首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Invasions by non-native plants can alter ecosystem functions and reduce native plant diversity, but relatively little is known about their effect on belowground microbial communities. We show that invasions by knapweed (Centaurea stoebe) and leafy spurge (Euphorbia esula, hereafter spurge)—but not cheatgrass (Bromus tectorum)—support a higher abundance and diversity of symbiotic arbuscular mycorrhizal fungi (AMF) than multi-species native plant communities. The higher AMF richness associated with knapweed and spurge is unlikely due to a co-invasion by AMF, because a separate sampling showed that individual native forbs hosted a similar AMF abundance and richness as exotic forbs. Native grasses associated with fewer AMF taxa, which could explain the reduced AMF richness in native, grass-dominated communities. The three invasive plant species harbored distinct AMF communities, and analyses of co-occurring native and invasive plants indicate that differences were partly driven by the invasive plants and were not the result of pre-invasion conditions. Our results suggest that invasions by mycotrophic plants that replace poorer hosts can increase AMF abundance and richness. The high AMF richness in monodominant plant invasions also indicates that the proposed positive relationship between above and belowground diversity is not always strong. Finally, the disparate responses among exotic plants and consistent results between grasses and forbs suggest that AMF respond more to plant functional group than plant provenance.  相似文献   

2.
植物物种多样性的垂直分布格局   总被引:75,自引:6,他引:75  
生物多样性沿环境梯度的变化趋势是生物多样性研究的一个重要议题,而海拔梯度包含了多种环境因子的梯度效应,因此研究生物多样性的海拔梯度格局对于揭示生物多样性的环境梯度变化规律具有重要意义。在不同的研究尺度,植物多样性沿海拔梯度具有不同的分布格局,而形成这种格局的因素有很大差异。本文从α多样性,β多样性和γ多样性三个尺度总结了植物物种多样性沿海拔梯度分布格局及其环境解释。α多样性沿海拔梯度的分布格局在不同生活型的物种之间差异很大,但对于木本植物来说,虽然也存在其他格局,但α多样性随海拔升高而降低是被广泛接受的一种格局。在一般情况下,β多样性随着海拔的升高而降低,并且对于不同生活型的物种,β多样性沿海拔梯度具有相似的分布格局。γ多样性沿海拔梯度具有两种分布格局:偏峰分布格局和显著的负相关格局;特有物种数往往随着海拔的升高而减少,而特有度则随着海拔的升高而增加。  相似文献   

3.
Intraspecific diversity and dominant genotypes resist plant invasions   总被引:1,自引:1,他引:0  
Numerous studies have asked whether communities with many species deter invasions more so than do species-poor communities or whether dominant species deter invasion by colonizing species. However, little is known about whether high intraspecific diversity can deter biological invasions or whether particular genotypes might deter invasions. In this study, we present experimental evidence that intraspecific diversity and particular genotypes of tall goldenrod, Solidago altissima , can act as a barrier to colonization by new species. We found that biomass of colonizing species was negatively correlated with genotypic diversity, and particular genotypes affected the richness, cover, and biomass of colonizing species. Stem density of S. altissima increased with genotypic diversity and varied among genotypes, suggesting that stem density is a key mechanism in limiting colonization dynamics in this system. Our results indicate that the loss of intraspecific diversity within a dominant plant species can increase susceptibility to plant invasions.  相似文献   

4.
以泰山南北坡14块样方的调查资料为基础,分析了泰山植物物种多样性沿海拔梯度的分布格局。结果表明:在相同海拔范围内,南坡物种丰富度大于北坡,泰山物种丰富度随海拔的升高而减少。整个群落及不同层次的物种多样性沿海拔梯度在泰山南北坡呈现不同的分布格局。在人为干扰程度低的情况下,北坡的群落物种丰富度在各个层次均较高,而多样性指数在各个层次不一样,北坡乔木层的多样性指数较南坡低,但灌木层和草本层则是北坡明显大于南坡。整体上,物种多样性指数与海拔的相关性,北坡要比南坡好。  相似文献   

