首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Tegument is a unique structure of herpesvirus, which surrounds the capsid and interacts with the envelope. Morphogenesis of gammaherpesvirus is poorly understood due to lack of efficient lytic replication for Epstein-Barr virus and Kaposi''s sarcoma-associated herpesvirus/human herpesvirus 8, which are etiologically associated with several types of human malignancies. Murine gammaherpesvirus 68 (MHV-68) is genetically related to the human gammaherpesviruses and presents an excellent model for studying de novo lytic replication of gammaherpesviruses. MHV-68 open reading frame 33 (ORF33) is conserved among Alpha-, Beta-, and Gammaherpesvirinae subfamilies. However, the specific role of ORF33 in gammaherpesvirus replication has not yet been characterized. We describe here that ORF33 is a true late gene and encodes a tegument protein. By constructing an ORF33-null MHV-68 mutant, we demonstrated that ORF33 is not required for viral DNA replication, early and late gene expression, viral DNA packaging or capsid assembly but is required for virion morphogenesis and egress. Although the ORF33-null virus was deficient in release of infectious virions, partially tegumented capsids produced by the ORF33-null mutant accumulated in the cytoplasm, containing conserved capsid proteins, ORF52 tegument protein, but virtually no ORF45 tegument protein and the 65-kDa glycoprotein B. Finally, we found that the defect of ORF33-null MHV-68 could be rescued by providing ORF33 in trans or in an ORF33-null revertant virus. Taken together, our results indicate that ORF33 is a tegument protein required for viral lytic replication and functions in virion morphogenesis and egress.Gammaherpesviruses are associated with tumorigenesis. Like other herpesviruses, they are characterized as having two distinct stages in their life cycle: lytic replication and latency (15, 16, 18, 21, 54). Latency provides the viruses with advantages to escape host immune surveillance and to establish lifelong persistent infection and contributes to transformation and development of malignancies. However, it is through lytic replication that viruses propagate and transmit among hosts to maintain viral reservoirs. Both viral latency and lytic replication play important roles in tumorigenesis. The gammaherpesvirus subfamily includes Epstein-Barr virus (EBV), Kaposi''s sarcoma-associated herpesvirus (KSHV)/human herpesvirus 8 and murine gammaherpesvirus 68 (MHV-68), among others. EBV is associated with Burkitt''s lymphoma, nasopharyngeal carcinoma, Hodgkin''s disease, and lymphoproliferative diseases in immunodeficient patients (28). KSHV is etiologically linked with Kaposi''s sarcoma, primary effusion lymphoma, and multicentric Castleman''s disease (11-13, 22, 52). Neither in vivo nor in vitro studies of EBV and KSHV are convenient due to their propensity to establish latency in cell culture and their limited host ranges.MHV-68 is genetically related to these two human gammaherpesviruses, especially to KSHV, based on the alignment of their genomic sequences and other biological properties (55). As a natural pathogen of wild rodents, MHV-68 also infects laboratory mice (6, 40, 46) and replicates to a high titer in a variety of fibroblast and epithelial cell lines. These advantages make MHV-68 an excellent model for studying the lytic replication of gammaherpesviruses in vitro and certain aspects of virus-host interactions in vivo. In addition, the MHV-68 genome has been cloned as a bacterial artificial chromosome (BAC) that can propagate in Escherichia coli (1, 2, 36, 51), making it convenient to study the function of each open reading frame (ORF) by genetic methods. Exploring the functions of MHV-68 ORFs will likely shed light on the functions of their homologues in human gammaherpesviruses.Gammaherpesviral particles have a characteristic multilayered architecture. An infectious virion contains a double-stranded DNA genome, an icosahedral capsid shell, a thick, proteinaceous tegument compartment, and a lipid bilayer envelope spiked with glycoproteins (14, 30, 47, 49). As a unique structure of herpesviruses, the tegument plays important roles in multiple aspects of the viral life cycle, including virion assembly and egress (38, 48, 53), translocation of nucleocapsids into the nucleus, transactivation of viral immediate-early genes, and modulation of host cell gene expression, innate immunity, and signal transduction (9, 10, 23, 60). Some components of MHV-68 tegument have been identified by a mass spectrometric study (8), and the functions of some tegument proteins have been revealed, such as ORF45, ORF52, and ORF75c (7, 24, 29).MHV-68 ORF33 is conserved among Alpha-, Beta-, and Gammaherpesvirinae subfamilies. Its homologues include human herpes simplex virus type 1 (HSV-1) UL16, human herpes simplex virus type 2 (HSV-2) UL16, human cytomegalovirus (HCMV) UL94, EBV BGLF2, KSHV ORF33, and rhesus monkey rhadinovirus (RRV) ORF33. HSV-1 UL16 has been identified as a tegument protein and may function in viral DNA packaging, virion assembly, budding, and egress (5, 32, 35, 41, 44). HCMV UL94 is a virion associated protein and might function in virion assembly and budding (31, 57). EBV BGLF2, KSHV ORF33, and RRV ORF33 are also virion-associated proteins, but their functions are not clear (26, 43, 59). The mass spectrometric study of MHV-68 did not identify ORF33 as a virion component (8), although ORF33 is found to be essential for viral lytic replication by transposon mutagenesis of the MHV-68 genome cloned as a BAC (51). However, insertion of the 1.2-kbp Mu transposon in that study may influence the expression of ORFs approximate to ORF33. Consequently, the role ORF33 plays in viral replication needs to be confirmed, preferably through site-directed mutagenesis. Whether ORF33 is a tegument protein and the exact viral replication stage in which it functions also need to be investigated.We determined that MHV-68 ORF33 encodes a tegument protein and is expressed with true late kinetics. To explore the function of ORF33 in viral lytic phase, we used site-directed mutagenesis and generated an ORF33-null mutant, taking advantage of the MHV-68 BAC system. We showed that the ORF33-null mutant is capable of viral DNA replication, early and late gene expression, capsid assembly, and DNA packaging, but incapable of virion release. The defect of ORF33-null mutant can be rescued in trans by an ORF33 expression plasmid.  相似文献   

12.
