首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aerial visual field of aquatic animals living near the water surface is distorted by refraction. The imaging of aerial objects by one or two submerged eyes is studied. The aerial binocular image field is determined for pairs of submerged eyes in horizonal and vertical planes. These two image spaces have significantly different structures. Aquatic animals have to correct for refraction, adapting themselves to the former aerial image field in order to recognize aerial predators or to capture such prey. The other aerial image space is only of theoretical interest.  相似文献   

2.
Traditional models of insect vision have assumed that insects are only capable of low-level analysis of local cues and are incapable of global, holistic perception. However, recent studies on honeybee (Apis mellifera) vision have refuted this view by showing that this insect also processes complex visual information by using spatial configurations or relational rules. In the light of these findings, we asked whether bees prioritize global configurations or local cues by setting these two levels of image analysis in competition. We trained individual free-flying honeybees to discriminate hierarchical visual stimuli within a Y-maze and tested bees with novel stimuli in which local and/or global cues were manipulated. We demonstrate that even when local information is accessible, bees prefer global information, thus relying mainly on the object''s spatial configuration rather than on elemental, local information. This preference can be reversed if bees are pre-trained to discriminate isolated local cues. In this case, bees prefer the hierarchical stimuli with the local elements previously primed even if they build an incorrect global configuration. Pre-training with local cues induces a generic attentional bias towards any local elements as local information is prioritized in the test, even if the local cues used in the test are different from the pre-trained ones. Our results thus underline the plasticity of visual processing in insects and provide new insights for the comparative analysis of visual recognition in humans and animals.  相似文献   

3.
Blue Ducks Hymenolaimus malacorhynchos (Anatidae), an IUCN Red Listed Endangered species, reside in headwaters of New Zealand rivers and feed primarily on aquatic invertebrates. However, whether such food items are detected by tactile or visual cues is unknown. That Blue Ducks may use tactile cues when foraging is suggested by the presence of specialized flaps of thickened, keratinized epidermis containing Herbst's corpuscles along the ventral margins of the upper mandibles near the bill tip. Similar bill flaps are found only in one other duck species, Pink-eared Ducks Malacorhynchus membranaceus , that surface filter-feed on a range of planktonic organisms. Using an ophthalmoscopic reflex technique we determined the visual fields of both species. In Blue Ducks the eyes are frontally placed resulting in a relatively wide binocular field into which the narrow tapering bill intrudes. There is a large blind area to the rear of the head. This visual field topography is similar to that of other visually guided foragers including those that take mobile prey from the water column, e.g. penguins (Spheniscidae). By contrast, Pink-eared Duck visual fields show features found in other tactile feeding ducks: a narrow frontal binocular field with the bill falling at the periphery, and comprehensive visual coverage of the celestial hemisphere. We conclude that although Blue Ducks may take prey from rock surfaces they are primarily visual feeders of the water column and we suggest therefore that their foraging may be significantly disrupted by changes in water clarity. This introduces a previously unconsidered factor into the selection of sites for population enhancement or re-introductions, a current conservation focus.  相似文献   

4.
Momokawa N  Kadono Y  Kudoh H 《Annals of botany》2011,108(7):1299-1306

Background and Aims

For heterophyllous amphibious plants that experience fluctuating water levels, it is critical to control leaf development precisely in response to environmental cues that can serve as a quantitative index of water depth. Light quality can serve as such a cue because the ratio of red light relative to far-red light (R/FR) increases and blue-light intensity decreases with increasing water depth. Growth experiments were conducted to examine how R/FR and blue-light intensity alter leaf morphology of a heterophyllous amphibious plant, Rotala hippuris.

Methods

Using combinations of far red (730 nm), red (660 nm) and blue (470 nm) light-emitting diodes (LEDs), growth experiments were used to quantitatively evaluate the effects of the R/FR ratio and blue-light intensity on leaf morphology.

