首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Linker for activation of T cells (LAT) is a membrane-associated adaptor protein that is phosphorylated on multiple tyrosines upon TCR cross-linking. Previous studies show that LAT is essential for TCR-mediated signaling and thymocyte development. In this study, we expressed a series of LAT Tyr to Phe mutants in LAT-deficient J.CaM2.5 cells and examined their tyrosine phosphorylation; association with Grb2, Gads, and phospholipase C (PLC)-gamma1; and function in T cell activation. Our results showed that the five membrane-distal tyrosines were phosphorylated upon T cell activation. Grb2, Gads, and PLC-gamma1 associated with LAT preferentially via different sets of tyrosine residues; however, they failed to interact with LAT mutants containing only one tyrosine. We also determined the minimal requirement of LAT tyrosine residues in T cell activation and thymocyte development. Our results showed that a minimum of three tyrosines is required for LAT to function in T cell activation and thymocyte development. LAT mutants that were capable of binding Grb2 and PLC-gamma1 could reconstitute T cell activation in LAT-deficient cells and thymocyte development in LAT-deficient mice.  相似文献   

2.
It has been proposed that upon T cell activation, linker for activation of T cells (LAT), a transmembrane adaptor protein localized to lipid rafts, orchestrates formation of multiprotein complexes and activates signaling cascades in lipid rafts. However, whether lipid rafts really exist or function remains controversial. To address the importance of lipid rafts in LAT function, we generated a fusion protein to target LAT to nonraft fractions using the transmembrane domain from a nonraft protein, linker for activation of X cells (LAX). Surprisingly, this fusion protein functioned well in TCR signaling. It restored MAPK activation, calcium flux, and NFAT activation in LAT-deficient cells. To further study the function of this fusion protein in vivo, we generated transgenic mice that express this protein. Analysis of these mice indicated that it was fully capable of replacing LAT in thymocyte development and T cell function. Our results demonstrate that LAT localization to lipid rafts is not essential during normal T cell activation and development.  相似文献   

3.
Linker for activation of T cells (LAT) is a transmembrane adaptor protein that is essential to bridge T cell receptor (TCR) engagement to downstream signaling events. The indispensable role of LAT in thymocyte development and T cell activation has been well characterized; however, the function of LAT in cytotoxic-T-lymphocyte (CTL) cytotoxicity remains unknown. We show here that LAT-deficient CTLs failed to upregulate FasL and produce gamma interferon after engagement with target cells and had impaired granule-mediated killing. We further dissected the effect of the LAT deletion on each step of granule exocytosis. LAT deficiency led to altered synapse formation, subsequently causing unstable T cell-antigen-presenting cell (APC) conjugates. Microtubule organizing center polarization and granule reorientation were also impaired by LAT deficiency, leading to reduced granule delivery. Despite these defects, granule release was still observed in LAT-deficient CTLs due to residual calcium flux and phospholipase C (PLC) activity. Our data demonstrated that LAT-mediated signaling intricately regulates CTL cytotoxicity at multiple steps.  相似文献   

4.
NTAL (non-T cell activation linker)/LAB (linker for activation of B cells) is a LAT (linker for activation of T cells)-like molecule that is expressed in B cells, mast cells, natural killer cells, and monocytes. Upon engagement of the B cell receptor or Fc receptors, it is phosphorylated and interacts with Grb2. LAB is capable of rescuing thymocyte development in LAT(-/-) mice. In this study, we utilized various LAB Tyr to Phe mutants to map the phosphorylation and Grb2-binding sites of LAB. We also examined the function of these mutants by investigating their ability to rescue signaling defects in LAT-deficient Jurkat cells and thymocyte development in LAT(-/-) mice. Our results indicated that human LAB was primarily phosphorylated on three membrane-distal tyrosines, Tyr(136), Tyr(193), and Tyr(233). Mutation of these three tyrosines abolished Grb2 binding and LAB function. Our data suggested that these tyrosines are the most important tyrosines for LAB function.  相似文献   

