首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Malignant cells display increased demands for energy production and DNA repair. Nicotinamide adenine dinucleotide (NAD) is required for both processes and is also continuously degraded by cellular enzymes. Nicotinamide phosphoribosyltransferase (Nampt) is a crucial factor in the resynthesis of NAD, and thus in cancer cell survival. Here, we establish the cytotoxic mechanism of action of the small molecule inhibitor CHS-828 to result from impaired synthesis of NAD. Initially, we detected cross-resistance in cells between CHS-828 and a known inhibitor of Nampt, FK866, a compound of a structurally different class. We then showed that nicotinamide protects against CHS-828-mediated cytotoxicity. Finally, we observed that treatment with CHS-828 depletes cellular NAD levels in sensitive cancer cells. In conclusion, these results strongly suggest that, like FK866, CHS-828 kills cancer cells by depleting NAD.  相似文献   

2.
Nicotinamide phosphoribosyltransferase (Nampt) inhibitors such as FK866 are potent inhibitors of NAD+ synthesis that show promise for the treatment of different forms of cancer. Based on Nampt upregulation in activated T lymphocytes and on preliminary reports of lymphopenia in FK866 treated patients, we have investigated FK866 for its capacity to interfere with T lymphocyte function and survival. Intracellular pyridine nucleotides, ATP, mitochondrial function, viability, proliferation, activation markers and cytokine secretion were assessed in resting and in activated human T lymphocytes. In addition, we used experimental autoimmune encephalomyelitis (EAE) as a model of T-cell mediated autoimmune disease to assess FK866 efficacy in vivo. We show that activated, but not resting, T lymphocytes undergo massive NAD+ depletion upon FK866-mediated Nampt inhibition. As a consequence, impaired proliferation, reduced IFN-γ and TNF-α production, and finally autophagic cell demise result. We demonstrate that upregulation of the NAD+-degrading enzyme poly-(ADP-ribose)-polymerase (PARP) by activated T cells enhances their susceptibility to NAD+ depletion. In addition, we relate defective IFN-γ and TNF-α production in response to FK866 to impaired Sirt6 activity. Finally, we show that FK866 strikingly reduces the neurological damage and the clinical manifestations of EAE. In conclusion, Nampt inhibitors (and possibly Sirt6 inhibitors) could be used to modulate T cell-mediated immune responses and thereby be beneficial in immune-mediated disorders.  相似文献   

3.
ADP-Ribosylation of Highly Purified Rat Brain Mitochondria   总被引:1,自引:0,他引:1  
Highly purified synaptic and nonsynaptic mitochondria were prepared from rat brain, and their ADP-ribosyl transferase and NAD glycohydrolase activities were investigated. Data show that there is no significant difference in ADP-ribosyl transferase activity between these two types of subcellular preparations. However, NAD glycohydrolase activity appeared to be much higher in nonsynaptic mitochondria. The specific activity of both enzymes was investigated in the presence of the inhibitor nicotinamide or its analogue 3-aminobenzamide or other adenine nucleotides, such as ATP or ADP-ribose. The inhibitory effect of nicotinamide or 3-aminobenzamide on ADP-ribosyl transferase appears rather weak compared with their effect on NAD glycohydrolase activity. However, ADP-ribose and ATP appeared more effective in inhibiting ADP-ribosyl transferase. Our results provide evidence for the existence of ADP-ribosyl transferase activity in rat brain mitochondria. When NAD glycohydrolase was inhibited totally by nicotinamide, the transfer of ADP-ribose from NAD to mitochondrial proteins still occurred. The chain length determinations show that the linkage of ADP-ribose to mitochondrial proteins is oligomeric.  相似文献   

