首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The function of sensory hair cells of the cochlea and vestibular organs depends on an influx of K+ through apical mechanosensitive ion channels and its subsequent removal over their basolateral membrane. The KCNQ4 (Kv7.4) K+ channel, which is mutated in DFNA2 human hearing loss, is expressed in the basal membrane of cochlear outer hair cells where it may mediate K+ efflux. Like the related K+ channel KCNQ5 (Kv7.5), KCNQ4 is also found at calyx terminals ensheathing type I vestibular hair cells where it may be localized pre- or postsynaptically. Making use of Kcnq4−/− mice lacking KCNQ4, as well as Kcnq4dn/dn and Kcnq5dn/dn mice expressing dominant negative channel mutants, we now show unambiguously that in adult mice both channels reside in postsynaptic calyx-forming neurons, but cannot be detected in the innervated hair cells. Accordingly, whole cell currents of vestibular hair cells did not differ between genotypes. Neither Kcnq4−/−, Kcnq5dn/dn nor Kcnq4−/−/Kcnq5dn/dn double mutant mice displayed circling behavior found with severe vestibular impairment. However, a milder form of vestibular dysfunction was apparent from altered vestibulo-ocular reflexes in Kcnq4−/−/Kcnq5dn/dn and Kcnq4−/− mice. The larger impact of KCNQ4 may result from its preferential expression in central zones of maculae and cristae, which are innervated by phasic neurons that are more sensitive than the tonic neurons present predominantly in the surrounding peripheral zones where KCNQ5 is found. The impact of postsynaptic KCNQ4 on vestibular function may be related to K+ removal and modulation of synaptic transmission.  相似文献   

2.
The epithelial Ca2+ channel TRPV5 constitutes the apical entry gate for Ca2+ transport in renal epithelial cells. Ablation of the trpv5 gene in mice leads to a reduced Ca2+ reabsorption. TRPV5 is tightly regulated by various calciotropic hormones, associated proteins, and other factors, which mainly affect channel activity via the C terminus. To further identify the role of the C terminus in TRPV5 regulation, we expressed channels harboring C-terminal deletions and studied channel activity by measuring intracellular Ca2+ concentration ([Ca2+]i) using fura-2 analysis. Removal of amino acid His712 elevated the [Ca2+]i, indicating enlarged TRPV5 activity. In addition, substitution of the positively charged His712 for a negative (H712D) or neutral (H712N) amino acid also stimulated TRPV5 activity. This critical role of His712 was confirmed by patch clamp analysis, which demonstrates increased Na+ and Ca2+ currents for TRPV5-H712D. Cell surface biotinylation studies revealed enhanced plasma membrane expression of TRPV5-H712D as compared with wild-type (WT) TRPV5. This elevated plasma membrane presence also was observed with the Ca2+-impermeable TRPV5-H712D and TRPV5-WT pore mutants, demonstrating that the elevation is not due to the increased [Ca2+]i. Finally, using an internalization assay, we demonstrated a delayed cell surface retrieval for TRPV5-H712D, likely causing the increase in plasma membrane expression. Together, these results demonstrate that His712 plays an essential role in plasma membrane regulation of TRPV5 via a constitutive endocytotic mechanism.  相似文献   

3.
Voltage-gated Cav2.1 Ca2+ channels undergo dual modulation by Ca2+, Ca2+-dependent inactivation (CDI), and Ca2+-dependent facilitation (CDF), which can influence synaptic plasticity in the nervous system. Although the molecular determinants controlling CDI and CDF have been the focus of intense research, little is known about the factors regulating these processes in neurons. Here, we show that calretinin (CR), a Ca2+-binding protein highly expressed in subpopulations of neurons in the brain, inhibits CDI and enhances CDF by binding directly to α12.1. Screening of a phage display library with CR as bait revealed a highly basic CR-binding domain (CRB) present in multiple copies in the cytoplasmic linker between domains II and III of α12.1. In pulldown assays, CR binding to fusion proteins containing these CRBs was largely Ca2+-dependent. α12.1 coimmunoprecipitated with CR antibodies from transfected cells and mouse cerebellum, which confirmed the existence of CR-Cav2.1 complexes in vitro and in vivo. In HEK293T cells, CR significantly decreased Cav2.1 CDI and increased CDF. CR binding to α12.1 was required for these effects, because they were not observed upon substitution of the II-III linker of α12.1 with that from the Cav1.2 α1 subunit (α11.2), which lacks the CRBs. In addition, coexpression of a protein containing the CRBs blocked the modulatory action of CR, most likely by competing with CR for interactions with α12.1. Our findings highlight an unexpected role for CR in directly modulating effectors such as Cav2.1, which may have major consequences for Ca2+ signaling and neuronal excitability.  相似文献   