5.
Little is known about the patterns and dynamics of exotic species invasions at landscape to regional spatial scales. We quantified the presence (identity, abundance, and richness) and characteristics of native and exotic species in estuarine strandline plant communities at 24 sites in Narragansett Bay, Rhode Island, USA. Our results do not support several fundamental predictions of invasion biology. Established exotics (79 of 147 recorded plant species) were nearly indistinguishable from the native plant species (i.e. in terms of growth form, taxonomic grouping, and patterns of spatial distribution and abundance) and essentially represent a random sub-set of the current regional species pool. The cover and richness of exotic species varied substantially among quadrats and sites but were not strongly related to any site-level physical characteristics thought to affect invasibility (i.e. the physical disturbance regime, legal status, neighboring habitat type, and substrate characteristics). Native and exotic cover or richness were not negatively related within most sites. Across sites, native and exotic richness were positively correlated and exotic cover was unrelated to native richness. The colonization and spread of exotics does not appear to have been substantially reduced at sites with high native diversity. Furthermore, despite the fact that the Rhode Island strandline system is one of the most highly-invaded natural plant communities described to date, exotic species, both individually and as a group, currently appear to pose little threat to native plant diversity. Our findings are concordant with most recent, large-scale investigations that do not support the theoretical foundation of invasion biology and generally contradict small-scale experimental work.  相似文献   

6.
Global patterns of plant diversity   总被引:1,自引:0,他引:1  
Summary Using 94 data sets from across the globe, we explored patterns of mean community species richness, landscape species richness, mean similarity among communities and mosaic diversity. Climate affected community species richness primarily through productivity while other climatic factors were secondary. Climatic equability affected species richness only in temperate regions where richness was greatest at high levels of temperature variability and low levels of precipitation variability. Landscape species richness correlated positively with community species richness. A global gradient in mean similarity existed but was uncorrelated with community species richness. Mean similarity was least and mosaic diversity was greatest between 25 and 30° latitude. The most diverse landscapes (low mean similarity) correlated with warm temperatures, high elevations, large areas and large seasonal temperature fluctuations. The most complex landscapes (high mosaic diversity) correlated with large areas, high productivity and warm winters. We compared diversity measures among continents and found only one significant difference: Australian landscapes have greater mosaic diversity than African landscapes. Based on our analyses we propose two hypotheses: (1) for plants, biotic interactions are more important in structuring landscapes in warmer climates and (2) longer isolated landscapes have more clearly differentiated ecological subunits.  相似文献   

7.
8.
Darwin acknowledged contrasting, plausible arguments for how species invasions are influenced by phylogenetic relatedness to the native community. These contrasting arguments persist today without clear resolution. Using data on the naturalization and abundance of exotic plants in the Auckland region, we show how different expectations can be accommodated through attention to scale, assumptions about niche overlap, and stage of invasion. Probability of naturalization was positively related to the number of native species in a genus but negatively related to native congener abundance, suggesting the importance of both niche availability and biotic resistance. Once naturalized, however, exotic abundance was not related to the number of native congeners, but positively related to native congener abundance. Changing the scale of analysis altered this outcome: within habitats exotic abundance was negatively related to native congener abundance, implying that native and exotic species respond similarly to broad scale environmental variation across habitats, with biotic resistance occurring within habitats.  相似文献   

9.
While exotic plant invasions are thought to lead to declines in native species, the long-term impacts of such invasions on community structure are poorly known. Furthermore, it is unknown how exotic plant invasions compare to invasions by native species. We present data from 40 yr of continuous vegetation sampling of 10 fields released from agriculture to examine the effects of invasions on species richness. The effects of both exotic and native species invasions on species richness were largely driven by variations among fields with most species not significantly affecting species richness. However, invasion and dominance by the exotics Agropyron repens, Lonicera japonica. Rosa multiflora. Trifolium pratense and the native Solidago canadensis were associated with declines in richness. Invasions by exotic and native species during old field succession have similar effects on species richness with dominance by species of either group being associated with loss of species richness. Exotic species invasions tended to have stronger effects on richness than native invasions. No evidence was found of residual effects of invasions because the impact of the invasion disappeared with the decline of the invading population. When pooled across species, heavy invasion by exotic species resulted in greater loss o species richness than invasion by native species. Studies of invasion that utilize multiple sites must account for variability among sites. In our study, had we no included field as a factor we would have incorrectly concluded that invasion consistently resulted in changes in species richness.  相似文献   