4.
A number of cancers show increased expression of Nicotinamide phosphoribosyl transferase (Nampt). However, the mechanism through which Nampt is upregulated is unclear. In our study, we found that the Nampt-specific chemical inhibitor FK866 significantly inhibited cell survival and reduced nicotinamide adenine dinucleotide (NAD) levels in LoVo and SW480 cell lines. Bioinformatics analyses suggested that miR-26b targets Nampt mRNA. We identified Nampt as a new target of miR-26b and demonstrated that miR-26b inhibits Nampt expression at the protein and mRNA levels by binding to the Nampt 3′-UTR. Moreover, we found that miR-26b was down regulated in cancer tissues relative to that in adjacent normal tissues in 18 colorectal cancer patients. A statistically significant inverse correlation between miR-26b and Nampt expression was observed in samples from colorectal cancer patients and in 5 colorectal cell lines (HT-29, SW480, SW1116, LoVo, and HCT116). In addition, over expression of miR-26b strongly inhibited LoVo cell survival and invasion, an effect partially abrogated by the addition of NAD. In conclusion, this study demonstrated that the NAD-salvaging biosynthesis pathway involving Nampt might play a role in colorectal cancer cell survival. MiR-26b may serve as a tumor suppressor by targeting Nampt.  相似文献   

5.
Nicotinamide phosphoribosyltransferase (NMPRTase) has a crucial role in the salvage pathway of NAD+ biosynthesis, and a potent inhibitor of NMPRTase, FK866, can reduce cellular NAD+ levels and induce apoptosis in tumors. We have determined the crystal structures at up to 2.1-A resolution of human and murine NMPRTase, alone and in complex with the reaction product nicotinamide mononucleotide or the inhibitor FK866. The structures suggest that Asp219 is a determinant of substrate specificity of NMPRTase, which is confirmed by our mutagenesis studies. FK866 is bound in a tunnel at the interface of the NMPRTase dimer, and mutations in this binding site can abolish the inhibition by FK866. Contrary to current knowledge, the structures show that FK866 should compete directly with the nicotinamide substrate. Our structural and biochemical studies provide a starting point for the development of new anticancer agents.  相似文献   

6.
Extension of human cell lifespan by nicotinamide phosphoribosyltransferase   总被引:1,自引:0,他引:1  
Extending the productive lifespan of human cells could have major implications for diseases of aging, such as atherosclerosis. We identified a relationship between aging of human vascular smooth muscle cells (SMCs) and nicotinamide phosphoribosyltransferase (Nampt/PBEF/Visfatin), the rate-limiting enzyme for NAD+ salvage from nicotinamide. Replicative senescence of SMCs was preceded by a marked decline in the expression and activity of Nampt. Furthermore, reducing Nampt activity with the antagonist FK866 induced premature senescence in SMCs, assessed by serial quantification of the proportion of cells with senescence-associated beta-galactosidase activity. In contrast, introducing the Nampt gene into aging human SMCs delayed senescence and substantially lengthened cell lifespan, together with enhanced resistance to oxidative stress. Nampt-mediated SMC lifespan extension was associated with increased activity of the NAD+-dependent longevity enzyme SIRT1 and was abrogated in Nampt-overexpressing cells transduced with a dominant-negative form of SIRT1 (H363Y). Nampt overexpression also reduced the fraction of p53 that was acetylated on lysine 382, a target of SIRT1, suppressed an age-related increase in p53 expression, and increased the rate of p53 degradation. Moreover, add-back of p53 with recombinant adenovirus blocked the anti-aging effects of Nampt. These data indicate that Nampt is a longevity protein that can add stress-resistant life to human SMCs by optimizing SIRT1-mediated p53 degradation.  相似文献   

