首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The oxazole homodimer YOYO-1 has served as a valuable tool for the detection and quantification of nucleic acids. While the base specificity and selectivity of binding of YOYO-1 has been researched to some extent, the effect of unorthodox nucleic acid conformations on dye binding has received relatively less attention. In this work, we attempt to correlate the quadruplex-forming ability of G-rich sequences with binding of YOYO-1. Oligonucleotides differing in the number of tandem G repeats, total length, and length of loop sequence were evaluated for their ability to form quadruplexes in presence of sodium (Na+) or potassium (K+) ions. The fluorescence behavior of YOYO-1 upon binding such G-rich sequences was also ascertained. A distinct correlation was observed between the strength and propensity of quadruplex formation, and the affinity of YOYO-1 to bind such sequences. Specifically, as exemplified by the oligonucleotides 5′-G4T2G4-3′ and 5′-G3TG3TG3-3′, sequences possessing longer G-rich regions and shorter loop sequences formed stronger quadruplexes in presence of K+ which translated to weaker binding of YOYO-1. The dependence of binding of YOYO-1 on sequence and structural features of G-rich DNA has not been explored previously and such studies are expected to aid in more effective interpretation of applications involving the fluorophore.  相似文献   

2.
《Biophysical journal》2022,121(21):4078-4090
DNA self-assembly has emerged as a powerful strategy for constructing complex nanostructures. While the mechanics of individual DNA strands have been studied extensively, the deformation behaviors and structural properties of self-assembled architectures are not well understood. This is partly due to the small dimensions and limited experimental methods available. DNA crystals are macroscopic crystalline structures assembled from nanoscale motifs via sticky-end association. The large DNA constructs may thus be an ideal platform to study structural mechanics. Here, we investigate the fundamental mechanical properties and behaviors of ligated DNA crystals made of tensegrity triangular motifs. We perform coarse-grained molecular dynamics simulations and confirm the results with nanoindentation experiments using atomic force microscopy. We observe various deformation modes, including untension, linear elasticity, duplex dissociation, and single-stranded component stretch. We find that the mechanical properties of a DNA architecture are correlated with those of its components. However, the structure shows complex behaviors which may not be predicted by components alone and the architectural design must be considered.  相似文献   

3.
Recent studies have suggested that treatment of glucocorticoid to immature growth hormone (GH)-producing cell line, MtT/S cells, dramatically induced the accumulation of GH-containing secretory granules in the cytosol and differentiated into mature GH-producing cells. However, the molecular mechanism of glucocorticoid-induced GH-containing secretory granule biogenesis in the MtT/S cells remains unknown. In the present study, we found that GH mRNA expression was facilitated by application of glucocorticoid. We artificially increased GH synthesis by transfection of green fluorescent protein-tagged GH (GH-GFP) gene. We found that the artificial elevation of GH expression in the cells did not accumulate the secretory granules in the cytosol, whereas glucocorticoid-induced the biogenesis of granules in GH-GFP-expressing MtT/S cells. We next performed DNA microarray and real-time RT-PCR analysis and found that glucocorticoid significantly altered the expression of membrane trafficking-related protein, syntaxin11 (Syx11). Immunocytochemical analysis further demonstrated that Syx11 positive structures were well colocalized with GH-containing granules in both MtT/S cells and rat anterior pituitary gland. Our findings indicate that glucocorticoid regulate the expression of Syx11 and facilitate the biogenesis and the trafficking of GH-containing granules in the MtT/S cells.  相似文献   

4.
5.
By using optical tweezers and a specially designed flow cell with an integrated glass micropipette, we constructed a setup similar to that of Smith et al. (Science 271:795-799, 1996) in which an individual double-stranded DNA (dsDNA) molecule can be captured between two polystyrene beads. The first bead is immobilized by the optical tweezers and the second by the micropipette. Movement of the micropipette allows manipulation and stretching of the DNA molecule, and the force exerted on it can be monitored simultaneously with the optical tweezers. We used this setup to study elongation of dsDNA by RecA protein and YOYO-1 dye molecules. We found that the stability of the different DNA-ligand complexes and their binding kinetics were quite different. The length of the DNA molecule was extended by 45% when RecA protein was added. Interestingly, the speed of elongation was dependent on the external force applied to the DNA molecule. In experiments in which YOYO-1 was added, a 10-20% extension of the DNA molecule length was observed. Moreover, these experiments showed that a change in the applied external force results in a time-dependent structural change of the DNA-YOYO-1 complex, with a time constant of approximately 35 s (1/e2). Because the setup provides an oriented DNA molecule, we determined the orientation of the transition dipole moment of YOYO-1 within DNA by using fluorescence polarization. The angle of the transition dipole moment with respect to the helical axis of the DNA molecule was 69 degrees +/- 3.  相似文献   