Key Results

Under the natural light regime in an outside growth garden, R. hippuris produced distinct leaves under submerged and aerial conditions. R/FR and blue-light intensity were found to markedly affect heterophyllous leaf formation. Higher and lower R/FR caused leaf characters more typical of submerged and aerial leaves, respectively, in both aerial and submerged conditions, in accordance with natural distribution of leaf types and light under water. High blue light caused a shift of trait values toward those of typical aerial leaves, and the response was most prominent under conditions of R/FR that were expected near the water surface.

Conclusions

R/FR and blue-light intensity provides quantitative cues for R. hippuris to detect water depth and determine the developmental fates of leaves, especially near the water surface. The utilization of these quantitative cues is expected to be important in habitats where plants experience water-level fluctuation.  相似文献   

5.
The underwater visual field distorted by refraction for aerial animals living near the water surface is investigated by means of geometric optics. The imaging of underwater objects by one and two aerial eyes is studied. The underwater binocular image field is determined for pairs of aerial eyes placed in horizontal and vertical planes. Some possible biooptical consequences of the visual detection of underwater prey and predator by aerial animals are discussed on the basis of the structure of their distorted visual field.  相似文献   

6.
When threatened, spitting cobras eject venom towards the face of an aggressor. To uncover the relevant cues used by cobras for face recognition we determined how often artificial targets equipped with or without eyes elicited spitting behavior. In addition, we measured whether and how target shape and size influenced the spitting behavior of cobras. Results show that oval- and round-shaped targets were most effective, while triangles with the same surface area as oval ‘face like’ targets hardly elicited spitting. The likelihood of spitting depended on neither the presence, the spatial arrangement (horizontal or vertical) nor the surface texture (shiny or matt) of glass eyes. Most likely, cobras do not specifically aim at the eyes of an offender but at the center of the body part closest to them. As this is usually the face of an animal, this strategy will result in at least one eye of the offender being hit most of the time.  相似文献   

7.
8.
Differentiating between individuals with different knowledge states is an important step in child development and has been considered as a hallmark in human evolution. Recently, primates and corvids have been reported to pass knower–guesser tasks, raising the possibility of mental attribution skills in non-human animals. Yet, it has been difficult to distinguish ‘mind-reading’ from behaviour-reading alternatives, specifically the use of behavioural cues and/or the application of associatively learned rules. Here, I show that ravens (Corvus corax) observing an experimenter hiding food are capable of predicting the behaviour of bystanders that had been visible at both, none or just one of two caching events. Manipulating the competitors'' visual field independently of the view of the test-subject resulted in an instant drop in performance, whereas controls for behavioural cues had no such effect. These findings indicate that ravens not only remember whom they have seen at caching but also take into account that the other''s view was blocked. Notably, it does not suffice for the birds to associate specific competitors with specific caches. These results support the idea that certain socio-ecological conditions may select for similar cognitive abilities in distantly related species and that some birds have evolved analogous precursors to a human theory-of-mind.  相似文献   

9.
Group foraging has been suggested as an important factor for the evolution of sociality. However, visual cues are predominantly used to gain information about group members'' foraging success in diurnally foraging animals such as birds, where group foraging has been studied most intensively. By contrast, nocturnal animals, such as bats, would have to rely on other cues or signals to coordinate foraging. We investigated the role of echolocation calls as inadvertently produced cues for social foraging in the insectivorous bat Noctilio albiventris. Females of this species live in small groups, forage over water bodies for swarming insects and have an extremely short daily activity period. We predicted and confirmed that (i) free-ranging bats are attracted by playbacks of echolocation calls produced during prey capture, and that (ii) bats of the same social unit forage together to benefit from passive information transfer via the change in group members'' echolocation calls upon finding prey. Network analysis of high-resolution automated radio telemetry confirmed that group members flew within the predicted maximum hearing distance 94±6 per cent of the time. Thus, echolocation calls also serve as intraspecific communication cues. Sociality appears to allow for more effective group foraging strategies via eavesdropping on acoustical cues of group members in nocturnal mammals.  相似文献   

