首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phenoxyalkanoic acid (PAA) herbicides are widely used in agriculture. Biotic degradation of such herbicides occurs in soils and is initiated by α-ketoglutarate- and Fe2+-dependent dioxygenases encoded by tfdA-like genes (i.e., tfdA and tfdAα). Novel primers and quantitative kinetic PCR (qPCR) assays were developed to analyze the diversity and abundance of tfdA-like genes in soil. Five primer sets targeting tfdA-like genes were designed and evaluated. Primer sets 3 to 5 specifically amplified tfdA-like genes from soil, and a total of 437 sequences were retrieved. Coverages of gene libraries were 62 to 100%, up to 122 genotypes were detected, and up to 389 genotypes were predicted to occur in the gene libraries as indicated by the richness estimator Chao1. Phylogenetic analysis of in silico-translated tfdA-like genes indicated that soil tfdA-like genes were related to those of group 2 and 3 Bradyrhizobium spp., Sphingomonas spp., and uncultured soil bacteria. Soil-derived tfdA-like genes were assigned to 11 clusters, 4 of which were composed of novel sequences from this study, indicating that soil harbors novel and diverse tfdA-like genes. Correlation analysis of 16S rRNA and tfdA-like gene similarity indicated that any two bacteria with D > 20% of group 2 tfdA-like gene-derived protein sequences belong to different species. Thus, data indicate that the soil analyzed harbors at least 48 novel bacterial species containing group 2 tfdA-like genes. Novel qPCR assays were established to quantify such new tfdA-like genes. Copy numbers of tfdA-like genes were 1.0 × 106 to 65 × 106 per gram (dry weight) soil in four different soils, indicating that hitherto-unknown, diverse tfdA-like genes are abundant in soils.Phenoxyalkanoic acid (PAA) herbicides such as MCPA (4-chloro-2-methyl-phenoxyacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) are widely used to control broad-leaf weeds in agricultural as well as nonagricultural areas (19, 77). Degradation occurs primarily under oxic conditions in soil, and microorganisms play a key role in the degradation of such herbicides in soil (62, 64). Although relatively rapidly degraded in soil (32, 45), both MCPA and 2,4-D are potential groundwater contaminants (10, 56, 70), accentuating the importance of bacterial PAA herbicide-degrading bacteria in soils (e.g., references 3, 5, 6, 20, 41, 59, and 78).Degradation can occur cometabolically or be associated with energy conservation (15, 54). The first step in the degradation of 2,4-D and MCPA is initiated by the product of cadAB or tfdA-like genes (29, 30, 35, 67), which constitutes an α-ketoglutarate (α-KG)- and Fe2+-dependent dioxygenase. TfdA removes the acetate side chain of 2,4-D and MCPA to produce 2,4-dichlorophenol and 4-chloro-2-methylphenol, respectively, and glyoxylate while oxidizing α-ketoglutarate to CO2 and succinate (16, 17).Organisms capable of PAA herbicide degradation are phylogenetically diverse and belong to the Alpha-, Beta-, and Gammproteobacteria and the Bacteroidetes/Chlorobi group (e.g., references 2, 14, 29-34, 39, 60, 68, and 71). These bacteria harbor tfdA-like genes (i.e., tfdA or tfdAα) and are categorized into three groups on an evolutionary and physiological basis (34). The first group consists of beta- and gammaproteobacteria and can be further divided into three distinct classes based on their tfdA genes (30, 46). Class I tfdA genes are closely related to those of Cupriavidus necator JMP134 (formerly Ralstonia eutropha). Class II tfdA genes consist of those of Burkholderia sp. strain RASC and a few strains that are 76% identical to class I tfdA genes. Class III tfdA genes are 77% identical to class I and 80% identical to class II tfdA genes and linked to MCPA degradation in soil (3). The second group consists of alphaproteobacteria, which are closely related to Bradyrhizobium spp. with tfdAα genes having 60% identity to tfdA of group 1 (18, 29, 34). The third group also harbors the tfdAα genes and consists of Sphingomonas spp. within the alphaproteobacteria (30).Diverse PAA herbicide degraders of all three groups were identified in soil by cultivation-dependent studies (32, 34, 41, 78). Besides CadAB, TfdA and certain TfdAα proteins catalyze the conversion of PAA herbicides (29, 30, 35). All groups of tfdA-like genes are potentially linked to the degradation of PAA herbicides, although alternative primary functions of group 2 and 3 TfdAs have been proposed (30, 35). However, recent cultivation-independent studies focused on 16S rRNA genes or solely on group 1 tfdA sequences in soil (e.g., references 3-5, 13, and 41). Whether group 2 and 3 tfdA-like genes are also quantitatively linked to the degradation of PAA herbicides in soils is unknown. Thus, tools to target a broad range of tfdA-like genes are needed to resolve such an issue. Primers used to assess the diversity of tfdA-like sequences used in previous studies were based on the alignment of approximately 50% or less of available sequences to date (3, 20, 29, 32, 39, 47, 58, 73). Primers specifically targeting all major groups of tfdA-like genes to assess and quantify a broad diversity of potential PAA degraders in soil are unavailable. Thus, the objectives of this study were (i) to develop primers specific for all three groups of tfdA-like genes, (ii) to establish quantitative kinetic PCR (qPCR) assays based on such primers for different soil samples, and (iii) to assess the diversity and abundance of tfdA-like genes in soil.  相似文献   

2.