4.
The KCNE3 β-subunit interacts with and regulates the voltage-dependent gating, kinetics, and pharmacology of a variety of Kv channels in neurons. Because a single neuron may express multiple KCNE3 partners, it is impossible to predict the overall functional relevance of the single transmembrane domain peptide on the pore-forming K+ channel subunits with which it associates. In the inner ear, the role of KCNE3 is undefined, despite its association with Meniere disease and tinnitus. To gain insights on the functional significance of KCNE3 in auditory neurons, we examined the properties of spiral ganglion neurons (SGNs) in Kcne3 null mutant neurons relative to their age-matched controls. We demonstrate that null deletion of Kcne3 abolishes characteristic wide variations in the resting membrane potentials of SGNs and yields age-dependent alterations in action potential and firing properties of neurons along the contour of the cochlear axis, in comparison with age-matched wild-type neurons. The properties of basal SGNs were markedly altered in Kcne3−/− mice compared with the wild-type controls; these include reduced action potential latency, amplitude, and increased firing frequency. Analyses of the underlying conductance demonstrate that null mutation of Kcne3 results in enhanced outward K+ currents, which is sufficient to explain the ensuing membrane potential changes. Additionally, we have demonstrated that KCNE3 may regulate the activity of Kv4.2 channels in SGNs. Finally, there were developmentally mediated compensatory changes that occurred such that, by 8 weeks after birth, the electrical properties of the null mutant neurons were virtually indistinguishable from the wild-type neurons, suggesting that ion channel remodeling in auditory neurons progresses beyond hearing onset.  相似文献   

5.
Ca2+ sparks are short lived and localized Ca2+ transients resulting from the opening of ryanodine receptors in sarcoplasmic reticulum. These events relax certain types of smooth muscle by activating big conductance Ca2+-activated K+ channels to produce spontaneous transient outward currents (STOCs) and the resultant closure of voltage-dependent Ca2+ channels. But in many smooth muscles from a variety of organs, Ca2+ sparks can additionally activate Ca2+-activated Cl channels to generate spontaneous transient inward current (STICs). To date, the physiological roles of Ca2+ sparks in this latter group of smooth muscle remain elusive. Here, we show that in airway smooth muscle, Ca2+ sparks under physiological conditions, activating STOCs and STICs, induce biphasic membrane potential transients (BiMPTs), leading to membrane potential oscillations. Paradoxically, BiMPTs stabilize the membrane potential by clamping it within a negative range and prevent the generation of action potentials. Moreover, blocking either Ca2+ sparks or hyperpolarization components of BiMPTs activates voltage-dependent Ca2+ channels, resulting in an increase in global [Ca2+]i and cell contraction. Therefore, Ca2+ sparks in smooth muscle presenting both STICs and STOCs act as a stabilizer of membrane potential, and altering the balance can profoundly alter the status of excitability and contractility. These results reveal a novel mechanism underlying the control of excitability and contractility in smooth muscle.  相似文献   

6.
We construct a mathematical model of the parotid acinar cell with the aim of investigating how the distribution of K+ and Cl channels affects saliva production. Secretion of fluid is initiated by Ca2+ signals acting on Ca2+ dependent K+ and Cl channels. The opening of these channels facilitates the movement of Cl ions into the lumen which water follows by osmosis. We use recent results into both the release of Ca2+ from internal stores via the inositol (1,4,5)-trisphosphate receptor (IP3R) and IP3 dynamics to create a physiologically realistic Ca2+ model which is able to recreate important experimentally observed behaviours seen in parotid acinar cells. We formulate an equivalent electrical circuit diagram for the movement of ions responsible for water flow which enables us to calculate and include distinct apical and basal membrane potentials to the model. We show that maximum saliva production occurs when a small amount of K+ conductance is located at the apical membrane, with the majority in the basal membrane. The maximum fluid output is found to coincide with a minimum in the apical membrane potential. The traditional model whereby all Cl channels are located in the apical membrane is shown to be the most efficient Cl channel distribution.  相似文献   

