首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Tumor suppressor genes evolved as negative effectors of mitogen and nutrient signaling pathways, such that mutations in these genes can lead to pathological states of growth. Tuberous sclerosis (TSC) is a potentially devastating disease associated with mutations in two tumor suppressor genes, TSC1 and 2, that function as a complex to suppress signaling in the mTOR/S6K/4E-BP pathway. However, the inhibitory target of TSC1/2 and the mechanism by which it acts are unknown. Here we provide evidence that TSC1/2 is a GAP for the small GTPase Rheb and that insulin-mediated Rheb activation is PI3K dependent. Moreover, Rheb overexpression induces S6K1 phosphorylation and inhibits PKB phosphorylation, as do loss-of-function mutations in TSC1/2, but contrary to earlier reports Rheb has no effect on MAPK phosphorylation. Finally, coexpression of a human TSC2 cDNA harboring a disease-associated point mutation in the GAP domain, failed to stimulate Rheb GTPase activity or block Rheb activation of S6K1.  相似文献   

2.
Metabolic dysfunction is a major driver of tumorigenesis. The serine/threonine kinase mechanistic target of rapamycin (mTOR) constitutes a key central regulator of metabolic pathways promoting cancer cell proliferation and survival. mTOR activity is regulated by metabolic sensors as well as by numerous factors comprising the phosphatase and tensin homolog/PI3K/AKT canonical pathway, which are often mutated in cancer. However, some cancers displaying constitutively active mTOR do not carry alterations within this canonical pathway, suggesting alternative modes of mTOR regulation. Since DEPTOR, an endogenous inhibitor of mTOR, was previously found to modulate both mTOR complexes 1 and 2, we investigated the different post-translational modification that could affect its inhibitory function. We found that tyrosine (Tyr) 289 phosphorylation of DEPTOR impairs its interaction with mTOR, leading to increased mTOR activation. Using proximity biotinylation assays, we identified SYK (spleen tyrosine kinase) as a kinase involved in DEPTOR Tyr 289 phosphorylation in an ephrin (erythropoietin-producing hepatocellular carcinoma) receptor–dependent manner. Altogether, our work reveals that phosphorylation of Tyr 289 of DEPTOR represents a novel molecular switch involved in the regulation of both mTOR complex 1 and mTOR complex 2.  相似文献   

3.
BACKGROUND: Tuberous Sclerosis Complex (TSC) is a genetic disorder that occurs through the loss of heterozygosity of either TSC1 or TSC2, which encode Hamartin or Tuberin, respectively. Tuberin and Hamartin form a tumor suppressor heterodimer that inhibits the mammalian target of rapamycin (mTOR) nutrient signaling input, but how this occurs is unclear. RESULTS: We show that the small G protein Rheb (Ras homolog enriched in brain) is a molecular target of TSC1/TSC2 that regulates mTOR signaling. Overexpression of Rheb activates 40S ribosomal protein S6 kinase 1 (S6K1) but not p90 ribosomal S6 kinase 1 (RSK1) or Akt. Furthermore, Rheb induces phosphorylation of eukaryotic initiation factor 4E binding protein 1 (4E-BP1) and causes 4E-BP1 to dissociate from eIF4E. This dissociation is completely sensitive to rapamycin (an mTOR inhibitor) but not wortmannin (a phosphoinositide 3-kinase [PI3K] inhibitor). Rheb also activates S6K1 during amino acid insufficiency via a rapamycin-sensitive mechanism, suggesting that Rheb participates in nutrient signaling through mTOR. Moreover, Rheb does not activate a S6K1 mutant that is unresponsive to mTOR-mediated signals, confirming that Rheb functions upstream of mTOR. Overexpression of the Tuberin-Hamartin heterodimer inhibits Rheb-mediated S6K1 activation, suggesting that Tuberin functions as a Rheb GTPase activating protein (GAP). Supporting this notion, TSC patient-derived Tuberin GAP domain mutants were unable to inactivate Rheb in vivo. Moreover, in vitro studies reveal that Tuberin, when associated with Hamartin, acts as a Rheb GTPase-activating protein. Finally, we show that membrane localization of Rheb is important for its biological activity because a farnesylation-defective mutant of Rheb stimulated S6K1 activation less efficiently. CONCLUSIONS: We show that Rheb acts as a novel mediator of the nutrient signaling input to mTOR and is the molecular target of TSC1 and TSC2 within mammalian cells.  相似文献   