10.
秦岭牛背梁植物物种多样性垂直分布格局   总被引:32,自引:0,他引:32  
基于秦岭山脉中段牛背梁自然保护区南北坡垂直样带51个样方的调查资料,利用植被数量分析方法(TWINSPAN和DCA)对牛背梁植物群落进行了分类和排序,并分析了植物物种多样性沿海拔梯度的分布格局。结果表明,牛背梁的植被群落具有明显的海拔梯度格局,从低海拔到高海拔依次分布有:锐齿槲栎(Quercus aliena var.acuteserrata)林,桦木(Betula spp.)林.巴山冷杉(Abis Jargesii)林和亚高山灌丛。海拔梯度是牛背梁山区制约植物群落分布的主要因子,而坡向和坡度则起到次要作用。对物种多样性的分析表明,物种总数、木本植物物种多样性和草本植物物种多样性在南北坡具有不同的海拔梯度格局。物种总数在南坡呈现单峰分布格局,而在北坡分布趋势不明显;木本植物物种多样性在南北坡具有相似的分布格局:在低海拔沿海拔梯度变化不明显,而在高海拔则随海拔上升而急剧下降;草本植物物种多样性在南北坡沿海拔梯度变化的规律不明显。β多样性沿海拔梯度先减少后增加,形成两端高中间低的格局,说明中海拔地区生境条件较为均一,低海拔地区的人为活动增加了生境的异质性,而高海拔地区的生态过渡特性增加了物种的更替速率以及群落的相异性。  相似文献   

11.
Co‐existence theories fail to adequately explain observed community patterns (diversity and composition) because they mainly address local extinctions. For a more complete understanding, the regional processes responsible for species formation and geographic dispersal should also be considered. The species pool concept holds that local variation in community patterns is dependent primarily on the availability of species, which is driven by historical diversification and dispersal at continental and landscape scales. However, empirical evidence of historical effects is limited. This slow progress can be attributed to methodological difficulties in determining the characteristics of historical species pools and how they contributed to diversity patterns in contemporary landscapes. A role of landscape‐scale dispersal limitation in determining local community patterns has been demonstrated by numerous seed addition experiments. However, disentangling general patterns of dispersal limitation in communities still requires attention. Distinguishing habitat‐specific species pools can help to meet both applied and theoretical challenges. In conservation biology, the use of absolute richness may be uninformative because the size of species pools varies between habitats. For characterizing the dynamic state of individual communities, biodiversity relative to species pools provides a balanced way of assessing communities in different habitats. Information about species pools may also be useful when studying community assembly rules, because it enables a possible mechanism of trait convergence (habitat filtering) to be explicitly assessed. Empirical study of the role of historic effects and dispersal on local community patterns has often been restricted due to methodological difficulties in determining habitat‐specific species pools. However, accumulating distributional, ecological and phylogenetic information, as well as use of appropriate model systems (e.g. archipelagos with known biogeographic histories) will allow the species pool concept to be applied effectively in future research.  相似文献   

12.
Background: Coastal ecosystems in Mexico remain understudied in spite of their ecological, economic and conservation value and are being impacted by human activities along the coast. Knowledge on spatial patterns of plant species distribution that helps preserve these fragile ecosystems is crucial.

Aims: We evaluated differences in species richness, species diversity and species dominance patterns in 16 plant communities as well as the degree to which differences were driven by climatic conditions in sandy dunes in Yucatán. We evaluated the importance of invasive species in mediating patterns of species diversity and species dominance patterns.

Results: We found wide variation in plant species richness, species diversity and species dominance patterns among communities that stems from broad climatic differences along dune systems. Invasive plants represent almost one-third of total species richness and seem to be drastically changing the species dominance patterns in these communities.

Conclusions: Regional climatic differences along the Yucatán north coast seems to be a major driver of plant diversity and species composition. Our findings suggest that invasive plants have successfully colonised and spread along the coast over the past 30 years. Even though invasive species do not alter spatial patterns of species diversity, they are becoming more dominant with potential detrimental consequences for native plants.  相似文献   