7.
8.
Low voltage-activated T-type Cav3.2 calcium channels are expressed in neurosecretory chromaffin cells of the adrenal medulla. Previous studies have shown that naïve adrenal chromaffin cells express a nominal Cav3.2-dependent conductance. However, Cav3.2 conductance is up-regulated following chronic hypoxia or long term exposure to cAMP analogs. Thus, although a link between chronic stressors and up-regulation of Cav3.2 exists, there are no reports testing the specific role of Cav3.2 channels in the acute sympathoadrenal stress response. In this study, we examined the effects of acute sympathetic stress on T-type Cav3.2 calcium influx in mouse chromaffin cells in situ. Pituitary adenylate cyclase-activating peptide (PACAP) is an excitatory neuroactive peptide transmitter released by the splanchnic nerve under elevated sympathetic activity to stimulate the adrenal medulla. PACAP stimulation did not evoke action potential firing in chromaffin cells but did cause a persistent subthreshold membrane depolarization that resulted in an immediate and robust Ca2+-dependent catecholamine secretion. Moreover, PACAP-evoked secretion was sensitive to block by nickel chloride and was acutely inhibited by protein kinase C blockers. We utilized perforated patch electrophysiological recordings conducted in adrenal tissue slices to investigate the mechanism of PACAP-evoked calcium entry. We provide evidence that stimulation with exogenous PACAP and native neuronal stress stimulation both lead to a protein kinase C-mediated phosphodependent recruitment of a T-type Cav3.2 Ca2+ influx. This in turn evokes catecholamine release during the acute sympathetic stress response.  相似文献   

9.
10.
Aquaporin-1 (AQP1) water channels are expressed in the plasma membrane of dorsal root ganglion (DRG) neurons. We found reduced osmotic water permeability in freshly isolated DRG neurons from AQP1−/− versus AQP1+/+ mice. Behavioral studies showed greatly reduced thermal inflammatory pain perception in AQP1−/− mice evoked by bradykinin, prostaglandin E2, and capsaicin as well as reduced cold pain perception. Patch clamp of freshly isolated DRG neurons showed reduced action potential firing in response to current injections. Single action potentials after pulse current injections showed reduced maximum inward current, suggesting impaired Nav1.8 Na+ function. Whole-cell Nav1.8 Na+ currents in Nav1.8-expressing ND7-23 cells showed slowed frequency-dependent inactivation after AQP1 transfection. Immunoprecipitation studies showed AQP1- Nav1.8 Na+ interaction, which was verified in live cells by single-particle tracking of quantum dot-labeled AQP1. Our results implicate the involvement of AQP1 in DRG neurons for the perception of inflammatory thermal pain and cold pain, whose molecular basis is accounted for, in part, by reduced Nav1.8-dependent membrane Na+ current. AQP1 is, thus, a novel target for pain management.  相似文献   

11.
12.
Both TRPC6 and reactive oxygen species (ROS) play an important role in regulating vascular function. However, their interplay has not been explored. The present study examined whether activation of TRPC6 in vascular smooth muscle cells (VSMCs) by ROS was a physiological mechanism for regulating vascular tone by vasoconstrictors. In A7r5 cells, arginine vasopressin (AVP) evoked a striking Ca2+ entry response that was significantly attenuated by either knocking down TRPC6 using siRNA or inhibition of NADPH oxidases with apocynin or diphenyleneiodonium. Inhibition of TRPC6 or ROS production also decreased AVP-stimulated membrane currents. In primary cultured aortic VSMCs, catalase and diphenyleneiodonium significantly suppressed AVP- and angiotensin II-induced whole cell currents and Ca2+ entry, respectively. In freshly isolated and endothelium-denuded thoracic aortas, hyperforin (an activator of TRPC6), but not its vehicle, induced dose- and time-dependent constriction in TRPC6 wide type (WT) mice. This response was not observed in TRPC6 knock-out (KO) mice. Consistent with the ex vivo study, hyperforin stimulated a robust Ca2+ entry in the aortic VSMCs from WT mice but not from KO mice. Phenylephrine induced a dose-dependent contraction of WT aortic segments, and this response was inhibited by catalase. Moreover, H2O2 itself evoked Ca2+ influx and inward currents in A7r5 cells, and these responses were significantly attenuated by either inhibition of TRPC6 or blocking vesicle trafficking. H2O2 also induced inward currents in primary VSMCs from WT but not from TRPC6 KO mice. Additionally, H2O2 stimulated a dose-dependent constriction of the aortas from WT mice but not from the vessels of KO mice. Furthermore, TIRFM showed that H2O2 triggered membrane trafficking of TRPC6 in A7r5 cells. These results suggest a new signaling pathway of ROS-TRPC6 in controlling vessel contraction by vasoconstrictors.  相似文献   