Most Ralstonia solanacearum strains are tropical plant pathogens, but race 3, biovar 2 (R3bv2), strains can cause bacterial wilt in temperate zones or tropical highlands where other strains cannot. R3bv2 is a quarantine pathogen in North America and Europe because of its potential to damage the potato industry in cooler climates. However, R3bv2 will not become established if it cannot survive temperate winters. Previous experiments showed that in water at 4°C, R3bv2 does not survive as long as native U.S. strains, but R3bv2 remains viable longer than U.S. strains in potato tubers at 4°C. To further investigate the effects of temperature on this high-concern pathogen, we assessed the ability of R3bv2 and a native U.S. strain to survive typical temperate winter temperature cycles of 2 days at 5°C followed by 2 days at −10°C. We measured pathogen survival in infected tomato and geranium plants, in infected potato tubers, and in sterile water. The population sizes of both strains declined rapidly under these conditions in all three plant hosts and in sterile water, and no culturable R. solanacearum cells were detected after five to seven temperature cycles in plant tissue. The fluctuations played a critical role in loss of bacterial viability, since at a constant temperature of −20°C, both strains could survive in infected geranium tissue for at least 6 months. These results suggest that even when sheltered in infected plant tissue, R3bv2 is unlikely to survive the temperature fluctuations typical of a northern temperate winter.To endure in an environment that does not provide consistent access to a living host, a pathogen must be able to persist during periods of suboptimal conditions (1). Understanding the limits of pathogen survival can lead to control methods for vulnerable regions, while climates that exceed these limits offer natural protection from establishment of an exotic pathogen (30).Ralstonia solanacearum is a soilborne plant pathogen that causes bacterial wilt disease in over 200 plant species in warm-temperate and tropical climates worldwide (21). R. solanacearum can be transmitted by contaminated surface water and soil, latently infected plant cuttings, and discarded plant debris. This pathogen colonizes host plant vascular tissue after entering through naturally occurring root wounds. The bacterium multiplies rapidly in the xylem elements, inducing characteristic wilting before disseminating back into the environment to infect a new host or die (21).One subgroup of the R. solanacearum species complex, now classified as phylotype II, sequevar 1, but historically and for regulatory purposes known as race 3, biovar 2 (R3bv2), causes brown rot of potato (2). Brown rot is a major source of potato crop losses in the tropical highlands worldwide, costing growers an estimated $950 million each year (2, 12). The potato is only one host of R3bv2, however, as the strain also infects tomato plants, eggplant, and many wild and horticultural plants (13, 25, 34, 47, 52). Infected geranium cuttings have been accidentally introduced to North America and Europe from the highland tropics, although the bacterium has not become established in North America (25, 29, 40, 41, 53). R3bv2 most likely originated in the Andes with potato plants, since isolates from around the world are essentially clonal (14, 22, 39, 48). Phylotype II, sequevar 7 (formerly race 1), strains that infect tomato, pepper, and tobacco plants are endemic to the warm temperate and subtropical zones of the southeastern United States, but these have never become established north of the mid-Atlantic states.R3bv2 is a quarantine pest in North America and Europe. It is considered a threat because it can cause disease at cooler temperatures than tropical R. solanacearum strains and is widespread in the cool highland tropics (8, 9, 45, 46). If R3bv2 could overwinter in the harsher climate of the northern United States and Canada, it could threaten the $4 billion North American potato industry (http://www.agr.gc.ca/).It has proven difficult to eradicate R3bv2 from northern Europe, where it appeared in the 1990s. Although the pathogen survives poorly in 4°C water or in field soil in the Netherlands (49, 50), R3bv2 can overwinter in reservoir hosts. One documented reservoir is the bittersweet nightshade, Solanum dulcamara, a common weed found near water in both Europe and North America (11). Although R3bv2 is still detected in waterways in northern