7.
NAD is a multifunctional molecule involved in both metabolic processes and signaling pathways. Such signalling pathways consume NAD which is replenished via one of several biosynthesis pathways. We show that influx of NAD across the plasma membrane may be able to contribute to the homeostasis of intracellular NAD levels. Indeed, extracellular application of NAD was able to replete NAD levels that had been lowered pharmacologically using the novel drug FK866 and was also able to rescue cells from FK866-induced cell death. A marked lag between the drop in NAD levels and cell death prompted us to investigate the mechanism of cell death. We were unable to find evidence of apoptosis as assessed by immunoblotting for the Caspase 3 activation fragment and immunostaining for cytochrome C and AIF translocation. We, therefore, investigated whether autophagy was initiated by FK866. Indeed, we were able to observe the formation of LC3-positive vesicles that had fused with lysosomes in FK866-treated but not control cells. Furthermore, this autophagic phenotype could be reverted by the addition of NAD to the extracellular medium.  相似文献   

8.
We recently demonstrated that cancer cells that recover from damage exhibit increased aerobic glycolysis, however, the molecular mechanism by which cancer cells survive the damage and show increased aerobic glycolysis remains unknown. Here, we demonstrate that diverse cancer cells that survive hypoxic or oxidative damage show rapid cell proliferation, and develop tolerance to damage associated with increased production of hydrogen sulfide (H2S) which drives up-regulation of nicotinamide phosphoribosyltransferase (Nampt). Consistent with existence of a H2S-Nampt energetic circuit, in damage recovered cancer cells, H2S, Nampt and ATP production exhibit a significant correlation. Moreover, the treatment of cancer cells with H2S donor, NaHS, coordinately increases Nampt and ATP levels, and protects cells from drug induced damage. Inhibition of cystathionine beta synthase (CBS) or cystathionase (CTH), enzymes which drive generation of H2S, decreases Nampt production while suppression of Nampt pathway by FK866, decreases H2S and ATP levels. Damage recovered cells isolated from tumors grown subcutaneously in athymic mice also show increased production of H2S, Nampt and ATP levels, associated with increased glycolysis and rapid proliferation. Together, these data show that upon recovery from potential lethal damage, H2S-Nampt directs energy expenditure and aerobic glycolysis in cancer cells, leads to their exponential growth, and causes a high degree of tolerance to damage. Identification of H2S-Nampt as a pathway responsible for induction of damage tolerance in cancer cells may underlie resistance to therapy and offers the opportunity to target this pathway as a means in treatment of cancer.  相似文献   

9.
Nicotinamide adenine dinucleotide (NAD) plays a crucial role in many cellular processes. As the rate-limiting enzyme of the predominant NAD biosynthesis pathway in mammals, nicotinamide phosphoribosyltransferase (Nampt) regulates the cellular NAD level. Tumor cells are more sensitive to the NAD levels, making them more susceptible to Nampt inhibition than their nontumorigenic counterparts. Experimental evidence has indicated that Nampt might have proangiogenic activity and supports the growth of some tumors, so Nampt inhibitors may be promising as antitumor agents. However, only four Nampt inhibitors have been reported, and no high-throughput screening (HTS) strategy for Nampt has been proposed to date, largely limiting the drug discovery targeting Nampt. Therefore, the development of a robust HTS strategy for Nampt is both imperative and significant. Here we developed a fluorometric method for a Nampt activity assay by measuring the fluorescence of nicotinamide mononucleotide (NMN) derivative resulting from the enzymatic product NMN through simple chemical reactions. Then we set up an HTS system after thorough optimizations of this method and validated that it is feasible and effective through a pilot screening on a small library. This HTS system should expedite the discovery of Nampt inhibitors as antitumor drug candidates.  相似文献   