10.
The Archerfish Toxotes knocks aerial insects into the water by spitting at them. Spitting has been filmed and the excess pressure in the orobranchial cavity is estimated from the muzzle velocity as 7.2 kN m−2. A dissection of the head shows that the adductor arcus palatini and geniohyoideus are most likely to be involved in spitting. From measurements made of these muscles, it is calculated that stresses up to at least 210 kN m−2 must act in them during spitting. Further, it appears from the calculations that these muscles must shorten at rates of 2.4-3.0 muscle lengths sec−1, which seems unlikely at such high stresses. It is possible that a catapult mechanism may be involved.  相似文献   

11.
To avoid collisions when navigating through cluttered environments, flying insects must control their flight so that their sensory systems have time to detect obstacles and avoid them. To do this, day-active insects rely primarily on the pattern of apparent motion generated on the retina during flight (optic flow). However, many flying insects are active at night, when obtaining reliable visual information for flight control presents much more of a challenge. To assess whether nocturnal flying insects also rely on optic flow cues to control flight in dim light, we recorded flights of the nocturnal neotropical sweat bee, Megalopta genalis, flying along an experimental tunnel when: (i) the visual texture on each wall generated strong horizontal (front-to-back) optic flow cues, (ii) the texture on only one wall generated these cues, and (iii) horizontal optic flow cues were removed from both walls. We find that Megalopta increase their groundspeed when horizontal motion cues in the tunnel are reduced (conditions (ii) and (iii)). However, differences in the amount of horizontal optic flow on each wall of the tunnel (condition (ii)) do not affect the centred position of the bee within the flight tunnel. To better understand the behavioural response of Megalopta, we repeated the experiments on day-active bumble-bees (Bombus terrestris). Overall, our findings demonstrate that despite the limitations imposed by dim light, Megalopta-like their day-active relatives-rely heavily on vision to control flight, but that they use visual cues in a different manner from diurnal insects.  相似文献   

12.
Early workers concluded that ingestively naive garter snakes (Thamnophis) recognize chemical cues from their normal prey, and that such cues are sufficient to elicit prey attack, whereas visual prey cues are not sufficient. In the light of recent observations on how garter and water snakes (Nerodia) forage, new tests were made of the role of visual stimuli in the aquatic predation of several natricine species. Both experienced and ingestively naive snakes oriented to and attacked a fish model in plain water, although they made more orientations and attacks when diffuse fish odour was present in the water. Fish odour in water also elicited increased aquatic searching behaviour. Early views on the role of vision in the predation of newborn natricine snakes require modification, and there is a need for investigation of the properties of effective visual stimuli and the ontogeny of responsiveness to them.  相似文献   

13.
One of the more unusual visual systems of the Actinopterygii is that of Pantodon buchholzi (Osteoglossomorpha: Osteoglossidae). Its adaptations associate neuroanatomy at different levels of the visual system with ecological and behavioural correlates and demonstrate that the visual system of this fish has adapted for simultaneous vision in air and water. The visual field is divided into three distinct areas: for viewing into the water column, into air, and for viewing the aquatic reflection from the underside of the water surface. Cone diameters in different retinal areas correlate with the differing physical constraints in the respective visual field. Retinal differentiation between the aquatic and aerial views is paralleled at different levels of the central nervous system. A diencephalic nucleus receives both direct and indirect (tectal) afferent input from only the aerial visual system and a specific type of cell in the optic tectum is preferentially distributed in the tectum processing aerial inputs. Distinctions within a single sensory system suggest that some behaviours may be organized according to visual field. For Pantodon, feeding is initiated by stimuli seen by the ventral hemiretina so the anatomical specializations may well play an important role as elements in a feeding circuit.  相似文献   

14.
Bottlenose dolphins ( Tursiops truncatus ) are aquatic mammals that must come to the surface to breathe. As a result, it might be expected that their eyes are adapted for both aerial and underwater vision. Earlier studies suggest that dolphins are emmetropic ( i. e. , focused at infinity) in water, and in some cases, emmetropic in air, although the mechanisms that permit these animals to see well in both media are not well understood. Nor is it known whether they can accommodate to focus sharply on objects at different distances. We employed video photoretinoscopy to investigate the possibility of an active accommodative mechanism in the eyes of the bottlenose dolphin in water. Measurements of the refractive state in water indicated near emmetropia for two individuals and slight myopia (nearsightedness) for the third individual. No clear cases of accommodation were observed underwater in any of the subjects examined. Vision underwater may be used to supplement echolocation. If so, such a role might not require an accommodative mechanism.  相似文献   

15.