Europe more than 15 years after its initial discovery, it has not caused significant disease-related losses, probably because the relatively cool summer temperatures are not optimal for wilt symptom development (4, 7, 12).R. solanacearum remains viable for decades in pure water at room temperature in the laboratory and is also easily disseminated in irrigation water (10, 21, 35). However, in 4°C water, R3bv2 does not survive as long as some other R. solanacearum strains, including those endemic to the southern United States (31). Despite this poor cold survival in water, R3bv2 populations remain stable in potato tubers at 4°C, indicating that the pathogen is adapted to endure constant low temperatures when sheltered in host tissue (31). These data suggest that the cool climate epidemiology of R3bv2 strains involves interactions with host plants rather than direct physiological adaptations such as the increased membrane fluidity and RNA stability that contribute to cold tolerance in some food-borne mammalian pathogens (31, 33).While previous studies found that R. solanacearum can survive months or years in soil in association with plant tissue, this trait has not previously been studied under the cold and fluctuating conditions typical of commercial potato-growing areas in North America (16-20, 37, 50). In addition, although plant pathogens commonly persist in decaying plant tissue, it was not known if sheltering inside dead hosts improves R3bv2 survival of suboptimal conditions. We therefore designed experiments to assess the survival of R3bv2 in infected plant tissue at stable subzero temperatures and during temperature cycles. We also studied the virulence of R3bv2 cells following long-term incubation inside geranium stems at subzero temperatures.  相似文献   

3.
4.
The occurrence of 10 pathogens and three fecal indicators was assessed by quantitative PCR in manures of Australian feedlot cattle. Most samples tested positive for one or more pathogens. For the dominant pathogens Campylobacter jejuni, Listeria monocytogenes, Giardia spp., Cryptosporidium spp., and eaeA-positive Escherichia coli, 102 to 107 genome copies g−1 (dry weight) manure were recovered.More than 600,000 tons of feedlot cattle manure are generated each year in Australia, which raises concern for potential water, air, and soil contamination (21, 27). Hence, better monitoring and knowledge of the resulting risks are needed (5, 26). Most zoonotic pathogens associated with cattle are well described in the literature, especially those of major health significance, including the bacterial pathogens Campylobacter spp., Listeria monocytogenes, pathogenic Escherichia coli (particularly serotypes O157 and O111), Salmonella enterica, Yersinia spp., Leptospira spp., Coxiella burnetii, Mycobacterium avium subsp. paratuberculosis, and the parasitic protozoa Giardia lamblia and Cryptosporidium parvum (2, 21, 27). While studies of pathogen occurrence in manure are numerous, data suited to quantitatively estimating end user risks are still limited. Few surveys quantify multiple pathogens (11, 12, 14, 28), and none have concurrently measured all 10 above in cattle manure. A further constraint on risk assessment is that most data were generated in North America or Europe, where cli-mate and environment can differ markedly from Australian conditions.Addressing this knowledge gap now appears feasible, as real-time quantitative PCR (qPCR) can be used as an alternative to culture-based methods for quantifying environmental pathogens (7, 23, 29). Improvements in sample preparation and nucleic acid cleanup methods have largely overcome problems associated with the molecular biology-based analysis of fecal matter (22). Further, qPCR can detect stressed, damaged, and otherwise nonculturable cells persisting in a state of dormancy or indeed dead (15, 17, 29). The aim of this paper is to report on a quantitative survey of zoonotic pathogens and indicators in manures from Australian feedlot beef cattle.A total of 128 composited samples (five subsamples each) representing fresh feces (n = 32), pen manure (n = 32), harvested pen manure (n = 28), stockpiled manure (n = 23), composted manure (n = 6), and carcass compost (n = 7) were collected from five cattle feedlots in eastern Australia in the winter/summer of 2009 (13). All samples were assayed for the 10 key pathogens listed above and also fecal indicators (total coliforms, E. coli, and enterococci).  相似文献   

5.