13.
外来植物入侵对生物多样性的影响及本地生物的进化响应   总被引:3,自引:0,他引:3  
越来越多的证据表明,入侵植物能通过杂交和基冈渐渗等对本地种造成遗传侵蚀,甚至产生新的"基因型"来影响本地种的遗传多样性;通过生境片断化,改变本地种种群内和种群间的基因交流,造成近亲繁殖和遗传漂变,间接影响本地种的遗传多样性.另一方面,本地种能对入侵植物做出适应性进化响应,以减小或消除入侵植物的危害.本地种在与入侵植物的互作过程中产生了一系列的适应进化、物种形成以及灭绝事件,且这些事件不仅局限于地上生态系统,土壤牛物多样性同样受到影响,甚至也能发生进化响应.为更全面地了解外来植物入侵的生态后果和本地生物的适应潜力,本文综述了外来植物入侵对本地(地上和地下)生物(遗传)多样性的影响以及本地生物的进化响应.讨论了外来植物入侵导致的遗传和进化变化与其入侵性的关系,并提出了一些值得研究的课题.如土著种与外来种的协同进化、植物一土壤反馈调节途径和全球变化其他组分与生物入侵的关系等.  相似文献   

14.
云南西部地区地带性植物群落物种多样性的地理分布格局   总被引:2,自引:0,他引:2  
利用样方数据和文献资料,探讨了云南西部地区地带性植物群落的物种多样性。结果表明:在纬度梯度上,从南到北,物种密度呈递减趋势;在海拔梯度上,从高海拔到低海拔,物种密度呈递增趋势;在经度梯度上,从东到西,物种密度呈递减格局。总体上,在群落尺度上,南部地区物种密度较高;北部地区,即滇西北地区物种密度相对较低,这可能与研究区域内热量和水分条件的空间分异有关,但热量因子可能扮演着更为重要的角色。海拔梯度上的物种变化速率远高于经度梯度和纬度梯度,这可能与海拔梯度上热量条件的变化速率远高于其他地理梯度有关。区域尺度上单位面积物种多样性的分布格局与群落尺度明显不同,这可能源于群落尺度上单位面积的物种多样性主要受制于能量水平;但在区域尺度上,单位面积的物种多样性可能与区域内的生境异质性有关。表明“尺度效应”在塑造物种多样性地理分布格局中的重要作用。  相似文献   

15.
16.
Plot shape effects on plant species diversity measurements   总被引:1,自引:0,他引:1  
Abstract. Question: Do rectangular sample plots record more plant species than square plots as suggested by both empirical and theoretical studies? Location: Grasslands, shrublands and forests in the Mediterranean‐climate region of California, USA. Methods: We compared three 0.1‐ha sampling designs that differed in the shape and dispersion of 1‐m2 and 100‐m2 nested subplots. We duplicated an earlier study that compared the Whittaker sample design, which had square clustered subplots, with the modified Whittaker design, which had dispersed rectangular subplots. To sort out effects of dispersion from shape we used a third design that overlaid square subplots on the modified Whittaker design. Also, using data from published studies we extracted species richness values for 400‐m2 subplots that were either square or 1:4 rectangles partially overlaid on each other from desert scrub in high and low rainfall years, chaparral, sage scrub, oak savanna and coniferous forests with and without fire. Results: We found that earlier empirical reports of more than 30% greater richness with rectangles were due to the confusion of shape effects with spatial effects, coupled with the use of cumulative number of species as the metric for comparison. Average species richness was not significantly different between square and 1:4 rectangular sample plots at either 1‐ or 100‐m2. Pairwise comparisons showed no significant difference between square and rectangular samples in all but one vegetation type, and that one exhibited significantly greater richness with squares. Our three intensive study sites appear to exhibit some level of self‐similarity at the scale of 400 m2, but, contrary to theoretical expectations, we could not detect plot shape effects on species richness at this scale. Conclusions: At the 0.1‐ha scale or lower there is no evidence that plot shape has predictable effects on number of species recorded from sample plots. We hypothesize that for the mediterranean‐climate vegetation types studied here, the primary reason that 1:4 rectangles do not sample greater species richness than squares is because species turnover varies along complex environmental gradients that are both parallel and perpendicular to the long axis of rectangular plots. Reports in the literature of much greater species richness recorded for highly elongated rectangular strips than for squares of the same area are not likely to be fair comparisons because of the dramatically different periphery/area ratio, which includes a much greater proportion of species that are using both above and below‐ground niche space outside the sample area.  相似文献   