Background and Aims

Unrelated plants pollinated by the same group or guild of animals typically evolve similar floral cues due to pollinator-mediated selection. Related plant species, however, may possess similar cues either as a result of pollinator-mediated selection or as a result of sharing a common ancestor that possessed the same cues or traits. In this study, visual and olfactory floral cues in Lysimachia species exhibiting different pollination strategies were analysed and compared, and the importance of pollinators and phylogeny on the evolution of these floral cues was determined. For comparison, cues of vegetative material were examined where pollinator selection would not be expected.

Methods

Floral and vegetative scents and colours in floral oil- and non-floral oil-secreting Lysimachia species were studied by chemical and spectrophotometric analyses, respectively, compared between oil- and non-oil-secreting species, and analysed by phylogenetically controlled methods.

Key Results

Vegetative and floral scent was species specific, and variability in floral but not vegetative scent was lower in oil compared with non-oil species. Overall, oil species did not differ in their floral or vegetative scent from non-oil species. However, a correlation was found between oil secretion and six floral scent constituents specific to oil species, whereas the presence of four other floral compounds can be explained by phylogeny. Four of the five analysed oil species had bee-green flowers and the pattern of occurrence of this colour correlated with oil secretion. Non-oil species had different floral colours. The colour of leaves was similar among all species studied.

Conclusions

Evidence was found for correlated evolution between secretion of floral oils and floral but not vegetative visual and olfactory cues. The cues correlating with oil secretion were probably selected by Macropis bees, the specialized pollinators of oil-secreting Lysimachia species, and may have evolved in order to attract these bees.  相似文献   

16.
To achieve effective visual camouflage, prey organisms must combine cryptic coloration with the appropriate posture and behaviour to render them difficult to be detected or recognized. Body patterning has been studied in various taxa, yet body postures and their implementation on different backgrounds have seldom been studied experimentally. Here, we provide the first experimental evidence that cuttlefish (Sepia officinalis), masters of rapid adaptive camouflage, use visual cues from adjacent visual stimuli to control arm postures. Cuttlefish were presented with a square wave stimulus (period = 0.47 cm; black and white stripes) that was angled 0°, 45° or 90° relative to the animals' horizontal body axis. Cuttlefish positioned their arms parallel, obliquely or transversely to their body axis according to the orientation of the stripes. These experimental results corroborate our field observations of cuttlefish camouflage behaviour in which flexible, precise arm posture is often tailored to match nearby objects. By relating the cuttlefishes' visual perception of backgrounds to their versatile postural behaviour, our results highlight yet another of the many flexible and adaptive anti-predator tactics adopted by cephalopods.  相似文献   

17.
Some studies found no, or weak evidence that dense monotypic cattail (Typha spp.) stands exclude water beetle species from aquatic habitats, or modify aquatic beetle assemblages. Other studies suggest that cattail may reduce the chance of aerial water beetle colonization, and decreases water temperature; negatively affecting these insects. We examined the response of aquatic beetle assemblages to the mowing of cattail (Typha angustifolia L., T. latifolia L.) in a freshwater marsh. Following removal of cattail at the water level in experimental plots, aquatic beetles were sampled both in mowed and intact (control) plots weekly, through a month in the spring of 2008. Aquatic beetles were more abundant in mowed plots. Species richness was the same, but it showed different patterns in mowed and intact plots. Shannon’s diversity was similar between treatments, while evenness was lower in mowed plots. 29% of the aquatic beetles showed a strong preference for mowed plots, and 15% preferred the control plots. Water temperature was an important factor, with mowed plots having higher water temperatures because of increased solar radiation. Polarization visibility of the water surface was also a factor, since aerially colonizing (flying) aquatic beetles use horizontally polarized light reflected from the water surface to seek potential locations. Using imaging polarimetry, we showed that mowing strongly enhanced the water-reflected polarized light signal, because it reduced the screening effect of cattail leaves, which made the visual detection of water easier. Our results suggest that cattail mowing is a useful method in aquatic beetle conservation: it increases the chance of aerial colonization due to the enhanced polarization visibility of the water surface, and creates a habitat for more abundant assemblages otherwise excluded by the monodominant dense cattail stands. Thus, sustaining hemi-marsh conditions with vegetated and mowed areas is advisable to maximize overall aquatic beetle diversity.  相似文献   