5.
Cao Y  Li H  Liu H  Zhang M  Hua Z  Ji H  Liu X 《The EMBO journal》2011,30(10):2083-2093
The serine/threonine kinase LKB1 is a tumour suppressor that regulates cell growth, polarity, and proliferation in many different cell types. We previously demonstrated that LKB1 controls thymocyte survival via regulation of AMPK activation. In this study, we show that LKB1 was also involved in thymocyte positive selection through regulation of T cell receptor (TCR) signalling. Both Lck-Cre- and CD4-Cre-mediated deletion of LKB1 impaired the generation of mature CD4 and CD8 single positive (SP) thymocytes that might have resulted from the attenuated tyrosine phosphorylation of phospholipase C-γ 1 (PLCγ1) in the absence of LKB1. We found that LKB1 was directly phosphorylated by Lck at tyrosine residues 36, 261, and 365 and predominately interacted with LAT and PLCγ1 following TCR stimulation. Loss of LKB1 led to impaired recruitment of PLCγ1 to the LAT signalosome. Correlatively, LKB1-deficient thymocytes failed to upregulate lineage-specifying factors, and to differentiate into SP thymocytes even if their impaired survival was rescued. These observations indicated that LKB1 is a critical component involved in TCR signalling, and our studies provide novel insights into the mechanisms of LKB1-mediated thymocyte development.  相似文献   

6.
7.
The linker for activation of T cells (LAT) is a critical adaptor molecule required for T cell antigen receptor (TCR)-mediated signaling and thymocyte development. Upon T cell activation, LAT becomes highly phosphorylated on tyrosine residues, and Grb2, Gads, and phospholipase C (PLC)-gamma1 bind LAT via Src homology-2 domains. In LAT-deficient mutant Jurkat cells, TCR engagement fails to induce ERK activation, Ca(2+) flux, and activation of AP-1 and NF-AT. We mapped the tyrosine residues in LAT responsible for interaction with these specific signaling molecules by expressing LAT mutants with tyrosine to phenylalanine mutations in LAT-deficient cells. Our results showed that three distal tyrosines, Tyr(171), Tyr(191), and Tyr(226), are responsible for Grb2-binding; Tyr(171), and Tyr(191), but not Tyr(226), are necessary for Gads binding. Mutation of Tyr(132) alone abolished PLC-gamma1 binding. Mutation of all three distal tyrosines also abolished PLC-gamma1 binding, suggesting there might be multiple binding sites for PLC-gamma1. Mutation of Tyr(132) affected calcium flux and blocked Erk and NF-AT activation. Since Grb2 binding is not affected by this mutation, these results strongly suggest that PLC-gamma activation regulates Ras activation in these cells. Mutation of individual Grb2 binding sites had no functional effect, but mutation of two or three of these sites, in combination, also affected Erk and NF-AT activation.  相似文献   

8.
In young mice, memory CD4 T lymphocytes with high P-glycoprotein activity (P-gp(high)) are unresponsive to TCR stimulation in vitro but can be activated by PMA plus ionomycin. The proportion of these hyporesponsive cells increases considerably with age. The earliest events in T cell activation were studied in P-gp(high) and P-gp(low) CD4 memory cells at the single-cell level using confocal immunofluorescence methods. Recruitment of both linker for activation of T cells (LAT) and protein kinase C-theta to the immunological synapse, i.e., the site of T cell interaction with stimulator cells, was greatly impaired in P-gp(high) cells from both young and old mice. Translocation of NF-AT to the nucleus, CD69 expression, and proliferative capacity were also diminished to a similar extent in P-gp(high) cells under the same activation conditions. In contrast, movement of c-Cbl to the synapse region occurred in a high proportion of CD4 memory T cells regardless of P-gp subset or age. Moreover, although P-gp(low) cells frequently recruited both c-Cbl and LAT to the APC synapse, cells in the less responsive P-gp(high) subset frequently relocated c-Cbl, but not LAT, to the interface region. In some systems, c-Cbl can act as a negative regulator of receptor-dependent tyrosine kinases, and alterations of c-Cbl to LAT ratios in the P-gp(high) subset may thus contribute to the hyporesponsiveness of this age-dependent, anergic memory cell population.  相似文献   