4.
Tuberous sclerosis complex 1 (TSC1) inhibits mammalian target of rapamycin (mTOR), a central promotor of cell growth and proliferation. The protein product of the TSC1 gene, hamartin (referred to as TSC1) is known to interact with Polo-like kinase 1 (Plk1) in a cell cycle regulated, phosphorylation-dependent manner. We hypothesized that the p53 target gene, Plk2, is a tumor suppressor, mediating its tumor suppressor function through interactions with TSC1 that facilitate TSC1/2 restraint of mTOR under hypoxic stress. We found that human lung tumor cells deficient in Plk2 grew larger than control tumors, and that Plk2 interacts with endogenous TSC1 protein. Additionally, C-terminal Plk2-GST fusion protein bound both TSC1 and TSC2 proteins. TSC1 levels were elevated in response to Adriamycin and cells transiently over-expressing Plk2 demonstrated decreased phosphorylation of the downstream target of mTOR, ribosomal protein p70S6 kinase during hypoxia. Plk2 levels were inversely correlated with cytoplasmic p70S6K phosphorylation. Plk2 levels did not increase in response to DNA damage (Adriamycin, CPT-11) when HCT 116 and H460 cells were exposed to hypoxia. TSC1-deficient mouse embryonic fibroblasts with TSC1 added back demonstrated decreased S6K phosphorylation, which was further decreased when Plk2 was transiently over-expressed. Interestingly, under normoxia, Plk2 deficient tumor cells demonstrated increased apoptosis in response to various chemotherapeutic agents including CPT-11 but increased resistance to apoptotic death after CPT-11 treatment under hypoxia, and tumor xenografts comprised of these Plk2-deficient cells were resistant to CPT-11. Our results point to a novel Plk2-TSC1 interaction with effects on mTOR signaling during hypoxia, and tumor growth that may enable targeting Plk2 signaling in cancer therapy.  相似文献   

5.
DEPTOR is a 48 kDa protein upregulated in multiple myeloma (MM) cells. DEPTOR inhibits mTOR and, by repressing a negative feedback loop, promotes AKT activation. We previously identified a compound that binds to DEPTOR in MM cells and induces its proteasomal degradation. To identify the mechanism of degradation, here, we screened for drug-induced posttranslational modifications and identified reduced phosphorylation of DEPTOR on serine 235 (S235). We show that an S235 phosphomimetic DEPTOR mutant was resistant to degradation, confirming the importance of this posttranslational modification. In addition, a DEPTOR mutant with a serine-to-alanine substitution at S235 could only be expressed upon concurrent proteasome inhibition. Thus, S235 phosphorylation regulates DEPTOR stability. Screening the DEPTOR interactome identified that the association of USP-7 deubiquitinase with DEPTOR was dependent upon S235 phosphorylation. Inhibition of USP-7 activity resulted in DEPTOR polyubiquitination and degradation. A scansite search suggested that ERK1 may be responsible for S235 phosphorylation, which was confirmed through the use of inhibitors, ERK1 knockdown, and an in vitro kinase assay. Inhibition of ERK1 also downregulated AKT phosphorylation. To test if DEPTOR phosphorylation mediated this crosstalk, MM cells were transfected with WT or phosphomimetic DEPTOR and exposed to ERK inhibitors. Although WT DEPTOR had no effect on the inhibition of AKT phosphorylation, the phosphomimetic DEPTOR prevented inhibition. These results indicate that ERK1 maintains AKT activity in MM cells via phosphorylation of DEPTOR. We propose that DEPTOR-dependent crosstalk provides MM cells with a viability-promoting signal (through AKT) when proliferation is stimulated (through ERK).  相似文献   