18.
The present study assessed the aerial and aquatic visual abilities of juvenile grey bichir Polypterus senegalus, fish capable of terrestrial locomotion, by measuring the optokinetic response to stimuli of varying speed and spatial frequency. In water, fish tracked slow-moving (2° s−1) stimuli moderately well and fast-moving stimuli very poorly. Spatial acuity was very low compared with many other species, with maximum response observed at 0.05–0.075 stimulus cycles per degree of visual arc; however, it should be noted that adult fish, with their larger eyes, are likely to have somewhat improved spatial acuity. Low spatial acuity and limited stimulus tracking ability might be expected in a nocturnal ambush predator such as P. senegalus, where gaze stabilization may be less crucial and other sensory inputs may have greater importance in perception of the environment. In air, spatial and temporal acuity were both poorer by every measure, but some visual ability persisted. As the eye shows no anatomical specialization for aerial vision, poor vision was expected; however, the large decrease in saccade velocity observed in air trials was unexpected. Stimulus parameters typically have little effect on the characteristics of the saccade, so this finding may suggest that the function of the reflex system itself could be compromised in the aerial vision of some fishes capable of terrestrial locomotion.  相似文献   

19.
Regressive evolution of structures associated with vision in cave-dwelling organisms is the focus of intense research. Most work has focused on differences between extreme visual phenotypes: sighted, surface animals and their completely blind, cave-dwelling counterparts. We suggest that troglodytic systems, comprising multiple populations that vary along a gradient of visual function, may prove critical in understanding the mechanisms underlying initial regression in visual pathways. Gene expression assays of natural and laboratory-reared populations of the Atlantic molly (Poecilia mexicana) revealed reduced opsin expression in cave-dwelling populations compared with surface-dwelling conspecifics. Our results suggest that the reduction in opsin expression in cave-dwelling populations is not phenotypically plastic but reflects a hardwired system not rescued by exposure to light during retinal ontogeny. Changes in opsin gene expression may consequently represent a first evolutionary step in the regression of eyes in cave organisms.  相似文献   

20.
Optic flow, the pattern of apparent motion elicited on the retina during movement, has been demonstrated to be widely used by animals living in the aerial habitat, whereas underwater optic flow has not been intensively studied so far. However optic flow would also provide aquatic animals with valuable information about their own movement relative to the environment; even under conditions in which vision is generally thought to be drastically impaired, e. g. in turbid waters. Here, we tested underwater optic flow perception for the first time in a semi-aquatic mammal, the harbor seal, by simulating a forward movement on a straight path through a cloud of dots on an underwater projection. The translatory motion pattern expanded radially out of a singular point along the direction of heading, the focus of expansion. We assessed the seal''s accuracy in determining the simulated heading in a task, in which the seal had to judge whether a cross superimposed on the flow field was deviating from or congruent with the actual focus of expansion. The seal perceived optic flow and determined deviations from the simulated heading with a threshold of 0.6 deg of visual angle. Optic flow is thus a source of information seals, fish and most likely aquatic species in general may rely on for e. g. controlling locomotion and orientation under water. This leads to the notion that optic flow seems to be a tool universally used by any moving organism possessing eyes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号