Carbon fixation at temperatures above 73°C, the upper limit for photosynthesis, is carried out by chemosynthetic thermophiles. Yellowstone National Park (YNP), Wyoming possesses many thermal features that, while too hot for photosynthesis, presumably support chemosynthetic-based carbon fixation. To our knowledge, in situ rates of chemosynthetic reactions at these high temperatures in YNP or other high-temperature terrestrial geothermal springs have not yet been reported. A microbial community attached to precipitated elemental sulfur (So floc) at the source of Dragon Spring (73°C, pH 3.1) in Norris Geyser Basin, YNP, exhibited a maximum rate of CO2 uptake of 21.3 ± 11.9 μg of C 107 cells−1 h−1. When extrapolated over the estimated total quantity of So floc at the spring''s source, the So floc-associated microbial community accounted for the uptake of 121 mg of C h−1 at this site. On a per-cell basis, the rate was higher than that calculated for a photosynthetic mat microbial community dominated by Synechococcus spp. in alkaline springs at comparable temperatures. A portion of the carbon taken up as CO2 by the So floc-associated biomass was recovered in the cellular nucleic acid pool, demonstrating that uptake was coupled to fixation. The most abundant sequences in a 16S rRNA clone library of the So floc-associated community were related to chemolithoautotrophic Hydrogenobaculum strains previously isolated from springs in the Norris Geyser Basin. These microorganisms likely contributed to the uptake and fixation of CO2 in this geothermal habitat.The upper temperature limit for primary production via photosynthesis is ∼73°C (7, 8, 11). At this temperature, photosynthesis is restricted to cyanobacteria of the genus Synechococcus, which generally inhabit alkaline environments (11). In acidic environments (pH < 4.0), the upper temperature limit for photosynthetic-based primary production is ∼56°C. Under these conditions, phototrophic activity is restricted to the unicellular eukaryotic red algae Cyanidium, Galdieria, and Cyanidioschyzon, collectively referred to as “cyanidia” (6, 12, 31, 48). Primary production above this temperature in acidic environments occurs through chemoautotrophy, a metabolism restricted to prokaryotes.Yellowstone National Park (YNP), WY, possesses numerous high-temperature (73 to 93°C) geothermal environments that are thought to support communities of microorganisms through chemoautotrophic-based primary production. Evidence for chemosynthesis in these environments is based on the recovery of 16S rRNA gene sequences that are affiliated with cultivated representatives of the phyla Aquificae and Crenarchaeota, many of which are capable of CO2 fixation via the oxidation of hydrogen (H2) and/or sulfide (HS) (15, 17, 21, 24, 26, 28, 41, 46). Surprisingly, CO2 fixation has yet to be demonstrated in situ in YNP hot spring environments (acidic or alkaline) where temperatures exceed the limits of photosynthesis and where primary production is thought to be driven by chemoautotrophic metabolism (14, 15, 28, 29).Dragon Spring, an acid-sulfate-chloride (ASC) spring located in the Norris Geyser Basin of YNP, is a likely habitat for chemoautotrophic primary production. The pH of the water is ∼3.1, and the temperature of the water at the source fluctuates from 65 to 78°C, which is well above the upper temperature limit for photosynthesis under acidic conditions. Potential electron donors for chemolithoautotrophic growth in the source water include hydrogen (H2) and sulfide (S2−) at concentrations of 13 nM and 65 μM, respectively (15). In addition, submerged substrata at the spring''s source are blanketed by precipitates of elemental sulfur (S°), hereafter referred to as So floc (23). Inventories of bacterial and archaeal 16S rRNA genes recovered from So floc collected from the source of Dragon Spring indicate the presence of Crenarchaeota and Aquificae (4, 15). The latter are related to chemolithoautotrophic Hydrogenobaculum spp., representatives of which have recently been isolated from the spring (15). In the present study, we demonstrate uptake and fixation of CO2 at a temperature of 73°C by a Hydrogenobaculum-dominated microbial community associated with So floc collected from the source of Dragon Spring. This is the first direct evidence of CO2 uptake in situ by a thermoacidophilic microbial community at a temperature that precludes photosynthesis in terrestrial geothermal springs.  相似文献   

6.