6.
Tuberous sclerosis complex 1 (TSC1) and TSC2 tumor suppressor proteins have been shown to negatively regulate cell growth through inhibition of the mammalian target of rapamycin (mTOR) pathway. Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that plays a critical role in integrin signaling. Here we identify a novel interaction between FAK and TSC2 and show that TSC2 is phosphorylated by FAK. Furthermore, we show that overexpression of FAK kinase dead mutant inhibits the phosphorylation of ribosomal S6 kinase (S6K) and eukaryotic initiation factor 4E-binding protein-1, two key mTOR (mammalian target of rapamycin) downstream targets, and negatively regulates the cell size and that FAK regulation of S6K phosphorylation is through TSC2. Finally, we provide data that FAK plays a positive role in cell adhesion-induced S6K phosphorylation, whereas TSC2 is required for cell suspension-induced S6K inactivation. Together, these results suggest that FAK might regulate S6K activation and cell size through its interaction with and phosphorylation of TSC2 and also provide a previously unappreciated role of TSC2 in the regulation of mTOR signaling by cell adhesion.  相似文献   

7.
Enhanced GLUT1 expression in mesangial cells plays an important role in the development of diabetic nephropathy by stimulating signaling through several pathways resulting in increased glomerular matrix accumulation. Similarly, enhanced mammalian target of rapamycin (mTOR) activation has been implicated in mesangial matrix expansion and glomerular hypertrophy in diabetes. We sought to examine whether enhanced GLUT1 expression increased mTOR activity and, if so, to identify the mechanism. We found that levels of GLUT1 expression and mTOR activation, as evidenced by S6 kinase (S6K) and 4E-BP-1 phosphorylation, changed in tandem in cell lines exposed to elevated levels of extracellular glucose. We then showed that increased GLUT1 expression enhanced S6K phosphorylation by 1.7- to 2.9-fold in cultured mesangial cells and in glomeruli from GLUT1 transgenic mice. Treatment with the mTOR inhibitor, rapamycin, eliminated the GLUT1 effect on S6K phosphorylation. In cells lacking functional tuberous sclerosis complex (TSC) 2, GLUT1 effects on mTOR activity persisted, indicating that GLUT1 effects were not mediated by TSC. Similarly, AMP kinase activity was not altered by enhanced GLUT1 expression. Conversely, enhanced GLUT1 expression led to a 2.4-fold increase in binding of mTOR to its activator, Rheb, and a commensurate 2.1-fold decrease in binding of Rheb to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) consistent with mediation of GLUT1 effects by a metabolic effect on GAPDH. Thus, GLUT1 expression appears to augment mesangial cell growth and matrix protein accumulation via effects on glycolysis and decreased GAPDH interaction with Rheb.  相似文献   

8.
Hwang SK  Kim HH 《BMB reports》2011,44(8):506-511
Mammalian Target of Rapamycin (mTOR) is a serine/threonine kinase and that forms two multiprotein complexes known as the mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTOR regulates cell growth, proliferation and survival. mTORC1 is composed of the mTOR catalytic subunit and three associated proteins: raptor, mLST8/GβL and PRAS40. mTORC2 contains mTOR, rictor, mLST8/GβL, mSin1, and protor. Here, we discuss mTOR as a promising anti-ischemic agent. It is believed that mTORC2 lies down-stream of Akt and acts as a direct activator of Akt. The different functions of mTOR can be explained by the existence of two distinct mTOR complexes containing unique interacting proteins. The loss of TSC2, which is upstream of mTOR, activates S6K1, promotes cell growth and survival, activates mTOR kinase activities, inhibits mTORC1 and mTORC2 via mTOR inhibitors, and suppresses S6K1 and Akt. Although mTOR signaling pathways are often activated in human diseases, such as cancer, mTOR signaling pathways are deactivated in ischemic diseases. From Drosophila to humans, mTOR is necessary for Ser473 phosphorylation of Akt, and the regulation of Akt-mTOR signaling pathways may have a potential role in ischemic disease. This review evaluates the potential functions of mTOR in ischemic diseases. A novel mTOR-interacting protein deregulates over-expression in ischemic disease, representing a new mechanism for controlling mTOR signaling pathways and potential therapeutic strategies for ischemic diseases.  相似文献   