10.
Nicotinamide phosphoribosyl transferase (Nampt)/pre-B cell colony-enhancing factor (PBEF)/visfatin is a protein displaying multiple functional properties. Originally described as a cytokine-like protein able to regulate B cell development, apoptosis, and glucose metabolism, this protein also plays an important role in NAD biosynthesis. To gain insight into its physiological role, we have generated a mouse strain expressing a conditional Nampt allele. Lack of Nampt expression strongly affects development of both T and B lymphocytes. Analysis of hemizygous cells and in vitro cell lines expressing distinct levels of Nampt illustrates the critical role of this protein in regulating intracellular NAD levels. Consequently, a clear relationship was found between intracellular Nampt levels and cell death in response to the genotoxic agent MNNG (N-methyl-N'-nitro-N-nitrosoguanidine), confirming that this enzyme represents a key regulator of cell sensitivity to NAD-consuming stress secondary to poly(ADP-ribose) polymerases overactivation. By using mutant forms of this protein and a well-characterized pharmacological inhibitor (FK866), we unequivocally demonstrate that the ability of the Nampt to regulate cell viability during genotoxic stress requires its enzymatic activity. Collectively, these data demonstrate that Nampt participates in cellular resistance to genotoxic/oxidative stress, and it may confer to cells of the immune system the ability to survive during stressful situations such as inflammation.  相似文献   

11.
Recent studies have identified enzymes that use NAD as a substrate, thus contributing to its net consumption. To maintain the intracellular pool, NAD is re-synthesized by a salvage pathway using nicotinamide, the by-product generated by the enzymatic cleavage of NAD. Enzymes involved in NAD re-synthesis include nicotinamide phosphoribosyltransferase (NAMPT) and nicotinamide mononucleotide adenylyltransferase. Our studies show, that NAMPT was substantially up-regulated by LPS in primary human monocytes, suggesting that it may be especially required during the process of monocyte activation. To evaluate the contribution of the NAD rescue pathway to LPS-induced biological responses in human monocytes, we used APO866, a well-characterized inhibitor of NAMPT. Concomitant with the inhibition of NAMPT, LPS-induced TNF-α protein synthesis declined, while TNF-α mRNA levels were minimally affected. Moreover, APO866 strongly decreased the production of reactive oxygen species (ROS), increased surface expression of the NAD-consuming enzyme CD38, and modified the production of selective eicosanoids. We further demonstrate that protein ADP-ribosylation was strongly reduced, indicating a possible link between this post-translational protein modification and human monocyte inflammatory responses. Despite a substantial reduction in intracellular NAD levels, activated monocytes were resistant to apoptosis, while resting monocytes were not. Taken together, our data suggest that activated monocytes strongly depend on the NAD salvage pathway to mount an appropriate inflammatory response. Their survival is not affected by NAD-depletion, probably as a result of LPS-mediated anti-apoptotic signals.  相似文献   

12.
Massive poly(ADP-ribose) formation by poly(ADP-ribose) polymerase-1 (PARP-1) triggers NAD depletion and cell death. These events have been invariantly related to cellular energy failure due to ATP shortage. The latter occurs because of both ATP consumption for NAD resynthesis and impairment of mitochondrial ATP formation caused by an increase of the AMP/ADP ratio. ATP depletion is therefore thought to be an inevitable consequence of NAD loss and a hallmark of PARP-1 activation. Here, we challenge this scenario by showing that PARP-1 hyperactivation in cells cultured in the absence of glucose (Glu cells) is followed by NAD depletion and an unexpected PARP-1 activity-dependent ATP increase. We found increased ADP content in resting Glu cells, a condition that counteracts the increase of the AMP/ADP ratio during hyperpoly(ADP-ribosyl)ation and preserves mitochondrial coupling. We also show that the increase of ATP in Glu cells is due to adenylate kinase activity, transforming AMP into ADP which, in turn, is converted into ATP by coupled mitochondria. Interestingly, PARP-1-dependent mitochondrial release of apoptosis-inducing factor (AIF) and cytochrome complex (Cyt c) is reduced in Glu cells, even though cell death eventually occurs. Overall, the present study identifies basal ADP content and adenylate kinase as key determinants of bioenergetics during PARP-1 hyperactivation and unequivocally demonstrates that ATP loss is not metabolically related to NAD depletion.  相似文献   

