首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously demonstrated that Bmi-1 extended the in vitro life span of normal human oral keratinocytes (NHOK). We now report that the prolonged life span of NHOK by Bmi-1 is, in part, due to inhibition of the TGF-β signaling pathway. Serial subculture of NHOK resulted in replicative senescence and terminal differentiation and activation of TGF-β signaling pathway. This was accompanied with enhanced intracellular and secreted TGF-β1 levels, phosphorylation of Smad2/3, and increased expression of p15INK4B and p57KIP2. An ectopic expression of Bmi-1 in NHOK (HOK/Bmi-1) decreased the level of intracellular and secreted TGF-β1 induced dephosphorylation of Smad2/3, and diminished the level of p15INK4B and p57KIP2. Moreover, Bmi-1 expression led to the inhibition of TGF-β-responsive promoter activity in a dose-specific manner. Knockdown of Bmi-1 in rapidly proliferating HOK/Bmi-1 and cancer cells increased the level of phosphorylated Smad2/3, p15INK4B, and p57KIP2. In addition, an exposure of senescent NHOK to TGF-β receptor I kinase inhibitor or anti-TGF-β antibody resulted in enhanced replicative potential of cells. Taken together, these data suggest that Bmi-1 suppresses senescence of cells by inhibiting the TGF-β signaling pathway in NHOK.  相似文献   

2.
The polycomb gene Bmi-1 is required for the self-renewal of stem cells from diverse tissues, including the central nervous system (CNS). Bmi-1 expression is elevated in most human gliomas, irrespective of grade, raising the question of whether Bmi-1 over-expression is sufficient to promote self-renewal or tumorigenesis by CNS stem/progenitor cells. To test this we generated Nestin-Bmi-1-GFP transgenic mice. Analysis of two independent lines with expression in the fetal and adult CNS demonstrated that transgenic neural stem cells formed larger colonies, more self-renewing divisions, and more neurons in culture. However, in vivo, Bmi-1 over-expression had little effect on CNS stem cell frequency, subventricular zone proliferation, olfactory bulb neurogenesis, or neurogenesis/gliogenesis during development. Bmi-1 transgenic mice were born with enlarged lateral ventricles and a minority developed idiopathic hydrocephalus as adults, but none of the transgenic mice formed detectable CNS tumors, even when aged. The more pronounced effects of Bmi-1 over-expression in culture were largely attributable to the attenuated induction of p16Ink4a and p19Arf in culture, proteins that are generally not expressed by neural stem/progenitor cells in young mice in vivo. Bmi-1 over-expression therefore has more pronounced effects in culture and does not appear to be sufficient to induce tumorigenesis in vivo.  相似文献   

3.
Jie Zhang 《FEBS letters》2009,583(6):960-964
Bmi-1 is a polycomb protein that plays an important role in tumor cell development and maintaining stem cell populations of many cell lineages. Here we identify a polymorphism in human Bmi-1 that changes a cysteine within its RING domain to tyrosine. This C18Y polymorphism is associated with a significant decrease in Bmi-1 level and its elevated ubiquitination, suggesting that it is being destroyed by the ubiquitin-proteasome system. Consistent with this, treating cells with the proteasome inhibitor MG-132 significantly increases C18Y Bmi-1 levels. This is the first example of a polymorphism in Bmi-1 that reduces levels of this important protein.

Structured summary

MINT-6948574: Bmi-1 (uniprotkb:P35226) physically interacts (MI:0218) with Ubiquitin (uniprotkb:P62988) by anti tag coimmunoprecipitation (MI:0007)  相似文献   