9.
BACKGROUND: The target of rapamycin (TOR), in complex with the proteins raptor and LST8 (TOR complex 1), phosphorylates the p70S6K and 4E-BP1 to promote mRNA translation. Genetic evidence establishes that TOR complex activity in vivo requires the small GTPase Rheb, and overexpression of Rheb can rescue TOR from inactivation in vivo by amino-acid withdrawal. The Tuberous Sclerosis heterodimer (TSC1/TSC2) functions as a Rheb GTPase activator and inhibits TOR signaling in vivo. RESULTS: Here, we show that Rheb binds to the TOR complex specifically, independently of its ability to bind TSC2, through separate interactions with the mTOR catalytic domain and with LST8. Rheb binding to the TOR complex in vivo and in vitro does not require Rheb guanyl nucleotide charging but is modulated by GTP and impaired by certain mutations (Ile39Lys) in the switch 1 loop. Nucleotide-deficient Rheb mutants, although capable of binding mTOR in vivo and in vitro, are inhibitory in vivo, and the mTOR polypeptides that associate with nucleotide-deficient Rheb in vivo lack kinase activity in vitro. Reciprocally, mTOR polypeptides bound to Rheb(Gln64Leu), a mutant that is nearly 90% GTP charged, exhibit substantially higher protein kinase specific activity than mTOR bound to wild-type Rheb. CONCLUSIONS: The TOR complex 1 is a direct target of Rheb-GTP, whose binding enables activation of the TOR kinase.  相似文献   

10.
Budanov AV  Karin M 《Cell》2008,134(3):451-460
The tumor suppressor p53 is activated upon genotoxic and oxidative stress and in turn inhibits cell proliferation and growth through induction of specific target genes. Cell growth is positively regulated by mTOR, whose activity is inhibited by the TSC1:TSC2 complex. Although genotoxic stress has been suggested to inhibit mTOR via p53-mediated activation of mTOR inhibitors, the precise mechanism of this link was unknown. We now demonstrate that the products of two p53 target genes, Sestrin1 and Sestrin2, activate the AMP-responsive protein kinase (AMPK) and target it to phosphorylate TSC2 and stimulate its GAP activity, thereby inhibiting mTOR. Correspondingly, Sestrin2-deficient mice fail to inhibit mTOR signaling upon genotoxic challenge. Sestrin1 and Sestrin2 therefore provide an important link between genotoxic stress, p53 and the mTOR signaling pathway.  相似文献   

11.
Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40   总被引:3,自引:0,他引:3  
Insulin stimulates protein synthesis and cell growth by activation of the protein kinases Akt (also known as protein kinase B, PKB) and mammalian target of rapamycin (mTOR). It was reported that Akt activates mTOR by phosphorylation and inhibition of tuberous sclerosis complex 2 (TSC2). However, in recent studies the physiological requirement of Akt phosphorylation of TSC2 for mTOR activation has been questioned. Here, we identify PRAS40 (proline-rich Akt/PKB substrate 40 kDa) as a novel mTOR binding partner that mediates Akt signals to mTOR. PRAS40 binds the mTOR kinase domain and its interaction with mTOR is induced under conditions that inhibit mTOR signalling, such as nutrient or serum deprivation or mitochondrial metabolic inhibition. Binding of PRAS40 inhibits mTOR activity and suppresses constitutive activation of mTOR in cells lacking TSC2. PRAS40 silencing inactivates insulin-receptor substrate-1 (IRS-1) and Akt, and uncouples the response of mTOR to Akt signals. Furthermore, PRAS40 phosphorylation by Akt and association with 14-3-3, a cytosolic anchor protein, are crucial for insulin to stimulate mTOR. These findings identify PRAS40 as an important regulator of insulin sensitivity of the Akt-mTOR pathway and a potential target for the treatment of cancers, insulin resistance and hamartoma syndromes.  相似文献   

