首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ubiquitination plays important and diverse roles in modulating protein functions. As a C2-WW-HECT-type ubiquitin ligase, Smad ubiquitination regulatory factor 1 (Smurf1) commonly serves to regulate ubiquitin-dependent protein degradation in a number of signaling pathways. Here, we report a novel function of Smurf1 in regulating Wnt/β-catenin signaling through targeting axin for nonproteolytic ubiquitination. Our data unambiguously demonstrate that Smurf1 ubiquitinates axin through Lys 29 (K29)-linked polyubiquitin chains. Unexpectedly, Smurf1-mediated axin ubiquitination does not lead to its degradation but instead disrupts its interaction with the Wnt coreceptors LRP5/6, which subsequently attenuates Wnt-stimulated LRP6 phosphorylation and represses Wnt/β-catenin signaling. The inhibitory function of Smurf1 on Wnt/β-catenin signaling is further evidenced by analysis with Smurf1 knockout murine embryonic fibroblasts. We next identified K789 and K821 in axin as the ubiquitination sites by Smurf1. Consistently, Smurf1 could neither disrupt the interaction of an axinK789/821R double mutant with LRP5/6 nor attenuate the phosphorylation of LRP6 in axinK789/821R-expressing cells. Collectively, our studies uncover Smurf1 as a new regulator for the Wnt/β-catenin signaling pathway via modulating the activity of axin.  相似文献   

2.
3.
Previously, Smad ubiquitination regulatory factor 1 (Smurf1)-mediated Lys29 (K29)-linked poly-ubiquitination of Axin has been identified as a novel regulatory process in Wnt/β-catenin signaling. In this work, we discovered that the C2 domain of Smurf1 is critical for targeting Axin for ubiquitination. We found that the C2 domain-mediated plasma membrane localization of Smurf1 is required for Axin ubiquitination, and interfering with that disturbs the co-localization of Smurf1 and Axin around the plasma membrane. Moreover, the C2 domain of Smurf1, rather than its WW domains, is involved in Smurf1''s interaction with Axin; and the putative PPXY motifs (PY motif) of Axin are not essential for such an interaction, indicating that Smurf1 binds to Axin in a non-canonical way independent of WW-PY interaction. Further, we found that Smurf1-Axin interaction and Axin ubiquitination are attenuated in the G2/M phase of cell cycle, contributing to an increased cell response to Wnt stimulation at that stage. Collectively, we uncovered a dual role of Smurf1 C2 domain, recruiting Smurf1 to membrane for accessing Axin and mediating its interaction with Axin, and that Smurf1-mediated Axin ubiquitination is subjected to the regulation of cell cycle.  相似文献   

4.
Wnt/β-catenin signaling plays critical roles in embryonic development and disease. Here, we identify RNF220, a RING domain E3 ubiquitin ligase, as a new regulator of β-catenin. RNF220 physically interacts with β-catenin, but instead of promoting its ubiquitination and proteasomal degradation, it stabilizes β-catenin and promotes canonical Wnt signaling. Our analysis showed that RNF220 interacts with USP7, a ubiquitin-specific peptidase, which is required for RNF220 to stabilize β-catenin. The RNF220/USP7 complex deubiquitinates β-catenin and enhances canonical Wnt signaling. Interestingly, the stability of RNF220 itself is negatively regulated by Gsk3β, which is a key component of the β-catenin destruction complex and is inhibited upon Wnt stimulation. Accordingly, the RNF220/USP7 complex works as a positive feedback regulator of β-catenin signaling. In colon cancer cells with stimulated Wnt signaling, knockdown of RNF220 or USP7 impairs Wnt signaling and expression of Wnt target genes, suggesting a potentially novel role of RNF220 in Wnt-related tumorigenesis.  相似文献   

5.
Wnt signaling plays a pivotal role in embryogenesis and tissue homeostasis. Dishevelled (Dvl) is a central mediator for both Wnt/β-catenin and Wnt/planar cell polarity pathways. NEDD4L, an E3 ubiquitin ligase, has been shown to regulate ion channel activity, cell signaling, and cell polarity. Here, we report a novel role of NEDD4L in the regulation of Wnt signaling. NEDD4L induces Dvl2 polyubiquitination and targets Dvl2 for proteasomal degradation. Interestingly, the NEDD4L-mediated ubiquitination of Dvl2 is Lys-6, Lys-27, and Lys-29 linked but not typical Lys-48-linked ubiquitination. Consistent with the role of Dvl in both Wnt/β-catenin and Wnt/planar cell polarity signaling, NEDD4L regulates the cellular β-catenin level and Rac1, RhoA, and JNK activities. We have further identified a hierarchical regulation that Wnt5a induces JNK-mediated phosphorylation of NEDD4L, which in turn promotes its ability to degrade Dvl2. Finally, we show that NEDD4L inhibits Dvl2-induced axis duplication in Xenopus embryos. Our work thus demonstrates that NEDD4L is a negative feedback regulator of Wnt signaling.  相似文献   