4.
丁酸钠(Sodium butyrate,NaB)是一种组蛋白去乙酰化酶抑制剂(histone deacetylase inhibitors,HDACi),通过增加组蛋白的乙酰化,使染色质处于开放状态,便于基因转录与表达。多梳基因家族(Polycomb group genes,PcG)的成员Bmi-1蛋白可以对染色体组蛋白进行修饰,使一些抑癌基因如p14、P16和P21基因等表达沉默,同时Bmi-1蛋白通过Wnt信号通路激活原癌基因c-Myc,使Bmi-1、Wnt信号通路、c-Myc组成一个正反馈循环,还可以上调端粒酶的表达,导致肿瘤的发生。HDACi可以下调Bmi-1蛋白的表达,并通过上调p14、p16和p2l等的表达以及线粒体通路和Wnt信号通路抑制肿瘤细胞的增殖、分化,诱导肿瘤细胞凋亡。HDACi将可能为肿瘤的治疗提供一个广阔的前景,本研究将对Bmi-1在丁酸钠诱导肿瘤细胞凋亡过程中的作用机制作一综述。  相似文献   

5.
6.
Prykhozhij SV 《PloS one》2010,5(10):e13549

Background

Sonic hedgehog (Shh) signaling regulates cell proliferation during vertebrate development via induction of cell-cycle regulator gene expression or activation of other signalling pathways, prevents cell death by an as yet unclear mechanism and is required for differentiation of retinal cell types. Thus, an unsolved question is how the same signalling molecule can regulate such distinct cell processes as proliferation, cell survival and differentiation.

Methodology/Principal Findings

Analysis of the zebrafish shh −/− mutant revealed that in this context p53 mediates elevated apoptosis during nervous system and retina development and interferes with retinal proliferation and differentiation. While in shh −/− mutants there is activation of p53 target genes and p53-mediated apoptosis, an increase in Hedgehog (Hh) signalling by over-expression of dominant-negative Protein Kinase A strongly decreased p53 target gene expression and apoptosis levels in shh −/− mutants. Using a novel p53 reporter transgene, I confirm that p53 is active in tissues that require Shh for cell survival. Proliferation assays revealed that loss of p53 can rescue normal cell-cycle exit and the mitotic indices in the shh −/− mutant retina at 24, 36 and 48 hpf. Moreover, generation of amacrine cells and photoreceptors was strongly enhanced in the double p53 −/− shh −/− mutant retina suggesting the effect of p53 on retinal differentiation.

Conclusions

Loss of Shh signalling leads to the p53-dependent apoptosis in the developing nervous system and retina. Moreover, Shh-mediated control of p53 activity is required for proliferation and cell cycle exit of retinal cells as well as differentiation of amacrine cells and photoreceptors.  相似文献   

7.
The regulation of lymphocyte adhesion and migration plays crucial roles in lymphocyte trafficking during immunosurveillance. However, our understanding of the intracellular signalling that regulates these processes is still limited. Here, we show that the Ste20-like kinase Mst1 plays crucial roles in lymphocyte trafficking in vivo. Mst1−/− lymphocytes exhibited an impairment of firm adhesion to high endothelial venules, resulting in an inefficient homing capacity. In vitro lymphocyte adhesion cascade assays under physiological shear flow revealed that the stopping time of Mst1−/− lymphocytes on endothelium was markedly reduced, whereas their L-selectin-dependent rolling/tethering and transition to LFA-1-mediated arrest were not affected. Mst1−/− lymphocytes were also defective in the stabilization of adhesion through α4 integrins. Consequently, Mst1−/− mice had hypotrophic peripheral lymphoid tissues and reduced marginal zone B cells and dendritic cells in the spleen, and defective emigration of single positive thymocytes. Furthermore, Mst1−/− lymphocytes had impaired motility over lymph node-derived stromal cells and within lymph nodes. Thus, our data indicate that Mst1 is a key enzyme involved in lymphocyte entry and interstitial migration.  相似文献   