A novel, obligately anaerobic, extremely thermophilic, cellulolytic bacterium, designated OB47T, was isolated from Obsidian Pool, Yellowstone National Park, WY. The isolate was a nonmotile, non-spore-forming, Gram-positive rod approximately 2 μm long by 0.2 μm wide and grew at temperatures between 55 and 85°C, with the optimum at 78°C. The pH range for growth was 6.0 to 8.0, with values of near 7.0 being optimal. Growth on cellobiose produced the fastest specific growth rate at 0.75 h−1. The organism also displayed fermentative growth on glucose, maltose, arabinose, fructose, starch, lactose, mannose, sucrose, galactose, xylose, arabinogalactan, Avicel, xylan, filter paper, processed cardboard, pectin, dilute acid-pretreated switchgrass, and Populus. OB47T was unable to grow on mannitol, fucose, lignin, Gelrite, acetate, glycerol, ribose, sorbitol, carboxymethylcellulose, and casein. Yeast extract stimulated growth, and thiosulfate, sulfate, nitrate, and sulfur were not reduced. Fermentation end products were mainly acetate, H2, and CO2, although lactate and ethanol were produced in 5-liter batch fermentations. The G+C content of the DNA was 35 mol%, and sequence analysis of the small subunit rRNA gene placed OB47T within the genus Caldicellulosiruptor. Based on its phylogenetic and phenotypic properties, the isolate is proposed to be designated Caldicellulosiruptor obsidiansis sp. nov. and OB47 is the type strain (ATCC BAA-2073).Cellulosic biomass will likely serve as an important source of stored renewable energy in the future. However, improvements in overcoming the recalcitrance of lignocellulosic materials to enzymatic hydrolysis must be made in order to efficiently convert biomass to liquid fuels (23, 27). Members of the genera Caldicellulosiruptor and Anaerocellum are obligatory anaerobic, extreme thermophiles within the Firmicutes and are known to express heat-stable extracellular enzyme systems for breaking down biomass (4). In addition, both hexose and pentose sugars can be utilized for fermentation (12, 16, 19, 28). Given these properties, recent studies have focused on the use of extreme thermophiles for biomass conversion to fuels, including Caldicellulosiruptor saccharolyticus as a biocatalyst for hydrogen production from biomass (10, 26) and A. thermophilum (also known as Caldicellulosiruptor bescii), which has been evaluated for growth on plant biomass without physical or chemical pretreatment (28, 29).A number of isolated strains of Caldicellulosiruptor have been described thus far, with several organisms originating from Icelandic hot springs (3, 14, 17, 18); the geothermal region of Kamchatka (15, 24); thermal features in New Zealand (19); and solar-heated freshwater ponds in Owens Valley, CA (9). The environmental parameters for growth appear to be fairly uniform for these organisms which prefer circumneutral to slightly alkaline pH and temperatures ranging from 60 to 83°C. None of the described isolates form spores, and all strains are heterotrophic obligate anaerobes which utilize a broad range of carbohydrates for fermentative growth. Complete genome sequences are available for C. saccharolyticus (26) and Anaerocellum thermophilum (28).Thus far, no species of Caldicellulosiruptor have been isolated and characterized from the major geothermal formations within Yellowstone National Park (YNP), WY. Recent enrichment and isolation attempts revealed a high abundance of cellulolytic organisms from hot springs within the Mud Volcano region of YNP. Using a high-throughput isolation method based on flow cytometry, a total of 53 isolates of Caldicellulosiruptor, based on small subunit rRNA analysis, were isolated from Obsidian Pool. Secondary screening of these strains provided an organism with rapid growth kinetics on pretreated biomass substrates as well as crystalline cellulose and xylan at 80°C. Based on small subunit rRNA analysis, genomic sequence comparisons, and phenotypic properties, we propose this organism as Caldicellulosiruptor obsidiansis OB47T sp. nov., which is named in reference to the location from which it was isolated, Obsidian Pool, YNP.  相似文献   

7.