9.
Recent studies have demonstrated a requirement for the SLP-76 (SH2 domain-containing leukocyte protein of 76 kDa) and LAT (linker for activation of T cells) adaptor/linker proteins in T cell antigen receptor activation and T cell development as well as the BLNK (B cell linker) linker protein in B cell antigen receptor (BCR) signal transduction and B cell development. Whereas the SLP-76 and LAT adaptor proteins are expressed in T, natural killer, and myeloid cells and platelets, BLNK is preferentially expressed in B cells and monocytes. Although BLNK is structurally homologous to SLP-76, BLNK interacts with a variety of downstream signaling proteins that interact directly with both SLP-76 and LAT. Here, we demonstrate that neither SLP-76 nor LAT alone is sufficient to restore the signaling deficits observed in BLNK-deficient B cells. Conversely, the coexpression of SLP-76 and LAT together restored BCR-inducible calcium responses as well as activation of all three families of mitogen-activated protein kinases. Together, these data suggest functional complementation of SLP-76 and LAT in T cell antigen receptor function with BLNK in BCR function.  相似文献   

10.
T cell activation engages multiple intracellular signaling cascades, including the ERK1/2 (p44/p42) pathway. It has been suggested that ERKs integrate TCR signal strength, and are important for thymocyte development and positive selection. However, the requirement of ERKs for the effector functions of peripheral mature T cells and, specifically, for T cell-mediated autoimmunity has not been established. Moreover, the specific requirements for ERK1 vs ERK2 in T cells have not been resolved. Therefore, we investigated the role of ERK1 in T cell immunity to foreign and self Ags and in the induction of experimental autoimmune encephalomyelitis. The results show that in ERK1-deficient (ERK1-/-) mice, the priming, proliferation, and cytokine secretion of T cells to the self Ag myelin oligodendrocyte glycoprotein peptide 35-55 and to the prototypic foreign Ag OVA are not impaired as compared with wild-type mice. Furthermore, ERK1-/- mice are highly susceptible to experimental autoimmune encephalomyelitis induced with myelin oligodendrocyte glycoprotein peptide 35-55. Finally, thymocyte development and mitogen-induced proliferation were not impaired in ERK1-/- mice on the inbred 129 Sv and C57BL/6 backgrounds. Collectively, the data show that ERK1 is not critical for the function of peripheral T cells in the response to self and foreign Ags and in T cell-mediated autoimmunity, and suggest that its loss can be compensated by ERK2.  相似文献   

11.
Integrin regulation by RhoA in thymocytes   总被引:4,自引:0,他引:4  
The guanine nucleotide-binding protein Rho has essential functions in T cell development and is important for the survival and proliferation of T cell progenitors in the thymus. To explore the mechanisms used by RhoA to control thymocyte biology, the role of this GTPase in the regulation of integrin-mediated cell adhesion was examined. The data show that RhoA activation is sufficient to stimulate beta(1) and beta(2) integrin-mediated adhesion in murine thymocytes. RhoA is also needed for integrin activation in vivo as loss of Rho function impaired the ability of thymocytes to adhere to the extracellular matrix protein VCAM-1 and prevented integrin activation induced by the GTPases Rac-1 and Rap1A in vivo. The regulated activity of integrins is needed for cell motility and in the present study it was seen that RhoA activity is critical for integrin-mediated thymocyte migration to chemokines in vitro. Thus, RhoA has a critical role in regulating cell adhesion and migration during T cell development.  相似文献   

12.
We studied whether CD8 T cell responses that are mediated by unconventional MHC class Ib molecules are IL-15 dependent in mice. CD8(+) T cell responses to Listeria monocytogenes infection that are restricted by the MHC class Ib molecule H2-M3 decreased in the absence of IL-15, whereas other primary MHC class Ib- and MHC class Ia-restricted responses were IL-15 independent. This result was confirmed in MHC class Ia-deficient mice in which IL-15 deficiency also reduced H2-M3-restricted but not all CD8 T cell responses to L. monocytogenes. IL-15 deficiency did not affect proliferation or survival of responding H2-M3-restricted CD8(+) T cells, but IL-15 was necessary to detect H2-M3-restricted CD8(+) T cells in naive mice. This finding suggests that these CD8(+) T cells require IL-15 during development, but become IL-15 independent after activation. IL-15 was necessary for the survival of most class Ib-restricted CD8(+) T cells, starting at the mature thymocyte stage in naive mice, but does not affect a distinct CD44(low)/CD122(low) subpopulation. These data suggest that the nature of the selecting MHC class Ib molecule determines whether CD8(+) T cells acquire IL-15 dependence during thymic development.  相似文献   