6.
7.
8.
9.
10.
In Wnt/β-catenin signaling, the β-catenin protein level is deliberately controlled by the assembly of the multiprotein β-catenin destruction complex composed of Axin, adenomatous polyposis coli (APC), glycogen synthase kinase 3β (GSK3β), casein kinase 1α (CK1α), and others. Here we provide compelling evidence that formation of the destruction complex is driven by protein liquid–liquid phase separation (LLPS) of Axin. An intrinsically disordered region in Axin plays an important role in driving its LLPS. Phase-separated Axin provides a scaffold for recruiting GSK3β, CK1α, and β-catenin. APC also undergoes LLPS in vitro and enhances the size and dynamics of Axin phase droplets. The LLPS-driven assembly of the destruction complex facilitates β-catenin phosphorylation by GSK3β and is critical for the regulation of β-catenin protein stability and thus Wnt/β-catenin signaling.  相似文献   

11.
Wnt signaling pathways are tightly regulated by ubiquitination, and dysregulation of these pathways promotes tumorigenesis. It has been reported that the ubiquitin ligase RNF43 plays an important role in frizzled-dependent regulation of the Wnt/β-catenin pathway. Here, we show that RNF43 suppresses both Wnt/β-catenin signaling and noncanonical Wnt signaling by distinct mechanisms. The suppression of Wnt/β-catenin signaling requires interaction between the extracellular protease-associated (PA) domain and the cysteine-rich domain (CRD) of frizzled and the intracellular RING finger domain of RNF43. In contrast, these N-terminal domains of RNF43 are not required for inhibition of noncanonical Wnt signaling, but interaction between the C-terminal cytoplasmic region of RNF43 and the PDZ domain of dishevelled is essential for this suppression. We further show the mechanism by which missense mutations in the extracellular portion of RNF43 identified in patients with tumors activate Wnt/β-catenin signaling. Missense mutations of RNF43 change their localization from the endosome to the endoplasmic reticulum (ER), resulting in the failure of frizzled-dependent suppression of Wnt/β-catenin signaling. However, these mutants retain the ability to suppress noncanonical Wnt signaling, probably due to interaction with dishevelled. RNF43 is also one of the potential target genes of Wnt/β-catenin signaling. Our results reveal the molecular role of RNF43 and provide an insight into tumorigenesis.  相似文献   

12.
Tribbles homolog 2 (TRIB2) is critical for both solid and non-solid malignancies. Recently, TRIB2 was identified as a liver cancer-specific Wnt/β-catenin signaling downstream target and is functionally important for liver cancer cell survival and transformation. TRIB2 functions as a protein that interacts with E3 ubiquitin ligases and thereby modulates protein stability of downstream effectors. However, the regulation underlying TRIB2 protein stability per se has not yet been reported. In this study, we found that TRIB2 was up-regulated and exhibited high stability in liver cancer cells compared with other cells. We performed a structure-function analysis of TRIB2 and identified a domain (amino acids 1–5) at the N terminus that interacted with the E3 ubiquitin ligase Smurf1 and was critical for protein stability. Deletion of this domain extended TRIB2 half-life time accompanied with a more significant malignant property compared with wild type TRIB2. Furthermore, Smurf1-mediated ubiquitination required phosphorylation of TRIB2 by p70 S6 kinase (p70S6K) via another domain (amino acids 69–85) that is also essential for correct TRIB2 subcellular localization. Mutation of Ser-83 diminished p70S6K-induced phosphorylation of TRIB2. Moreover, the high stability of TRIB2 may be due to the fact that both p70S6K and Smurf1 were down-regulated and negatively correlated with TRIB2 expression in both liver cancer tissues and established liver cancer cell lines. Taken together, impaired phosphorylation and ubiquitination by p70S6K and Smurf1 increase the protein stability of TRIB2 in liver cancer and thus may be helpful in the development of diagnosis and treatment strategies against this malignant disease.  相似文献   

13.
Wnt signaling plays important roles in development and tumorigenesis. A central question about the Wnt pathway is the regulation of β-catenin. Phosphorylation of β-catenin by CK1α and GSK3 promotes β-catenin binding to β-TrCP, leading to β-catenin degradation through the proteasome. The phosphorylation and ubiquitination of β-catenin have been well characterized; however, it is unknown whether and how a deubiquitinase is involved. In this study, by screening RNA interference (RNAi) libraries, we identified USP47 as a deubiquitinase that prevents β-catenin ubiquitination. Inactivation of USP47 by RNAi increased β-catenin ubiquitination, attenuated Wnt signaling, and repressed cancer cell growth. Furthermore, USP47 deubiquitinates itself, whereas β-TrCP promotes USP47 ubiquitination through interaction with an atypical motif in USP47. Finally, in vivo studies in the Drosophila wing suggest that UBP64E, the USP47 counterpart in Drosophila, is required for Armadillo stabilization and plays a positive role in regulating Wnt target gene expression.  相似文献   