The prevention of spoilage by Alicyclobacillus acidoterrestris is a current challenge for fruit juice and beverage industries worldwide due to the bacterium''s acidothermophilic growth capability, heat resistance, and spoilage potential. This study examined the effect of storage temperature on A. acidoterrestris growth in hot-filled orange juice. The evolution of the A. acidoterrestris population was monitored under six different storage conditions after pasteurization (at 92°C for 10 s), maintenance at 85°C for 150 s, and cooling with water spray to 35°C in about 30 min and using two inoculum levels: <101 and 101 spores/ml. Final cooling and storage conditions were as follows: treatment 1, 30°C for the bottle cold point and storage at 35°C; treatment 2, 30°C for 48 h and storage at 35°C; treatment 3, 25°C for the bottle cold point and storage at 35°C; treatment 4, 25°C for 48 h and storage at 35°C; treatment 5, storage at 20°C (control); and treatment 6, filling and storage at 25°C. It was found that only in treatment 5 did the population remain inhibited during the 6 months of orange juice shelf life. By examining treatments 1 to 4, it was observed that A. acidoterrestris predicted growth parameters were significantly influenced (P < 0.05) either by inoculum level or cooling and storage conditions. The time required to reach a 104 CFU/ml population of A. acidoterrestris was considered to be an adequate parameter to indicate orange juice spoilage by A. acidoterrestris. Therefore, hot-filled orange juice should be stored at or below 20°C to avoid spoilage by this microorganism. This procedure can be considered a safe and inexpensive alternative to other treatments proposed earlier.The first Alicyclobacillus sp. discovered was isolated in 1982 from spoiled apple juice aseptically packed in Germany and was considered at that time strictly limited to thermophilic and acidic environments (5). The spoilage of fruit juices by Alicyclobacillus is characterized by “off” flavors (medicinal or phenolic) due to guaiacol, 2,6-dibromophenol, and 2,6-dichlorophenol (20, 32, 25). As the spoilage does not show any evident signs like swelling of the container or any overt changes in the fruit juice (e.g., pH or turbidity), it is often not recognized until the packages are opened, the product is tasted, and consumer complaints are received by the manufacturer (6).Alicyclobacillus acidoterrestris, Alicyclobacillus cycloheptanicus and Alicyclobacillus acidocaldarius were the first three species described when the Alicyclobacillus genus was created in 1992 (31). Although there are currently more than 15 species described (27), only four Alicyclobacillus species (A. acidoterrestris, A. pomorum, A. herbarius and A. acidophilus) have shown the ability to produce off flavors in fruit juices or beverages (5, 13, 9, 1). Of these, A. acidoterrestris is considered the most important spoilage species within the Alicyclobacillus genus either by its frequency of occurrence or by its linkage to the spoilage problems of fruit juices and beverages. The broad temperature range for A. acidoterrestris growth (25 to 60°C) (33, 21, 20, 30, 11), its ability to grow under acidic environments (pH 2.5 to 6.0) (20, 30, 19, 22, 6), and its high heat resistance in orange juice (D at 95°C of 2.7 min) (8) together provide adequate conditions for both survival through pasteurization and growth during juice storage.A. acidoterrestris growth and the consequent orange juice spoilage can lead to enormous economic losses; therefore, this microorganism is currently considered a major challenge for the fruit juice industries. It is known to be difficult, if not impossible, to guarantee the absence of Alicyclobacillus spores on the surface of fruits used to make juices since the soil is the primary niche of Alicyclobacillus spp. (7). Subsequently, control measures such as avoiding fruit contact with soil and the use of sanitizers during the fruit washing step before crushing have been studied (16, 12). In addition, fruit juice producers need to better control the pasteurization conditions and to redesign their thermal processes for targeting Alicyclobacillus spp. (28, 24). However, the limited effectiveness of sanitizers against Alicyclobacillus spores and the sensory and nutritional problems that may arise from increased time and temperature regimes in pasteurization are recognized. Since the complete inactivation of Alicyclobacillus spores from raw materials may not be feasible and since juice spoilage by this microorganism depends on the germination of spores and outgrowth, studies reporting conditions that avoid spoilage by controlling Alicyclobacillus spore germination are necessary. The best option to manage the challenge that Alicyclobacillus presents to the fruit juice industries will be one that results in the fewest alterations in processing and storage conditions, preserves the nutritional and sensory aspects of the final products, does not impact production costs and commercial practices, and at the same time ensures the control of the microorganism.In the fruit juice industry, two main types of thermal processes are commonly applied: pasteurization followed by a hot-fill process or pasteurization followed by a cold-fill process (6). In the former, after the product is heated to >90 to 95°C, it is held hot for 15 to 20 s. As the temperature decreases to 82 to 84°C, the product is filled into the package. Next, the product is held for approximately 2 min before the packages are cooled to room temperature. Hot filling has been extensively used in the manufacturing processes of fruit-based drinks and beverages, but problems due to spoilage caused by Alicyclobacillus may arise during fruit juice shelf life. This is due to the extended time that the product is maintained at temperature conditions adequate for the germination and outgrowth of acidothermophilic spore-forming microbes. Despite several studies regarding the factors that affect A. acidoterrestris growth and heat resistance (12, 18, 2, 29), there is a lack of research on the effects of hot-filled fruit juice storage conditions on A. acidoterrestris growth during juice storage. Thus, this study aimed at estimating and comparing the growth parameters (maximum population ratio, κ; lag time, λ; and maximum growth rate, μ) of A. acidoterrestris survival in hot-filled orange juice that was cooled and stored under several conditions that simulate industrial and commercial practices. Primary growth parameters were estimated by using the Baranyi predictive model (3). Additionally, orange juice cooling and storage conditions that avoided germination, growth, and guaiacol production by A. acidoterrestris CRA 7152 were determined.  相似文献   

8.