6.
Recently, it has become clear that with the addition of polyamines, giant DNA molecules of size greater than 10 kbp exhibit all-or-none switching between elongated coil and folded compact states. Here the effects of the intercalating fluorescent labeling dye, YOYO-1, and the minor-groove binding fluorescent labeling dye, DAPI, on the folding transition of single giant T4 DNA (166 kbp) induced by spermidine(3+) were examined, by use of the experimental technique of single molecular chain observation with fluorescence microscopy. It is found that the intercalating dye, YOYO-1, markedly prevents the folding transition, whereas the minor-groove binding dye, DAPI, exhibits negligible effect on the folding transition. This action of YOYO-1 is discussed in relation to the biological effect of intercalators.  相似文献   

7.
The Young's dynamical modulus (E) and the DNA film logarithmic decrement (theta) at frequencies from 50 Hz to 20 kHz are measured. These values are investigated as functions of the degree of hydration and temperature. Isotherms of DNA film hydration at 25 degrees C are measured. The process of film hydration changing with temperature is studied. It is shown that the Young's modulus for wet DNA films (E = 0.02-0.025 GN m-2) strongly increases with decreasing hydration and makes E = 0.5-0.7 GN m-2. Dependence of E on hydration is of a complex character. Young's modulus of denatured DNA films is larger than that of native ones. All peculiarities of changing of E and theta of native DNA films (observed at variation of hydration) vanish in the case of denatured ones. The native and denatured DNA films isotherms are different and depend on the technique of denaturation. The Young's modulus of DNA films containing greater than 1 g H2O/g dry DNA is found to decrease with increasing temperature, undergoing a number of step-like changes accompanied by changes in the film hydration. At low water content (less than 0.3 g H2O/g dry DNA), changing of E with increasing temperature takes place smoothly. The denaturation temperature is a function of the water content.  相似文献   

8.
To improve transfection efficiency following delivery of plasmid expression vectors using lipid-based carriers, it is crucial to define structural characteristics of the lipid/DNA complexes that optimize transgene expression. Due to its strong affinity for DNA and high quantum yield, the fluorescent DNA intercalator YOYO-1 was used as a tool to assess changes in DNA that occur following lipid binding and cell delivery. In this study, the stability of the dye/DNA complex following binding of poly-L-lysine or monocationic lipids is characterized. More than 98% of the fluorescence measured for a defined DNA/YOYO-1 complex was lost when DNA was condensed using poly-L-lysine. This loss in fluorescence could be attributed to displacement of bound dye. In contrast, more than 30% of the fluorescence of the dye-labeled DNA was retained after formation of cationic lipid/DNA complexes. Significantly, the results illustrate differences in structural changes cationic lipids and PLL exert on plasmid DNA. The fluorescent lipid/DNA complex was used to assess DNA delivery to murine B16/BL6 cells in vitro. An assay relying on fluorescence resonance energy transfer between bound YOYO-1 and propidium iodide was used to distinguish between DNA attached to the cell surface and internalized DNA.  相似文献   

9.
Neurofilaments belong to the class of cytoskeletal intermediate filaments and are the predominant structural elements in axons. They are composed of a semiflexible backbone and highly charged anionic sidearms protruding from the surface of the filaments. Here, the rheology of in-vitro networks of neurofilaments purified from pig spinal cord was determined. The mechanical properties of these networks are qualitatively similar to other hydrogels of semiflexible polymers. The low-deformation storage modulus G'(omega) showed a concentration (c) dependence of G' approximately c (1.3) that is consistent with a model for semiflexible networks, but was also observed for polyelectrolyte brushes. A terminal relaxation was not observed in the frequency range investigated (0.007-5 Hz), supporting the notion that sidearms act as cross-links hindering slip between filaments on a time scale of many minutes. The mesh size distribution of the network was measured by analysis of Brownian motion of embedded beads. The concentration dependence of the mesh size follows the same power law behaviour as found for F-actin networks, but shows a significantly wider distribution attributable to the smaller persistence length of neurofilaments. The attractive interaction between filaments is increased by addition of Al(3+) ions resulting in a reduction of the linear response regime from strains bigger than 80% to less than 30%.  相似文献   

