of the expressed hCRs (CCR3 and CCR5) was confirmed using immunoblots using specific monoclonal antibodies. After optimization of expression systems and detergent-mediated purification procedures, we achieved large-scale, high-level production of 4 human GPCR chemokine receptor in a two-step purification, yielding milligram quantities of CCR5, CCR3, CXCR4 and CX3CR1 for biochemical, biophysical and structural analysis.  相似文献   

17.
Interaction of the human immunodeficiency virus (HIV-1) envelope glycoproteins with the CCR5 chemokine receptor, a G-protein-coupled receptor, triggers a membrane fusion process and virus entry. Cooperation for HIV-1 receptor activity was observed when two forms of CCR5 were coexpressed, either the wild-type (WT) receptor and a defective mutant with deletion of the amino-terminal (NT) extracellular domain or the latter deltaNT mutant and a human-mouse CCR5 chimera bearing the NT domain from human CCR5. Cooperation was most efficient when the two forms of CCR5 were in a 1:1 ratio. It was not observed between the CCR5 deltaNT mutant and a chimeric receptor (5444) in which the NT domain of CCR5 was in the context of another G-protein-coupled receptor, the HIV-1 receptor CXCR4. These results suggested that physical association between two forms of CCR5 was required for their cooperation. Coimmunoprecipitation experiments in transfected cell lysates indeed showed that the deltaNT CCR5 mutant formed oligomeric complexes with the WT CCR5 or the HMMM chimera but not with the CXCR4-derived chimera 5444. These observations suggest that the formation of CCR5 oligomers is a constitutive process independent from activation by chemokine ligands. The interaction of HIV-1 with independent subunits of CCR5 oligomers could favor the local recruitment of fusiogenic proteins and the formation of a fusion pore.  相似文献   

18.
The G protein-coupled receptor CXCR4 is a coreceptor, along with CD4, for the human immunodeficiency virus type 1 (HIV-1) and has been implicated in breast cancer metastasis. We studied the binding of the HIV-1 gp120 envelope glycoprotein (gp) to CXCR4 but found that the gp120s from CXCR4-using HIV-1 strains bound nonspecifically to several cell lines lacking human CXCR4 expression. Therefore, we constructed paramagnetic proteoliposomes (CXCR4-PMPLs) containing pure, native CXCR4. CXCR4-PMPLs specifically bound the natural ligand, SDF-1alpha, and the gp120s from CXCR4-using HIV-1 strains. Conformation-dependent anti-CXCR4 antibodies and the CXCR4 antagonist AMD3100 blocked HIV-1 gp120 binding to CXCR4-PMPLs. The gp120-CXCR4 interaction was blocked by anti-gp120 antibodies directed against the third variable (V3) loop and CD4-induced epitopes, structures that have also been implicated in the binding of gp120 to the other HIV-1 coreceptor, CCR5. Compared with the binding of R5 HIV-1 gp120s to CCR5, the gp120-CXCR4 interaction exhibited a lower affinity (K(d) = 200 nm) and was dependent upon prior CD4 binding, even at low temperature. Thus, although similar regions of X4 and R5 HIV-1 gp120s appear to be involved in binding CXCR4 and CCR5, respectively, differences exist in nonspecific binding to cell surfaces, affinity for the chemokine receptor, and CD4 dependence at low temperature.  相似文献   

19.
Neutrophil plays an essential role in host defense against infection, but uncontrolled neutrophilic infiltration can cause inflammation and severe epithelial damage. We recently showed that CXCR2 formed a signaling complex with NHERF1 and PLC-2, and that the formation of this complex was required for intracellular calcium mobilization and neutrophilic transepithelial migration. To uncover the structural basis of the complex formation, we report here the crystal structure of the NHERF1 PDZ1 domain in complex with the C-terminal sequence of CXCR2 at 1.16 Å resolution. The structure reveals that the CXCR2 peptide binds to PDZ1 in an extended conformation with the last four residues making specific side chain interactions. Remarkably, comparison of the structure to previously studied PDZ1 domains has allowed the identification of PDZ1 ligand-specific interactions and the mechanisms that govern PDZ1 target selection diversities. In addition, we show that CXCR2 can bind both NHERF1 PDZ1 and PDZ2 in pulldown experiments, consistent with the observation that the peptide binding pockets of these two PDZ domains are highly structurally conserved. The results of this study therefore provide structural basis for the CXCR2-mediated neutrophilic migration and could have important clinical applications in the prevention and treatment of numerous neutrophil-dependent inflammatory disorders.  相似文献   

20.
Antigenically distinct conformations of CXCR4   总被引:1,自引:0,他引:1       下载免费PDF全文
The major human immunodeficiency virus type 1 (HIV-1) coreceptors are the chemokine receptors CCR5 and CXCR4. The patterns of expression of the major coreceptors and their use by HIV-1 strains largely explain viral tropism at the level of entry. However, while virus infection is dependent upon the presence of CD4 and an appropriate coreceptor, it can be influenced by a number of factors, including receptor concentration, affinity between envelope gp120 and receptors, and potentially receptor conformation. Indeed, seven-transmembrane domain receptors, such as CCR5, can exhibit conformational heterogeneity, although the significance for virus infection is uncertain. Using a panel of monoclonal antibodies (MAbs) to CXCR4, we found that CXCR4 on both primary and transformed T cells as well as on primary B cells exhibited considerable conformational heterogeneity. The conformational heterogeneity of CXCR4 explains the cell-type-dependent ability of CXCR4 antibodies to block chemotaxis to stromal cell-derived factor 1 alpha and to inhibit HIV-1 infection. In addition, the MAb most commonly used to study CXCR4 expression, 12G5, recognizes only a subpopulation of CXCR4 molecules on all primary cell types analyzed. As a result, CXCR4 concentrations on these important cell types have been underestimated to date. Finally, while the factors responsible for altering CXCR4 conformation are not known, we found that they do not involve CXCR4 glycosylation, sulfation of the N-terminal domain of CXCR4, or pertussis toxin-sensitive G-protein coupling. The fact that this important HIV-1 coreceptor exists in multiple conformations could have implications for viral entry and for the development of receptor antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号