9.
10.
Enteric viruses are important pathogens found in contaminated surface waters and have previously been detected in waters of the Great Lakes. Human adenoviruses were monitored because of their high prevalence and persistence in aquatic environments. In this study, we quantified adenoviruses in wastewater, surface water, and combined sewer overflows (CSOs) by real-time PCR. Between August 2005 and August 2006, adenovirus concentrations in raw sewage, primary-treated effluent, secondary-treated effluent, and chlorinated effluent from a wastewater treatment plant in Michigan were examined. CSO samples (n = 6) were collected from a CSO retention basin in Grand Rapids, MI. Adenoviruses were detected in 100% of wastewater and CSO discharge samples. Average adenovirus DNA concentrations in sewage and CSOs were 1.15 × 106 viruses/liter and 5.35 × 105 viruses/liter, respectively. Adenovirus removal was <2 log10 (99%) at the wastewater treatment plant. Adenovirus type 41 (60% of clones), type 12 (29%), type 40 (3%), type 2 (3%), and type 3 (3%) were isolated from raw sewage and primary effluents (n = 28). Six of 20 surface water samples from recreational parks at the lower Grand River showed virus concentrations above the real-time PCR detection limit (average, 7.8 × 103 viruses/liter). This research demonstrates that wastewater effluents and wastewater-impacted surface waters in the lower Grand River in Michigan contain high levels of viruses and may not be suitable for full-body recreational activities. High concentrations of adenovirus in these waters may be due to inefficient removal during wastewater treatment and to the high persistence of these viruses in the environment.Enteric viruses are important waterborne pathogens. They are frequently isolated from feces-contaminated water and have been linked to numerous waterborne outbreaks (9, 34, 42, 61). This group of pathogens includes adenoviruses, enteroviruses, hepatitis A virus, noroviruses, and rotavirus. In the Great Lakes region, enteric viruses were isolated from recreational beaches and groundwater for municipal usage, indicating an elevated public health risk in consuming or coming into contact with these waters (15, 69). Although recent developments in molecular detection assays substantially increase the detection of viruses from waters, from a management standpoint it is impractical to test all viruses when determining the microbial quality of water. Here we propose that adenovirus monitoring can be used to examine wastewater impacts on surface water quality.Adenoviruses, which have a high prevalence in water, have been suggested as preferred candidates as index organisms for viral pathogens because they fit most criteria for an ideal indicator (19, 33, 38, 54). It is estimated that more than 90% of the human population is seropositive for one or more serotypes of adenoviruses (11, 68). Human adenoviruses (HAdVs) are present at a higher frequency in sewage than are other enteric viruses (54) and are excreted in high concentrations from infected patients (up to 1011 viral particles per gram of feces) (68).Adenoviruses were first isolated from humans and identified as the causative agent of epidemic febrile respiratory disease among military recruits in the 1950s (30, 55). Human adenoviruses are the second most important viral pathogen of infantile gastroenteritis, after rotavirus (3, 10, 44, 51, 58, 62, 65). Serotypes of adenoviruses have been found to cause symptomatic infections in several organ systems, including the respiratory system (pharyngitis, acute respiratory disease, and pneumonia), eye (conjunctivitis), gastrointestinal tract (gastroenteritis), central nervous system (meningoencephalitis), and genitalia (urethritis and cervicitis) (8, 37). Human adenovirus types 40 and 41 have been associated with gastroenteritis in children, while human adenovirus type 4 is linked to persistent epidemics of acute respiratory disease in the United States (10, 49). It was estimated that 2 to 7% of all lower respiratory tract illnesses in children may be caused by adenoviruses (5, 17).Transmission routes of adenoviruses include the fecal-oral route and inhalation of aerosols. Adenoviruses have been associated with outbreaks in different settings, including military camps (7, 36, 40), hospitals (6, 28, 32), day care centers (1, 38), and schools (27). Waterborne outbreaks due to adenoviruses have also involved swimming pools (53, 64).It is hypothesized that combined sewer overflows (CSOs; where storm water and untreated sewage are combined) may contribute high concentrations of waterborne pathogens, especially viruses, which in turn may pose an adverse risk to human health. In older cities of Michigan, such as Detroit, East Lansing, and Grand Rapids, major contributors to microbial contamination of surface water during high-rainfall events include discharges from sanitary sewer systems and combined sewer systems. The federal government''s effort to control CSOs started in 1994, when the U.S. EPA published the CSO Control Policy as the national framework. In Michigan, the first CSO policy was drafted by the Department of Environmental Quality in 1983. However, the first noncontested permit requiring a long-term CSO correction program was issued to the Grand Rapids wastewater treatment plant (WWTP) only in Fall 1988, following a large CSO event in the city that affected water quality downstream, in Grand Haven (50). To date, Michigan communities have eliminated 75% of the 613 untreated CSO outfalls that existed in the year 1988, and the remaining 25% are scheduled for correction/elimination through implementation of long-term control plans. However, water quality after CSO or any sewage spill remains a public health concern to individuals via recreational water exposure at recreational parks and beaches downstream of discharge sites.The aim of this study was to evaluate the presence and concentration of adenoviruses in sewage and in the Grand River in the state of Michigan. Raw sewage, wastewater effluent, CSO discharges, and surface water in the lower Grand River were surveyed for the occurrence and concentration of human adenoviruses. Real-time PCR was used for quantification. Predominant adenovirus genotypes in sewage were determined, and the efficiency of virus removal during wastewater treatment was evaluated.  相似文献   

11.