13.
Macrophages play key roles in obesity-associated pathophysiology, including inflammation, atherosclerosis, and cancer, and processes that affect the survival-death balance of macrophages may have an important impact on obesity-related diseases. Adipocytes and other cells secrete a protein called extracellular nicotinamide phosphoribosyltransferase (eNampt; also known as pre-B cell colony enhancing factor or visfatin), and plasma levels of eNampt increase in obesity. Herein we tested the hypothesis that eNampt could promote cell survival in macrophages subjected to endoplasmic reticulum (ER) stress, a process associated with obesity and obesity-associated diseases. We show that eNampt potently blocks macrophage apoptosis induced by a number of ER stressors. The mechanism involves a two-step sequential process: rapid induction of interleukin 6 (IL-6) secretion, followed by IL-6-mediated autocrine/paracrine activation of the prosurvival signal transducer STAT3. The ability of eNampt to trigger this IL-6/STAT3 cell survival pathway did not depend on the presence of the Nampt enzymatic substrate nicotinamide in the medium, could not be mimicked by the Nampt enzymatic product nicotinamide mononucleotide (NMN), was not blocked by the Nampt enzyme inhibitor FK866, and showed no correlation with enzyme activity in a series of site-directed mutant Nampt proteins. Thus, eNampt protects macrophages from ER stress-induced apoptosis by activating an IL-6/STAT3 signaling pathway via a nonenzymatic mechanism. These data suggest a novel action and mechanism of eNampt that could affect the balance of macrophage survival and death in the setting of obesity, which in turn could play important roles in obesity-associated diseases.  相似文献   

14.
Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival   总被引:9,自引:0,他引:9  
A major cause of cell death caused by genotoxic stress is thought to be due to the depletion of NAD(+) from the nucleus and the cytoplasm. Here we show that NAD(+) levels in mitochondria remain at physiological levels following genotoxic stress and can maintain cell viability even when nuclear and cytoplasmic pools of NAD(+) are depleted. Rodents fasted for 48 hr show increased levels of the NAD(+) biosynthetic enzyme Nampt and a concomitant increase in mitochondrial NAD(+). Increased Nampt provides protection against cell death and requires an intact mitochondrial NAD(+) salvage pathway as well as the mitochondrial NAD(+)-dependent deacetylases SIRT3 and SIRT4. We discuss the relevance of these findings to understanding how nutrition modulates physiology and to the evolution of apoptosis.  相似文献   

15.
16.
Intracellular nicotinamide phosphoribosyltransferase (iNampt) is an essential enzyme in the NAD biosynthetic pathway. An extracellular form of this protein (eNampt) has been reported to act as a cytokine named PBEF or an insulin-mimetic hormone named visfatin, but its physiological relevance remains controversial. Here we show that eNampt does not exert insulin-mimetic effects in vitro or in vivo but rather exhibits robust NAD biosynthetic activity. Haplodeficiency and chemical inhibition of Nampt cause defects in NAD biosynthesis and glucose-stimulated insulin secretion in pancreatic islets in vivo and in vitro. These defects are corrected by administration of nicotinamide mononucleotide (NMN), a product of the Nampt reaction. A high concentration of NMN is present in mouse plasma, and plasma eNampt and NMN levels are reduced in Nampt heterozygous females. Our results demonstrate that Nampt-mediated systemic NAD biosynthesis is critical for beta cell function, suggesting a vital framework for the regulation of glucose homeostasis.  相似文献   

17.
A Masmoudi  P Mandel 《Biochemistry》1987,26(7):1965-1969
ADP-ribosyl transferase and NAD glycohydrolase activities have been estimated in mitochondria in mitoplasts as well as in other submitochondrial fractions. A high activity of these two enzymes was present in mitoplasts as compared to the outer membrane preparation or intermembrane compartment. Inhibitor studies provide strong evidence for the involvement of ADP-ribosyl transferase in the process of ADP-ribosylation of mitochondrial proteins. When NAD glycohydrolase was blocked by nicotinamide or 3-aminobenzamide, the incorporation of ADP-ribose into mitochondrial proteins still occurs. ADP-ribosyl transferase activity could also be detected when NAD glycohydrolase was separated by hydroxylapatite chromatography. The protein-linked ADP-ribose moiety appears to be an oligomer in mitochondria.  相似文献   