14.
Using a yeast two-hybrid method, we identified a novel protein which interacts with glycogen synthase kinase 3β (GSK-3β). This protein had 44% amino acid identity with Axin, a negative regulator of the Wnt signaling pathway.We designated this protein Axil for Axin like. Like Axin, Axil ventralized Xenopus embryos and inhibited Xwnt8-induced Xenopus axis duplication. Axil was phosphorylated by GSK-3β. Axil bound not only to GSK-3β but also to β-catenin, and the GSK-3β-binding site of Axil was distinct from the β-catenin-binding site. Furthermore, Axil enhanced GSK-3β-dependent phosphorylation of β-catenin. These results indicate that Axil negatively regulates the Wnt signaling pathway by mediating GSK-3β-dependent phosphorylation of β-catenin, thereby inhibiting axis formation.  相似文献   

15.
A pivotal step in canonical Wnt signaling is Wnt-induced β-catenin stabilization. In the absence of Wnt, β-catenin is targeted for β-transducin repeats-containing proteins (β-TrCP)-mediated degradation due to phosphorylation by glycogen synthase kinase 3 (Gsk3). How canonical Wnt signaling regulates Gsk3 to inhibit β-catenin proteolysis remains largely elusive. This study reveals novel key molecular events in Wnt signaling: induction of Gsk3β ubiquitination and Gsk3β-β-TrCP binding. We found that Wnt stimulation induced prolonged monoubiquitination of Gsk3β and Gsk3β-β-TrCP interaction. Monoubiquitination did not cause Gsk3β degradation nor affects its enzymatic activity. Rather, increased monoubiquitination of Gsk3β/Gsk3β-β-TrCP association suppressed β-catenin recruitment of β-TrCP, leading to long-term inhibition of β-catenin ubiquitination and degradation.  相似文献   

16.
Recent discoveries have unveiled the roles of a complicated network of E3 ubiquitin ligases in regulating cell migration machineries. The E3 ubiquitin ligases Smurf1 and Cul/BACURD ubiquitinate RhoA to regulate stress fiber formation and cell polarity, and ASB2α ubiquitinates filamins to modulate cytoskeletal stiffness, thus regulating cell spreading and cell migration. HACE1, XIAP, and Skp1-Cul1-F-box bind to Rac1 and cause its ubiquitination and degradation, thus suppressing lamellipodium protrusions, while PIAS3, a SUMO ligase, activates Rac1 to promote lamellipodium dynamics. Smurf1 also enhances Rac1 activation but it does not ubiquitinate Rac1. Both Smurf1 and HECTD1 regulate focal adhesion (FA) assembly and (or) disassembly through ubiquitinating the talin head domain and phosphatidylinositol 4 phosphate 5-kinase type I γ (PIPKIγ90), respectively. Thus, E3 ubiquitin ligases regulate stress fiber formation, cell polarity, lamellipodium protrusions, and FA dynamics through ubiquitinating the key proteins that control these processes.  相似文献   

17.
β-Catenin is a multifunctional protein with critical roles in cell–cell adhesion, Wnt signaling, and the centrosome cycle. Whereas the regulation of β-catenin in cell–cell adhesion and Wnt signaling are well understood, how β-catenin is regulated at the centrosome is not. NIMA-related protein kinase 2 (Nek2), which regulates centrosome disjunction/splitting, binds to and phosphorylates β-catenin. Using in vitro and cell-based assays, we show that Nek2 phosphorylates the same regulatory sites in the N-terminus of β-catenin as glycogen synthase kinase 3β (GSK3β), which are recognized by a specific phospho-S33/S37/T41 antibody, as well as additional sites. Nek2 binding to β-catenin appears to inhibit binding of the E3 ligase β-TrCP and prevents β-catenin ubiquitination and degradation. Thus β-catenin phosphorylated by Nek2 is stabilized and accumulates at centrosomes in mitosis. We further show that polo-like kinase 1 (Plk1) regulates Nek2 phosphorylation and stabilization of β-catenin. Taken together, these results identify a novel mechanism for regulating β-catenin stability that is independent of GSK3β and provide new insight into a pathway involving Plk1, Nek2, and β-catenin that regulates the centrosome cycle.  相似文献   

18.
19.
20.
Global knockout of the BK channel has been proven to affect bone formation; however, whether it directly affects osteoblast differentiation and the mechanism are elusive. In the current study, we further investigated the role of BK channels in bone development and explored whether BK channels impacted the differentiation and proliferation of osteoblasts via the canonical Wnt signaling pathway. Our findings demonstrated that knockout of Kcnma1 disrupted the osteogenesis of osteoblasts and inhibited the stabilization of β-catenin. Western blot analysis showed that the protein levels of Axin1 and USP7 increased when Kcnma1 was deficient. Together, this study confirmed that BK ablation decreased bone mass via the Wnt/β-catenin signaling pathway. Our findings also showed that USP7 might have the ability to stabilize the activity of Axin1, which would increase the degradation of β-catenin in osteoblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号