13.
14.
Bovine adrenal zona fasciculata (AZF) cells express Cav3.2 T-type Ca2+ channels that function pivotally in adrenocorticotropic hormone (ACTH)-stimulated cortisol secretion. The regulation of Cav3.2 expression in AZF cells by ACTH, cAMP analogs, and their metabolites was studied using Northern blot and patch clamp recording. Exposing AZF cells to ACTH for 3–6 days markedly enhanced the expression of Cav3.2 current. The increase in Cav3.2 current was preceded by an increase in corresponding CACNA1H mRNA. O-Nitrophenyl,sulfenyl-adrenocorticotropin, which produces a minimal increase in cAMP, also enhanced Cav3.2 current. cAMP analogs, including 8-bromoadenosine cAMP (600 μm) and 6-benzoyladenosine cAMP (300 μm) induced CACNA1H mRNA, but not Cav3.2 current. In contrast, 8-(4-chlorophenylthio) (8CPT)-cAMP (10–50 μm) enhanced CACNA1H mRNA and Cav3.2 current, whereas nonhydrolyzable Sp-8CPT-cAMP failed to increase either Cav3.2 current or mRNA. Metabolites of 8CPT-cAMP, including 8CPT-adenosine and 8CPT-adenine, increased Cav3.2 current and mRNA with a potency and effectiveness similar to the parent compound. The Epac activator 8CPT-2′-O-methyl-cAMP and its metabolites 8CPT-2′-OMe-5′-AMP and 8CPT-2′-O-methyl-adenosine increased CACNA1H mRNA and Cav3.2 current; Sp-8CPT-2′-O-methyl-cAMP increased neither Cav3.2 current nor mRNA. These results reveal an interesting dichotomy between ACTH and cAMP with regard to regulation of CACNA1H mRNA and Ca2+ current. Specifically, ACTH induces expression of CACNA1H mRNA and Cav3.2 current in AZF cells by mechanisms that depend at most only partly on cAMP. In contrast, cAMP enhances expression of CACNA1H mRNA but not the corresponding Ca2+ current. Surprisingly, chlorophenylthio-cAMP analogs stimulate the expression of Cav3.2 current indirectly through metabolites. ACTH and the metabolites may induce Cav3.2 expression by the same, unidentified mechanism.  相似文献   

15.
Vertebrate retinal photoreceptors signal light by suppressing a circulating “dark current” that maintains their relative depolarization in the dark. This dark current is composed of an inward current through CNG channels and NCKX transporters in the outer segment that is balanced by outward current exiting principally from the inner segment. It has been hypothesized that Kv2.1 channels carry a predominant fraction of the outward current in rods. We examined this hypothesis by comparing whole cell, suction electrode, and electroretinographic recordings from Kv2.1 knockout (Kv2.1−/−) and wild-type (WT) mouse rods. Single cell recordings revealed flash responses with unusual kinetics, and reduced dark currents that were quantitatively consistent with the measured depolarization of the membrane resting potential in the dark. A two-compartment (outer and inner segment) physiological model based on known ionic mechanisms revealed that the abnormal Kv2.1−/− rod photoresponses arise principally from the voltage dependencies of the known conductances and the NCKX exchanger, and a highly elevated fraction of inward current carried by Ca2+ through CNG channels due to the aberrant depolarization. Kv2.1−/− rods had shorter outer segments than WT and dysmorphic mitochondria in their inner segments. Optical coherence tomography of knockout animals demonstrated a slow photoreceptor degeneration over a period of 6 mo. Overall, these findings reveal that Kv2.1 channels carry 70–80% of the non-NKX outward dark current of the mouse rod, and that the depolarization caused by the loss of Kv2.1 results in elevated Ca2+ influx through CNG channels and elevated free intracellular Ca2+, leading to progressive degeneration.  相似文献   

16.

Background

Imiquimod (IQ) is known as an agonist of Toll-like receptor 7 (TLR7) and is widely used to treat various infectious skin diseases. However, it causes severe itching sensation as its side effect. The precise mechanism of how IQ causes itching sensation is unknown. A recent report suggested a molecular target of IQ as TLR7 expressed in dorsal root ganglion (DRG) neurons. However, we recently proposed a TLR7-independent mechanism, in which the activation of TLR7 is not required for the action of IQ in DRG neurons. To resolve this controversy regarding the involvement of TLR7 and to address the exact molecular identity of itching sensation by IQ, we investigated the possible molecular target of IQ in DRG neurons.