13.
14.
15.
16.
Infection of inbred mice with murine gammaherpesvirus 68 (MHV68) has proven to be a powerful tool to study gammaherpesvirus pathogenesis. However, one of the limitations of this system has been the inability to directly detect infected cells harvested from infected animals. To address this issue, we generated a transgenic virus that expresses the enhanced yellow fluorescent protein (YFP), driven by the human cytomegalovirus immediate-early promoter and enhancer, from a neutral locus within the viral genome. This virus, MHV68-YFP, replicated and established latency as efficiently as did the wild-type virus. During the early phase of viral latency, MHV68-YFP efficiently marked latently infected cells in the spleen after intranasal inoculation. Staining splenocytes for expression of various surface markers demonstrated the presence of MHV68 in distinct populations of splenic B cells harboring MHV68. Notably, these analyses also revealed that markers used to discriminate between newly formed, follicular and marginal zone B cells may not be reliable for phenotyping B cells harboring MHV68 since virus infection appears to modulate cell surface expression levels of CD21 and CD23. However, as expected, we observed that the overwhelming majority of latently infected B cells at the peak of latency exhibited a germinal center phenotype. These analyses also demonstrated that a significant percentage of MHV68-infected splenocytes at the peak of viral latency are plasma cells (ca. 15% at day 14 and ca. 8% at day 18). Notably, the frequency of virus-infected plasma cells correlated well with the frequency of splenocytes that spontaneously reactivate virus upon explant. Finally, we observed that the efficiency of marking latently infected B cells with the MHV68-YFP recombinant virus declined at later times postinfection, likely due to shut down of transgene expression, and indicating that the utility of this marking strategy is currently limited to the early stages of virus infection.Gammaherpesviruses are characterized by their ability to establish life-long infection in lymphocytes of their host as well as their oncogenic potential. The human gammaherpesviruses, Epstein-Barr virus (EBV) and human herpesvirus 8 (HHV-8; also known as Kaposi''s sarcoma-associated herpesvirus [KSHV]), are associated with a variety of neoplasms. EBV has been implicated in Burkitt''s lymphoma, nasopharyngeal carcinoma, and non-Hodgkin''s lymphoma (15, 27, 33). HHV-8 has been associated with Kaposi''s sarcoma, primary effusion lymphoma, and multicentric Castleman''s disease (4, 5, 7, 24).Research on the human gammaherpesvirus is hindered by their strict species specificity, and thus has been limited mostly to in vitro analyses. Murine gammaherpesvirus 68 (MHV68) is a closely related gammaherpesvirus that naturally infects rodents and provides a useful small animal model to study aspects of gammaherpesvirus pathogenesis that cannot be addressed for the human herpesviruses (3, 22, 25). In addition, the viral genome has been cloned as a bacterial artificial chromosome (BAC) and can readily be manipulated in Escherichia coli (1) and, coupled with the availability of numerous transgenic and knockout strains of mice, MHV68 infection of laboratory mice has provided a powerful small animal model for characterizing basic aspects of gammaherpesvirus pathogenesis in vivo.Like the human gammaherpesviruses, MHV68 establishes long-term latency in B cells, although at early time points after infection latency can also be detected in macrophages and dendritic cells (11, 26, 30). Acute infection is cleared around 2 to 3 weeks postinfection, and by days 16 to 18 postinfection the frequency of viral genome-positive cells in the spleen is ca. 1 in 100 splenocytes (19, 31). This is the peak of splenic latency, and the frequency of infected cells begins to decline significantly until it reaches a steady-state level of ca. 1 in 10,000 splenocytes by 3 months postinfection. Previous analyses have shown that latency is mainly established in germinal center (GC) and memory B cells (12, 19, 31). At early time points during the establishment of latency, the GC fraction has been shown to have the highest percentage of infected cells (ca. 60 to 80% of MHV68-infected B cells) (12). However, even in this population, only around 10% of total GC cells are infected (12). This low frequency limits detailed molecular analyses that can be performed on infected cells (e.g., analysis of virus-induced changes in cellular gene expression).Until now, there has not been an efficient way to directly detect or purify/enrich for MHV68-infected cells harvested from the spleens of infected mice. Because of these issues, we sought to develop a method to efficiently mark infected cells that would allow easy detection, as well as isolation, of infected cells. To this end, we created a transgenic virus that expresses the enhanced yellow fluorescent protein (YFP) from a neutral locus in the viral genome located between open reading frames (ORFs) 27 and 29b. We have previously used this locus to introduce other transgenes (Cre-recombinase and IκBαM expression cassettes) and have shown that this locus tolerates the insertion of transgene expression cassettes (14, 20). We show here that the MHV68-YFP recombinant virus is capable of efficiently marking infected cells, that highly enriched populations of infected cells can easily be isolated based of YFP expression, and that direct detection of infected cells provides a powerful tool for phenotypic analysis of infected cell populations.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号