18.
Nicotinamide phosphoribosyltransferase (Nampt) synthesizes nicotinamide mononucleotide (NMN) from nicotinamide in a mammalian NAD+ biosynthetic pathway and is required for SirT1 activity in vivo. Nampt has also been presumed to be a cytokine (PBEF) or a hormone (visfatin). The crystal structure of Nampt in the presence and absence of NMN shows that Nampt is a dimeric type II phosphoribosyltransferase and provides insights into the enzymatic mechanism.  相似文献   

19.
To obtain further information on time course and mechanisms of cell death after poly(ADP-ribose) polymerase-1 (PARP-1) hyperactivation, we used HeLa cells exposed for 1 h to the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine. This treatment activated PARP-1 and caused a rapid drop of cellular NAD(H) and ATP contents, culminating 8-12 h later in cell death. PARP-1 antagonists fully prevented nucleotide depletion and death. Interestingly, in the early 60 min after challenge with N-methyl-N'-nitro-N-nitrosoguanidine, mitochondrial membrane potential and superoxide production significantly increased, whereas cellular ADP contents decreased. Again, these events were prevented by PARP-1 inhibitors, suggesting that PARP-1 hyperactivity leads to mitochondrial state 4 respiration. Mitochondrial membrane potential collapsed at later time points (3 h), when mitochondria released apoptosis-inducing factor and cytochrome c. Using immunocytochemistry and targeted luciferase transfection, we found that, despite an exclusive localization of PARP-1 and poly(ADP-ribose) in the nucleus, ATP levels first decreased in mitochondria and then in the cytoplasm of cells undergoing PARP-1 activation. PARP-1 inhibitors rescued ATP (but not NAD(H) levels) in cells undergoing hyper-poly(ADP-ribosyl)ation. Glycolysis played a central role in the energy recovery, whereas mitochondria consumed ATP in the early recovery phase and produced ATP in the late phase after PARP-1 inhibition, further indicating that nuclear poly(ADP-ribosyl)ation rapidly modulates mitochondrial functioning. Together, our data provide evidence for rapid nucleus-mitochondria cross-talk during hyper-poly(ADP-ribosyl)ation-dependent cell death.  相似文献   

20.
Di Martino C  Pallotta ML 《Planta》2011,234(4):657-670
Current studies in plants suggest that the content of the coenzyme NAD is variable and potentially important in determining cell fate. In cases that implicate NAD consumption, re-synthesis must occur to maintain dinucleotide pools. Despite information on the pathways involved in NAD synthesis in plants, the existence of a mitochondrial nicotinamide mononucleotide adenylyltransferase (NMNAT) activity which catalyses NAD synthesis from nicotinamide mononucleotide (NMN) and ATP has not been reported. To verify the latter assumed pathway, experiments with purified and bioenergetically active mitochondria prepared from tubers of Jerusalem artichoke (Helianthus tuberosus L.) were performed. To determine whether NAD biosynthesis might occur, NMN was added to Jerusalem artichoke mitochondria (JAM) and NAD biosynthesis was tested by means of HPLC and spectroscopically. Our results indicate that JAM contain a specific NMNAT inhibited by Na-pyrophosphate, AMP and ADP-ribose. The dependence of NAD synthesis rate on NMN concentration shows saturation kinetics with K m and V max values of 82 ± 1.05 μM and 4.20 ± 0.20 nmol min−1 mg−1 protein, respectively. The enzyme’s pH and temperature dependence were also investigated. Fractionation studies revealed that mitochondrial NMNAT activity was present in the soluble matrix fraction. The NAD pool needed constant replenishment that might be modulated by environmental inputs. Thus, the mitochondrion in heterotrophic plant tissues ensures NAD biosynthesis by NMNAT activity and helps to orchestrate NAD metabolic network in implementing the survival strategy of cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号