Findings

When IQ was applied to DRG neurons, we observed an increase in action potential (AP) duration and membrane resistance both in wild type and TLR7-deficient mice. Based on these results, we tested whether the treatment of IQ has an effect on the activity of K+ channels, Kv1.1 and Kv1.2 (voltage-gated K+ channels) and TREK1 and TRAAK (K2P channels). IQ effectively reduced the currents mediated by both K+ channels in a dose-dependent manner, acting as an antagonist at TREK1 and TRAAK and as a partial antagonist at Kv1.1 and Kv1.2.

Conclusions

Our results demonstrate that IQ blocks the voltage-gated K+ channels to increase AP duration and K2P channels to increase membrane resistance, which are critical for the membrane excitability of DRG neurons. Therefore, we propose that IQ enhances the excitability of DRG neurons by blocking multiple potassium channels and causing pruritus.  相似文献   

17.
Most sensorineural hearing loss cases occur as a result of hair cell loss, which results in secondary degeneration of spiral ganglion neurons (SGNs). Substantial loss of SGNs reduces the benefit of cochlear implants, which rely on SGNs for transmitting signals to the central auditory centers. Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) play essential roles in cochlear development and are required for SGN survival. Here we report that 7,8,3'-trihydroxyflavone (7,8,3'-THF), which is a small molecule agonist of tyrosine receptor kinase B (TrkB), promoted SGN survival with high potency both in vitro and in vivo. The compound protected the SGNs in a TrkB-dependent manner, as its effects on SGNs disappeared when the TrkB was blocked. Application of 7,8,3'-THF in the bulla of conditional connexin26 (cCx26)-null mice dramatically rescued SGNs in the applied ear compared to untreated control cochlea in the same animal. Our findings suggest that 7,8,3'-THF is a promising therapeutic agent protecting the SGNs from degeneration both in vitro and in vivo.  相似文献   

18.
L-type Ca2+ channels (LTCCs, Cav1) open readily during membrane depolarization and allow Ca2+ to enter the cell. In this way, LTCCs regulate cell excitability and trigger a variety of Ca2+-dependent physiological processes such as: excitation–contraction coupling in muscle cells, gene expression, synaptic plasticity, neuronal differentiation, hormone secretion, and pacemaker activity in heart, neurons, and endocrine cells. Among the two major isoforms of LTCCs expressed in excitable tissues (Cav1.2 and Cav1.3), Cav1.3 appears suitable for supporting a pacemaker current in spontaneously firing cells. It has steep voltage dependence and low threshold of activation and inactivates slowly. Using Cav1.3−/− KO mice and membrane current recording techniques such as the dynamic and the action potential clamp, it has been possible to resolve the time course of Cav1.3 pacemaker currents that regulate the spontaneous firing of dopaminergic neurons and adrenal chromaffin cells. In several cell types, Cav1.3 is selectively coupled to BK channels within membrane nanodomains and controls both the firing frequency and the action potential repolarization phase. Here we review the most critical aspects of Cav1.3 channel gating and its coupling to large conductance BK channels recently discovered in spontaneously firing neurons and neuroendocrine cells with the aim of furnishing a converging view of the role that these two channel types play in the regulation of cell excitability.  相似文献   

19.
20.
We have recently shown that freshly isolated astrocytes from the mouse brain express mRNA for the L-channel gene Cav1.3 to at least the same degree (per mg mRNA) as corresponding neurons. The amount of extracellular Ca2+ actually entering cultured astrocytes by its opening is modest, but due to secondary Ca2+-mediated stimulation of the ryanodine receptor (RyR) the increase in free cytosolic Ca2+ [Ca2+]i is substantial. The other Cav1 subtype expressed in brain is Cav1.2, which is even expressed in higher density. Although the different primers used for the two genes preclude exact quantitative comparison, the present study suggests that this is also the case in the freshly isolated astrocytes and neurons, which express equal Cav1.2 densities. Again, most of the increase in [Ca2+]i occurred by RyR activity. In contrast to Cav1.3 the expression of Cav1.2 was greatly increased (doubled) after two weeks of treatment with fluoxetine hydrochloride (10 mg/kg). Accordingly [Ca2+]i in cultured astrocytes exposed to the addition of 10–60 mM KCl increased substantially in cultured astrocytes treated chronically with fluoxetine with the lag time until the effect was observed depending upon the fluoxetine concentration. This effect was inhibited by nifedipine or siRNA against Cav1.2. The increase in K+-induced rise in [Ca2+]i after fluoxetine treatment is directly opposite to a decrease in [Ca2+]i after treatment with any of the anti-bipolar drugs lithium, carbamazepine or valproic acid, due to reduced capacitative Ca2+ influx. We have previously shown a similar effect after fluoxetine treatment, but it becomes overridden by the Cav1.2 up-regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号