17.
Knapp S  Kühn I  Schweiger O  Klotz S 《Ecology letters》2008,11(10):1054-1064
Cities are hotspots of plant species richness, harboring more species than their rural surroundings, at least over large enough scales. However, species richness does not necessarily cover all aspects of biodiversity such as phylogenetic relationships. Ignoring these relationships, our understanding of how species assemblages develop and change in a changing environment remains incomplete. Given the high vascular plant species richness of urbanized areas in Germany, we asked whether these also have a higher phylogenetic diversity than rural areas, and whether phylogenetic diversity patterns differ systematically between species groups characterized by specific functional traits. Calculating the average phylogenetic distinctness of the total German flora and accounting for spatial autocorrelation, we show that phylogenetic diversity of urban areas does not reflect their high species richness. Hence, high urban species richness is mainly due to more closely related species that are functionally similar and able to deal with urbanization. This diminished phylogenetic information might decrease the flora's capacity to respond to environmental changes.  相似文献   

18.
Aim To assess the population genetic consequences of the colonization of two species with contrasting mating systems, Solidago canadensis and Lactuca serriola, along altitudinal gradients in both their native and introduced ranges. Location Allegheny Mountains, West Virginia and Wallowa Mountains, Oregon, USA; Valais, southern Switzerland. Methods Leaf material was collected from populations along altitudinal gradients and genotyped at seven microsatellite loci for each species. Differences in variability between native and introduced areas and in relation to altitude were analysed using linear models. Differences in the genetic, geographical and altitudinal structure of populations between areas were analysed by AMOVA, cluster analysis and Mantel tests. Results Genetic variation within and across populations of S. canadensis was significantly reduced, while populations of L. serriola were significantly more variable, in the introduced area. Genetic diversity decreased significantly with altitude for S. canadensis but not L. serriola. Genetic structure of S. canadensis was similar in both areas, and populations were isolated by geographical but not altitudinal distance. By contrast, population structure of L. serriola was much weaker in the introduced area, and populations were not isolated by distance in either area. Main conclusions Solidago canadensis has experienced a strong genetic bottleneck on introduction to the Valais, but this has not prevented it from colonizing a wide altitudinal range. Variation in neutral markers is therefore not necessarily a good measure for judging the ecological behaviour of a species. By contrast, the greater variability of L. serriola in the introduced area, where it also occurs over a greater altitudinal range, can be explained by increased outcrossing among admixed populations. This suggests that the ecological amplitude of alien species might be enhanced after population admixture in the new range, especially for species with highly structured native populations. However, even genetically depauperate introduced populations can be expected to colonize the same environmental range that they occupy in the native area.  相似文献   

19.
Biological invasions may combine the genetic effects of population bottlenecks and selection and thus provide valuable insight into the role of such processes during novel environmental colonizations. However, these processes are also influenced by multiple invasions, the number of individuals introduced and the degree of similarity between source and receiving habitats. The amphipod Gammarus tigrinus provides a useful model to assess these factors, as its invasion history has involved major environmental transitions. This species is native to the northwest Atlantic Ocean, although it invaded both brackish and freshwater habitats in the British Isles after introduction more than 65 years ago. It has also spread to similar habitats in Western Europe and, most recently, to Eastern Europe, the Baltic Sea, and the Laurentian Great Lakes. To examine sources of invasion and patterns of genetic change, we sampled populations from 13 native estuaries and 19 invaded sites and sequenced 542 bp of the mitochondrial COI gene. Strong native phylogeographical structure allowed us to unambiguously identify three allopatrically evolved clades (2.3-3.1% divergent) in invading populations, indicative of multiple introductions. The most divergent clades occurred in the British Isles and mainland Europe and were sourced from the St Lawrence and Chesapeake/Delaware Bay estuaries. A third clade was found in the Great Lakes and sourced to the Hudson River estuary. Despite extensive sampling, G. tigrinus did not occur in freshwater at putative source sites. Some European populations showed reduced genetic diversity consistent with bottlenecks, although selection effects cannot be excluded. The habitat distribution of clades in Europe was congruent with the known invasion history of secondary spread from the British Isles. Differences in salinity tolerance among lineages were suggested by patterns of habitat colonization by different native COI clades. Populations consisting of admixtures of the two invading clades were found principally at recently invaded fresh and brackish water sites in Eastern Europe, and were characterized by higher genetic diversity than putative source populations. Further studies are required to determine if these represent novel genotypes. Our results confirm that biological invasions need not result in diminished genetic diversity, particularly if multiple source populations, each with distinctive genetic composition, contribute to the founding populations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号