8.
Ubiquitin-like containing PHD and Ring finger 1 (UHRF1) contributes to silencing of tumor suppressor genes by recruiting DNA methyltransferase 1 (DNMT1) to their hemi-methylated promoters. Conversely, demethylation of these promoters has been ascribed to the natural anti-cancer drug, epigallocatechin-3-gallate (EGCG). The aim of the present study was to investigate whether the UHRF1/DNMT1 pair is an important target of EGCG action. Here, we show that EGCG down-regulates UHRF1 and DNMT1 expression in Jurkat cells, with subsequent up-regulation of p73 and p16INK4A genes. The down-regulation of UHRF1 is dependent upon the generation of reactive oxygen species by EGCG. Up-regulation of p16INK4A is strongly correlated with decreased promoter binding by UHRF1. UHRF1 over-expression counteracted EGCG-induced G1-arrested cells, apoptosis, and up-regulation of p16INK4A and p73. Mutants of the Set and Ring Associated (SRA) domain of UHRF1 were unable to down-regulate p16INK4A and p73, either in the presence or absence of EGCG. Our results show that down-regulation of UHRF1 is upstream to many cellular events, including G1 cell arrest, up-regulation of tumor suppressor genes and apoptosis.  相似文献   

9.
To determine whether Bmi-1 deficiency could lead to renal tubulointerstitial injury by mitochondrial dysfunction and increased oxidative stress in the kidney, 3-week-old Bmi-1-/- mice were treated with the antioxidant N-acetylcysteine (NAC, 1 mg mL−1) in their drinking water, or pyrro-quinoline quinone (PQQ, 4 mg kg−1 diet) in their diet for 2 weeks, and their renal phenotypes were compared with vehicle-treated Bmi1-/- and wild-type mice. Bmi-1 was knocked down in human renal proximal tubular epithelial (HK2) cells which were treated with 1 mm NAC for 72 or 96 h, and their phenotypes were compared with control cells. Five-week-old vehicle-treated Bmi-1-/- mice displayed renal interstitial fibrosis, tubular atrophy, and severe renal function impairment with decreased renal cell proliferation, increased renal cell apoptosis and senescence, and inflammatory cell infiltration. Impaired mitochondrial structure, decreased mitochondrial numbers, and increased oxidative stress occurred in Bmi-1-/- mice; subsequently, this caused DNA damage, the activation of TGF-β1/Smad signaling, and the imbalance between extracellular matrix synthesis and degradation. Oxidative stress-induced epithelial-to-mesenchymal transition of renal tubular epithelial cells was enhanced in Bmi-1 knocked down HK2 cells. All phenotypic alterations caused by Bmi-1 deficiency were ameliorated by antioxidant treatment. These findings indicate that Bmi-1 plays a critical role in protection from renal tubulointerstitial injury by maintaining redox balance and will be a novel therapeutic target for preventing renal tubulointerstitial injury.  相似文献   

10.
11.
The oncogene FOXM1 has been implicated in all major types of human cancer. We recently showed that aberrant FOXM1 expression causes stem cell compartment expansion resulting in the initiation of hyperplasia. We have previously shown that FOXM1 regulates HELLS, a SNF2/helicase involved in DNA methylation, implicating FOXM1 in epigenetic regulation. Here, we have demonstrated using primary normal human oral keratinocytes (NOK) that upregulation of FOXM1 suppressed the tumour suppressor gene p16INK4A (CDKN2A) through promoter hypermethylation. Knockdown of HELLS using siRNA re-activated the mRNA expression of p16INK4A and concomitant downregulation of two DNA methyltransferases DNMT1 and DNMT3B. The dose-dependent upregulation of endogenous FOXM1 (isoform B) expression during tumour progression across a panel of normal primary NOK strains (n = 8), dysplasias (n = 5) and head and neck squamous cell carcinoma (HNSCC) cell lines (n = 11) correlated positively with endogenous expressions of HELLS, BMI1, DNMT1 and DNMT3B and negatively with p16INK4A and involucrin. Bisulfite modification and methylation-specific promoter analysis using absolute quantitative PCR (MS-qPCR) showed that upregulation of FOXM1 significantly induced p16INK4A promoter hypermethylation (10-fold, P<0.05) in primary NOK cells. Using a non-bias genome-wide promoter methylation microarray profiling method, we revealed that aberrant FOXM1 expression in primary NOK induced a global hypomethylation pattern similar to that found in an HNSCC (SCC15) cell line. Following validation experiments using absolute qPCR, we have identified a set of differentially methylated genes, found to be inversely correlated with in vivo mRNA expression levels of clinical HNSCC tumour biopsy samples. This study provided the first evidence, using primary normal human cells and tumour tissues, that aberrant upregulation of FOXM1 orchestrated a DNA methylation signature that mimics the cancer methylome landscape, from which we have identified a unique FOXM1-induced epigenetic signature which may have clinical translational potentials as biomarkers for early cancer screening, diagnostic and/or therapeutic interventions.  相似文献   