12.
Prostaglandin F2alpha (PGF2alpha) is an important mediator of corpus luteum (CL) regression, although the cellular signaling events that mediate this process have not been clearly identified. It is established that PGF2alpha binds to a G-proteincoupled receptor (GPCR) to stimulate protein kinase C (PKC) and Raf-MEK-Erk signaling in luteal cells. The present experiments were performed to determine whether PGF2alpha stimulates the mammalian target of rapamycin (mTOR)/ribosomal protein S6 kinase 1 (S6K1) signaling pathway in steroidogenic luteal cells. We demonstrate that PGF2alpha treatment results in a timeand concentration-dependent stimulation of the phosphorylation and activation of S6K1. The stimulation of S6K1 in response to PGF2alpha treatment was abolished by the mTOR inhibitor rapamycin. Treatment with PGF2alpha did not increase AKT phosphorylation but increased the phosphorylation of Erk and the tumor suppressor protein tuberous sclerosis complex 2 (TSC2), an upstream regulator of mTOR. The effects of PGF2alpha were mimicked by the PKC activator PMA and inhibited by U0126, a MEK1 inhibitor. The activation of mTOR/S6K1 and putative down stream processes involving the translational apparatus (i.e. 4EBP1 phosphorylation, release of 4EBP1 binding in m(7)G cap binding assays, and the phosphorylation and synthesis of S6) were completely sensitive to treatment with rapamycin, implicating mTOR in the actions of PGF2alpha. Taken together, our data suggest that GPCR activation in response to PGF2alpha stimulates the mTOR pathway which increases the translational machinery in luteal cells. The translation of proteins under the control of mTOR may have implications for luteal development and regression and offer new strategies for therapeutic intervention in PGF2alpha-target tissues.  相似文献   

13.
The activities of both mTORC1 and mTORC2 are negatively regulated by their endogenous inhibitor, DEPTOR. As such, the abundance of DEPTOR is a critical determinant in the activity status of the mTOR network. DEPTOR stability is governed by the 26S-proteasome through a largely unknown mechanism. Here we describe an mTOR-dependent phosphorylation-driven pathway for DEPTOR destruction via SCF(βTrCP). DEPTOR phosphorylation by mTOR in response to growth signals, and in collaboration with casein kinase I (CKI), generates a phosphodegron that binds βTrCP. Failure to degrade DEPTOR through either degron mutation or βTrCP depletion leads to reduced mTOR activity, reduced S6 kinase activity, and activation of autophagy to reduce cell growth. This work expands the current understanding of mTOR regulation by revealing a positive feedback loop involving mTOR and CKI-dependent turnover of its inhibitor, DEPTOR, suggesting that misregulation of the DEPTOR destruction pathway might contribute to aberrant activation of mTOR in disease.  相似文献   

14.
The tuberous sclerosis tumor suppressors TSC1 and TSC2 regulate the mTOR pathway to control translation and cell growth in response to nutrient and growth factor stimuli. We have recently identified the stress response REDD1 gene as a mediator of tuberous sclerosis complex (TSC)-dependent mTOR regulation by hypoxia. Here, we demonstrate that REDD1 inhibits mTOR function to control cell growth in response to energy stress. Endogenous REDD1 is induced following energy stress, and REDD1-/- cells are highly defective in dephosphorylation of the key mTOR substrates S6K and 4E-BP1 following either ATP depletion or direct activation of the AMP-activated protein kinase (AMPK). REDD1 likely acts on the TSC1/2 complex, as regulation of mTOR substrate phosphorylation by REDD1 requires TSC2 and is blocked by overexpression of the TSC1/2 downstream target Rheb but is not blocked by inhibition of AMPK. Tetracycline-inducible expression of REDD1 triggers rapid dephosphorylation of S6K and 4E-BP1 and significantly decreases cellular size. Conversely, inhibition of endogenous REDD1 by short interfering RNA increases cell size in a rapamycin-sensitive manner, and REDD1-/- cells are defective in cell growth regulation following ATP depletion. These results define REDD1 as a critical transducer of the cellular response to energy depletion through the TSC-mTOR pathway.  相似文献   