10.
A pair of stereoisomeric covalent adducts to guanine in double-stranded DNA, derived from the reaction of mutagenic and tumorigenic metabolites of benzo[a]pyrene, have been well characterized structurally and thermodynamically. Both high-resolution NMR solution structures and an array of thermodynamic data are available for these 10S (+)- and 10R (-)-trans-anti -[BP]-N(2)-dG adducts in double-stranded deoxyoligonucleotides. The availability of experimentally well-characterized duplexes containing these two stereoisomeric guanine adducts provides an opportunity for evaluating the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method for computing thermodynamic properties from molecular dynamics ensembles. We have carried out 3-ns molecular dynamics simulations, using NMR solution structures as the starting models for the 10S (+)- and 10R (-)-trans-anti-dG adducts in a DNA duplex 11-mer using AMBER 6.0. We employed the MM-PBSA method to compute the free energies, enthalpies, and entropies of the two adducts. Our complete thermodynamic analysis agrees quite well with the full experimental thermodynamic characterization of these adducts, showing essentially equal stabilities of the two adducts. We also calculated the nuclear Overhauser effect (NOE) distances from the molecular dynamics trajectories, and compared them against the experimental NMR-derived NOE distances. Our results showed that the simulated structures are in good agreement with the NMR experimental NOE data. Furthermore, the molecular dynamics simulations provided new structural and biological insights. Specifically, the puzzling observation that the BP aromatic ring system in the 10S (+)-trans-anti-dG adduct is more exposed to the aqueous solvent than the 10R (-)-trans-anti-dG adduct, is rationalized in terms of the adduct structures. The structural and thermodynamic features of these stereoisomeric adducts are also discussed in relation to their reported low susceptibilities to nucleotide excision repair.  相似文献   

11.
12.
13.
Chen W  Feng P  Lin H 《FEBS letters》2012,586(6):934-938
In this study, we introduced two DNA structural characteristics, namely, bendability and hydroxyl radical cleavage intensity to analyze origin of replication (ORI) in the Saccharomyces cerevisiae genome. We found that both DNA bendability and cleavage intensity in core replication regions were significantly lower than in the linker regions. By using these two DNA structural characteristics, we developed a computational model for ORI prediction and evaluated the model in a benchmark dataset. The predictive performance of the jackknife cross-validation indicates that DNA bendability and cleavage intensity have the ability to describe core replication regions and our model is effective in ORI prediction.  相似文献   

14.
15.
The influence of complexing agents such as methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, cyclohexanol and 2-octanol on the formation of a blue coloured amylose · iodine complex (pH 4.8), under suboptomum concentrations of iodine and in the absence of potassium iodide, is studied by recording the absorbance at 640 nm. A drop in absorbance at 640 nm accompanied by a blue shift in the spectrum (580–640 nm) was observed at higher concentration of the complexing agents. This behaviour of amylose partially complexed with iodine appears to be due to ligand-induced structural changes in the amylose chain. The fall in absorbance at 640 nm observed when the temeprature of amylose · oidine complex in the presence of complexing agents is raised, and the subsequent regeneration of the absorbance on cooling, indicates the possible helix to random coil transition of the amylose chain in an aqueous system.  相似文献   

16.
Formamidopyrimidine-DNA glycosylase (Fpg) is a DNA repair enzyme that excises oxidized purines from damaged DNA. The Schiff base intermediate formed during this reaction between Escherichia coli Fpg and DNA was trapped by reduction with sodium borohydride, and the structure of the resulting covalently cross-linked complex was determined at a 2.1-A resolution. Fpg is a bilobal protein with a wide, positively charged DNA-binding groove. It possesses a conserved zinc finger and a helix-two turn-helix motif that participate in DNA binding. The absolutely conserved residues Lys-56, His-70, Asn-168, and Arg-258 form hydrogen bonds to the phosphodiester backbone of DNA, which is sharply kinked at the lesion site. Residues Met-73, Arg-109, and Phe-110 are inserted into the DNA helix, filling the void created by nucleotide eversion. A deep hydrophobic pocket in the active site is positioned to accommodate an everted base. Structural analysis of the Fpg-DNA complex reveals essential features of damage recognition and the catalytic mechanism of Fpg.  相似文献   

17.
18.
Akan P  Deloukas P 《Gene》2008,410(1):165-176
  相似文献   

19.
To address the absence of experimental data on the full-length structure of HIV-1 integrase and the way it binds to viral and human DNA, we had previously [Karki, R. G.; Tang, Y.; Burke, T. R., Jr.; Nicklaus, M. C. J. Comput. Aided Mol. Des.2004, 18, 739] constructed models of full-length HIV-1 integrase complexed with models of viral and human DNA. Here we describe the discovery of novel HIV-1 integrase strand transfer inhibitors based on one of these models. Virtual screening methods including docking and filtering by predicted ADME/Tox properties yielded several microM level inhibitors of the strand transfer reaction catalyzed by wild-type HIV-1 integrase.  相似文献   

20.
Mutant rat trypsin Asp189Ser was prepared and complexed with highly purified human α1-proteinase inhibitor. The complex formed was purified to homogeneity and studied by N-terminal amino acid sequence analysis and limited proteolysis with bovine trypsin. As compared to uncomplexed mutant trypsin, the mutant enzyme complexed with α1-proteinase inhibitor showed a highly increased susceptibility to enzymatic digestion. The peptide bond selectively attacked by bovine trypsin was identified as the Arg117-Val118 one of trypsin. The structural and mechanistic relevance of this observation to serine proteinase-substrate and serine proteinase-serpin reactions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号