12.
13.
Precise cell cycle regulation is critical to prevent aberrant cell proliferation and cancer progression. Cks1 was reported to be an essential accessory factor for SCFSkp2, the ubiquitin ligase that targets p27Kip1 for proteasomal degradation; these actions drive mammalian cell transition from G1 to S phase. In this study, we investigated the role played by Cks1 in the growth and progression of human hepatocellular carcinoma (HCC) cells. Silencing Cks1 expression abrogated osteopontin (OPN) expression in a p27Kip1-dependent manner in Huh7 HCC cells. OPN increased the proliferation, migration and invasion of Huh7 cells. Pharmacological inhibitor studies demonstrated that ERK1/2 signaling is responsible mainly for Cks1-mediated OPN expression. Cks1 appears to regulate ERK1/2 signaling through the expression of dual-specificity phosphatase 16 (DUSP16) because both Cks1 knockdown, which leads to DUSP16 upregulation, and DUSP16 overexpression decreased ERK1/2 phosphorylation and the resulting OPN expression. The same is true for the Cks1-mediated increases in p27Kip1, suggesting that Cks1 regulates OPN expression through activating ERK1/2 signaling either by suppressing DUSP16 expression or by a p27Kip1-dependent mechanism. Cks1 and OPN expression levels were significantly higher, but DUSP16 expression levels were significantly lower in HCC tissues than in normal liver tissues. Both Cks1 and OPN expression were negatively correlated with DUSP16 expression, whereas Cks1 expression was positively correlated with OPN expression. Moreover, combined panels for the expression levels of Cks1, DUSP16 and OPN showed significant prognostic power for the risk assessment of HCC patient overall survival. In conclusion, our data propose a novel function for Cks1 as a tumor promoter through the expression of the strongly oncogenic protein OPN in HCC.  相似文献   

14.
15.
16.
17.
18.
Members of the INK4 protein family specifically inhibit cyclin-dependent kinase 4 (cdk4) and cdk6-mediated phosphorylation of the retinoblastoma susceptibility gene product (Rb). p16INK4A, a prototypic INK4 protein, has been identified as a tumor suppressor in many human cancers. Inactivation of p16INK4A in tumors expressing wild-type Rb is thought to be required in order for many malignant cell types to enter S phase efficiently or to escape senescence. Here, we demonstrate another mechanism of tumor suppression by implicating p16INK4A in a G1 arrest checkpoint in response to DNA damage. Calu-1 non-small cell lung cancer cells, which retain Rb and lack p53, do not arrest in G1 following DNA damage. However, engineered expression of p16INK4A at levels compatible with cell proliferation restores a G1 arrest checkpoint in response to treatment with γ-irradiation, topoisomerase I and II inhibitors, and cisplatin. A similar checkpoint can be demonstrated in p53−/− fibroblasts that express p16INK4A. DNA damage-induced G1 arrest, which requires the expression of pocket proteins such as Rb, can be abrogated by overexpression of cdk4, kinase-inactive cdk4 variants capable of sequestering p16INK4A, or a cdk4 variant incapable of binding p16INK4A. After exposure to DNA-damaging agents, there was no change either in overall levels of p16INK4A or in amounts of p16INK4A found in complex with cdks 4 and 6. Nonetheless, p16INK4A expression is required for the reduction in cdk4- and cdk6-mediated Rb kinase activity observed in response to DNA damage. During tumor progression, loss of p16INK4A expression may be necessary for cells with wild-type Rb to bypass this G1 arrest checkpoint and attain a fully transformed phenotype.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号