15.
Leucine (Leu) and insulin both stimulate muscle protein synthesis, albeit at least in part via separate signaling pathways. While alcohol (EtOH) suppresses insulin-stimulated protein synthesis in cultured myocytes, its ability to disrupt Leu signaling and Rag GTPase activity has not been determined. Likewise, little is known regarding the interaction of EtOH and Leu on the AMPK/TSC2/Rheb pathway. Treatment of myocytes with EtOH (100 mM) decreased protein synthesis, whereas Leu (2 mM) increased synthesis. In combination, EtOH suppressed the anabolic effect of Leu. The effects of EtOH and Leu were associated with coordinate changes in the phosphorylation state of mTOR, raptor, and their downstream targets 4EBP1 and S6K1. As such, EtOH suppressed the ability of Leu to activate these signaling components. The Rag signaling pathway was activated by Leu but suppressed by EtOH, as evidenced by changes in the interaction of Rag proteins with mTOR and raptor. Overexpression of constitutively active (ca)RagA and caRagC increased mTORC1 activity, as determined by increased S6K1 phosphorylation. Furthermore, the caRagA-caRagC heterodimer blocked the inhibitory effect of EtOH. EtOH and Leu produced differential effects on AMPK signaling. EtOH enhanced AMPK activity, resulting in increased TSC2 (S1387) and eEF2 phosphorylation, whereas Leu had the opposite effect. EtOH also decreased the interaction of Rheb with mTOR, and this was prevented by Leu. Collectively, our results indicate that EtOH inhibits the anabolic effects that Leu has on protein synthesis and mTORC1 activity by modulating both Rag GTPase function and AMPK/TSC2/Rheb signaling.  相似文献   

16.
The mammalian target of rapamycin (mTOR) is a protein kinase that forms two functionally distinct complexes important for nutrient and growth factor signaling. Both complexes phosphorylate a hydrophobic motif on downstream protein kinases, which contributes to the activation of these kinases. mTOR complex 1 (mTORC1) phosphorylates S6K1, while mTORC2 phosphorylates Akt. The TSC1-TSC2 complex is a critical negative regulator of mTORC1. However, how mTORC2 is regulated and whether the TSC1-TSC2 complex is involved are unknown. We find that mTORC2 isolated from a variety of cells lacking a functional TSC1-TSC2 complex is impaired in its kinase activity toward Akt. Importantly, the defect in mTORC2 activity in these cells can be separated from effects on mTORC1 signaling and known feedback mechanisms affecting insulin receptor substrate-1 and phosphatidylinositol 3-kinase. Our data also suggest that the TSC1-TSC2 complex positively regulates mTORC2 in a manner independent of its GTPase-activating protein activity toward Rheb. Finally, we find that the TSC1-TSC2 complex can physically associate with mTORC2 but not mTORC1. These data demonstrate that the TSC1-TSC2 complex inhibits mTORC1 and activates mTORC2, which through different mechanisms promotes Akt activation.  相似文献   

17.
Ballou LM  Jiang YP  Du G  Frohman MA  Lin RZ 《FEBS letters》2003,550(1-3):51-56
The mammalian target of rapamycin (mTOR) promotes increased protein synthesis required for cell growth. It has been suggested that phosphatidic acid, produced upon activation of phospholipase D (PLD), is a common mediator of growth factor activation of mTOR signaling. We used Rat-1 fibroblasts expressing the alpha(1A) adrenergic receptor to study if this G(q)-coupled receptor uses PLD to regulate mTOR signaling. Phenylephrine (PE) stimulation of the alpha(1A) adrenergic receptor induced mTOR autophosphorylation at Ser2481 and phosphorylation of two mTOR effectors, 4E-BP1 and p70 S6 kinase. These PE-induced phosphorylations were greatly reduced in cells depleted of intracellular Ca(2+). PE activation of PLD was also inhibited in Ca(2+)-depleted cells. Incubation of cells with 1-butanol to inhibit PLD signaling attenuated PE-induced phosphorylation of mTOR, 4E-BP1 and p70 S6 kinase. By contrast, platelet-derived growth factor (PDGF)-induced phosphorylation of these proteins was not blocked by Ca(2+) depletion or 1-butanol treatment. These results suggest that the alpha(1A) adrenergic receptor promotes mTOR signaling via a pathway that requires an increase in intracellular Ca(2+) and activation of PLD. The PDGF receptor, by contrast, appears to activate mTOR by a distinct pathway that does not require Ca(2+) or PLD.  相似文献   