13.
Thymocyte development is shaped by signals from the T-cell antigen receptor. The strength of receptor signaling determines developmental progression as well as deletion of self-reactive T cells. Receptor stimulation of the extracellular signal-regulated kinase (ERK) pathway plays an important regulatory role during thymocyte development. However, it is unclear how differences in receptor signaling are translated into distinctive activation of the ERK pathway. We have investigated the potential role of the Lck tyrosine kinase in regulating intracellular signaling during thymocyte development. While Lck is known to be critical for initial T-cell receptor signaling events, it may have an independent role in regulating intracellular signaling through the function of its SH3 domain. To determine whether such a regulatory mechanism functions during thymocyte development, we generated mice in which the normal lck allele is replaced with an lck SH3 domain mutant. Analysis of these mice revealed that both early thymocyte development and maturation of CD4(+) and CD8(+) lineages is impaired. Investigation of thymocyte responses to antigen receptor stimulation showed a significant reduction in proliferation and ERK pathway activation, although initial signaling events were intact. These findings indicate that Lck SH3 domain function may provide a means to independently couple receptor signaling to regulation of the ERK pathway during thymocyte development.  相似文献   

14.
The membrane-associated adaptor protein LAX is a linker for activation of T cells (LAT)-like molecule that is expressed in lymphoid tissues. Upon stimulation of T or B cells, it is phosphorylated and interacts with Grb2 and the p85 subunit of PI3K. LAX, however, is not capable of replacing LAT in the TCR signaling pathway. In this study we report that upon T or B cell activation, the LAX protein was up-regulated dramatically. Although disruption of the LAX gene by homologous recombination had no major impact on lymphocyte development, it caused a significant reduction in CD23 expression on mature B cells. Interestingly, naive LAX(-/-) mice had spontaneous germinal center formation. Compared with normal T and B cells, LAX(-/-) T and B cells were hyperresponsive and had enhanced calcium flux, protein tyrosine phosphorylation, MAPK and Akt activation, and cell survival upon engagement of the T or B AgRs. Our data demonstrate that LAX functions as a negative regulator in lymphocyte signaling.  相似文献   

15.
T cell activation leads to engagement of cellular metabolic pathways necessary to support cell proliferation and function. However, our understanding of the signal transduction pathways that regulate metabolism and their impact on T cell function remains limited. The liver kinase B1 (LKB1) is a serine/threonine kinase that links cellular metabolism with cell growth and proliferation. In this study, we demonstrate that LKB1 is a critical regulator of T cell development, viability, activation, and metabolism. T cell-specific ablation of the gene that encodes LKB1 resulted in blocked thymocyte development and a reduction in peripheral T cells. LKB1-deficient T cells exhibited defects in cell proliferation and viability and altered glycolytic and lipid metabolism. Interestingly, loss of LKB1 promoted increased T cell activation and inflammatory cytokine production by both CD4(+) and CD8(+) T cells. Activation of the AMP-activated protein kinase (AMPK) was decreased in LKB1-deficient T cells. AMPK was found to mediate a subset of LKB1 functions in T lymphocytes, as mice lacking the α1 subunit of AMPK displayed similar defects in T cell activation, metabolism, and inflammatory cytokine production, but normal T cell development and peripheral T cell homeostasis. LKB1- and AMPKα1-deficient T cells each displayed elevated mammalian target of rapamycin complex 1 signaling and IFN-γ production that could be reversed by rapamycin treatment. Our data highlight a central role for LKB1 in T cell activation, viability, and metabolism and suggest that LKB1-AMPK signaling negatively regulates T cell effector function through regulation of mammalian target of rapamycin activity.  相似文献   

16.
The linker for activation of T cells (LAT) and the non-T cell activation linker (NTAL) are two transmembrane adapters which organize IgE receptor (FcepsilonRI) signaling complexes in mast cells. LAT positively regulates, whereas NTAL negatively regulates mast cell activation. We previously found that the four distal tyrosines of LAT can generate negative signals. We show here that two of these tyrosines provide two binding sites for SHIP1, that LAT recruits SHIP1 in vivo, and that SHIP1 recruitment is enhanced in NTAL-deficient cells. We show that NTAL negatively regulates mast cell activation by decreasing the recruitment, by LAT, of molecules involved in FcepsilonRI-dependent positive signaling. We show that NTAL also decreases the recruitment of SHIP1 by LAT, leading to an increased phosphorylation of the antiapoptotic molecule Akt, and positively regulates mast cell survival. We finally show that the positive effect of NTAL on Akt phosphorylation and mast cell survival requires LAT. Our data thus document the mechanisms by which LAT and NTAL can generate both positive and negative signals which differentially regulate mast cell activation and survival. They also provide molecular bases for the recruitment of SHIP1 in FcepsilonRI signaling complexes. SHIP1 is a major negative regulator of mast cell activation and, hence, of allergic reactions.  相似文献   

17.
Pua HH  He YW 《Autophagy》2007,3(3):266-267
First identified as a pathway for nutrient recovery during periods of starvation, the role of autophagy has expanded to the clearance of "toxic" intracellular material including ubiquitin-positive protein aggregates, damaged organelles as well as microbial pathogens in various cell types. We have examined the role of autophagy in the development and function of the adaptive immune system. Genes encoding autophagy machinery are expressed in T lymphocytes, and autophagy occurs in primary CD4+ and CD8+ T cells. By generating fetal liver chimeric mice, we found that thymocyte development is largely normal but the mature T cell compartment is severely reduced in the absence of the essential autophagy gene Atg5. Consistent with a critical role for autophagy in promoting T cell survival, Atg5-/- CD8+ T cells display high levels of apoptosis. Surprisingly, Atg5-deficient T cells were also unable to efficiently proliferate after T-cell receptor (TCR) stimulation. These findings suggest that autophagy regulates T lymphocyte homeostasis by promoting both survival and proliferation. In addition, T cells offer a new, physiologically relevant system to study the regulation and function of autophagy pathways in vivo.  相似文献   

18.
In the thymus, T cell development proceeds by successive steps of differentiation, expansion, and selection. Control of thymocyte proliferation is critical to insure the full function of the immune system and to prevent T cells from transformation. Deletion of the cell cycle inhibitor p16(INK4a) is frequently observed in human T cell neoplasias and, in mice, gene targeted inactivation of the Ink4a locus enhances thymocyte expansion and predisposes mutant animal to tumorigenesis. Here, we investigate the mechanism by which p16(Ink4a) controls thymocyte development by analyzing transgenic mice expressing the human p16(INK4a) into the T cell lineage. We show that forced expression of p16(INK4a) in thymocytes blocked T cell differentiation at the early CD4-CD8-CD3-CD25+ stage without significantly affecting the development of gammadelta T cells. Pre-TCR function was mimicked by the induction of CD3 signaling in thymocytes of recombinase activating gene (RAG)-2-deficient mice (RAG-2(-/-)). Upon anti-CD3epsilon treatment in vivo, p16(INK4a)-expressing RAG-2(-/-) thymocytes were not rescued from apoptosis, nor could they differentiate. Our data demonstrate that expression of p16(INK4a) prevents the pre-TCR-mediated expansion and/or survival of differentiating thymocytes.  相似文献   

19.
Adaptor proteins have important functions in coupling stimulation through immunoreceptors with downstream events. The adaptor linker for activation of B cells (LAB)/non-T cell activation linker (NTAL) is expressed in various immune cell types and has a similar domain structure as linker for activation of T cells (LAT). In this study we generated a LAB transgenic mouse to compare the functional differences between LAB and LAT. A LAB transgene expressed in LAT-deficient T cells was able to restore T cell development. However, these mice developed severe organomegaly with disorganized lymphoid tissues. Lymphocytes from these transgenic mice were hyperactivated, and T cells produced large amounts of type II cytokines. In addition, these activities appeared to be uncoupled from the TCR. An examination of the signaling capabilities of these T cells revealed that LAB resembled a LAT molecule unable to bind phospholipase C-gamma1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号