18.
Murine pre-osteoblasts and fibroblast cell lines were used to determine the effect of pulsed electromagnetic field (PEMF) exposure on the production of autocrine growth factors and the activation of early signal transduction pathways. Exposure of pre-osteoblast cells to PEMF minimally increased the amount of secreted TGF-beta after 1 day, but had no significant effects thereafter. PEMF exposure of pre-osteoblast cells also had no effect on the amount of prostaglandin E(2) in the conditioned medium. Exposure of both pre-osteoblasts and fibroblasts to PEMF rapidly activated the mTOR signaling pathway, as evidenced by increased phosphorylation of mTOR, p70 S6 kinase, and the ribosomal protein S6. Inhibition of PI3-kinase activity with the chemical inhibitor LY294002 blocked PEMF-dependent activation of mTOR in both the pre-osteoblast and fibroblast cell lines. These findings suggest that PEMF exposure might function in a manner analogous to soluble growth factors by activating a unique set of signaling pathways, inclusive of the PI-3 kinase/mTOR pathway.  相似文献   

19.
This study tested the hypothesis that Ceramide 1-phosphate (C1P) stimulates macrophage proliferation through activation of the mammalian target of rapamycin (mTOR). We first reported that C1P is mitogenic for fibroblasts and macrophages, but the mechanisms whereby it stimulates cell proliferation are incompletely understood. Here we demonstrate that C1P causes phosphorylation of mTOR in primary (bone marrow-derived) macrophages. Activation of this kinase was tested my measuring the phosphorylation state of its downstream target p70S6K after treatment with C1P. These actions were dependent upon prior activation of phosphoinositide 3 kinase (PI3-K), as selective inhibition of this kinase blocked mTOR phosphorylation and activation. In addition, C1P caused phosphorylation of PRAS40, a component of the mTOR complex 1 (mTORC1) that is absent in mTORC2. Furthermore, inhibition of the small G protein Ras homolog enriched in brain (Rheb), which is also a specific component of mTORC1, with FTI277, completely blocked C1P-stimulated mTOR phosphorylation, DNA synthesis and macrophage growth. In addition, C1P caused phosphorylation of another Ras homolog gene family member, RhoA, which is also involved in cell proliferation. Interestingly, inhibition of the RhoA downstream effector RhoA-associated kinase (ROCK) also blocked C1P-stimulated mTOR and cell proliferation. It can be concluded that mTORC1, and RhoA/ROCK are essential components of the mechanism whereby C1P stimulates macrophage proliferation.  相似文献   

20.
The serine/threonine kinase Akt is an upstream positive regulator of the mammalian target of rapamycin (mTOR). However, the mechanism by which Akt activates mTOR is not fully understood. The known pathway by which Akt activates mTOR is via direct phosphorylation and inhibition of tuberous sclerosis complex 2 (TSC2), which is a negative regulator of mTOR. Here we establish an additional pathway by which Akt inhibits TSC2 and activates mTOR. We provide for the first time genetic evidence that Akt regulates intracellular ATP level and demonstrate that Akt is a negative regulator of the AMP-activated protein kinase (AMPK), which is an activator of TSC2. We show that in Akt1/Akt2 DKO cells AMP/ATP ratio is markedly elevated with concomitant increase in AMPK activity, whereas in cells expressing activated Akt there is a dramatic decrease in AMP/ATP ratio and a decline in AMPK activity. Currently, the Akt-mediated phosphorylation of TSC2 and the inhibition of AMPK-mediated phosphorylation of TSC2 are viewed as two separate pathways, which activate mTOR. Our results demonstrate that Akt lies upstream of these two pathways and induces full inhibition of TSC2 and activation of mTOR both through direct phosphorylation and by inhibition of AMPK-mediated phosphorylation of TSC2. We propose that the activation of mTOR by Akt-mediated cellular energy and inhibition of AMPK is the predominant pathway by which Akt activates mTOR in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号