12.
Bacterial anaerobic ammonium oxidation (anammox) is an important process in the marine nitrogen cycle. Because ongoing eutrophication of coastal bays contributes significantly to the formation of low-oxygen zones, monitoring of the anammox bacterial community offers a unique opportunity for assessment of anthropogenic perturbations in these environments. The current study used targeting of 16S rRNA and hzo genes to characterize the composition and structure of the anammox bacterial community in the sediments of the eutrophic Jiaozhou Bay, thereby unraveling their diversity, abundance, and distribution. Abundance and distribution of hzo genes revealed a greater taxonomic diversity in Jiaozhou Bay, including several novel clades of anammox bacteria. In contrast, the targeting of 16S rRNA genes verified the presence of only “Candidatus Scalindua,” albeit with a high microdiversity. The genus “Ca. Scalindua” comprised the apparent majority of active sediment anammox bacteria. Multivariate statistical analyses indicated a heterogeneous distribution of the anammox bacterial assemblages in Jiaozhou Bay. Of all environmental parameters investigated, sediment organic C/organic N (OrgC/OrgN), nitrite concentration, and sediment median grain size were found to impact the composition, structure, and distribution of the sediment anammox bacterial community. Analysis of Pearson correlations between environmental factors and abundance of 16S rRNA and hzo genes as determined by fluorescent real-time PCR suggests that the local nitrite concentration is the key regulator of the abundance of anammox bacteria in Jiaozhou Bay sediments.Anaerobic ammonium oxidation (anammox, NH4+ + NO2 → N2 + 2H2O) was proposed as a missing N transformation pathway decades ago. It was found 20 years later to be mediated by bacteria in artificial environments, such as anaerobic wastewater processing systems (see reference 32 and references therein). Anammox in natural environments was found even more recently, mainly in O2-limited environments such as marine sediments (28, 51, 54, 67, 69) and hypoxic or anoxic waters (10, 25, 39-42). Because anammox may remove as much as 30 to 70% of fixed N from the oceans (3, 9, 64), this process is potentially as important as denitrification for N loss and bioremediation (41, 42, 73). These findings have significantly changed our understanding of the budget of the marine and global N cycles as well as involved pathways and their evolution (24, 32, 35, 72). Studies indicate variable anammox contributions to local or regional N loss (41, 42, 73), probably due to distinct environmental conditions that may influence the composition, abundance, and distribution of the anammox bacteria. However, the interactions of anammox bacteria with their environment are still poorly understood.The chemolithoautotrophic anammox bacteria (64, 66) comprise the new Brocadiaceae family in the Planctomycetales, for which five Candidatus genera have been described (see references 32 and 37 and references therein): “Candidatus Kuenenia,” “Candidatus Brocadia,” “Candidatus Scalindua,” “Candidatus Anammoxoglobus,” and “Candidatus Jettenia. Due to the difficulty of cultivation and isolation, anammox bacteria are not yet in pure culture. Molecular detection by using DNA probes or PCR primers targeting the anammox bacterial 16S rRNA genes has thus been the main approach for the detection of anammox bacteria and community analyses (58). However, these studies revealed unexpected target sequence diversity and led to the realization that due to biased coverage and specificity of most of the PCR primers (2, 8), the in situ diversity of anammox bacteria was likely missed. Thus, the use of additional marker genes for phylogenetic analysis was suggested in hopes of better capturing the diversity of this environmentally important group of bacteria. By analogy to molecular ecological studies of aerobic ammonia oxidizers, most recent studies have attempted to include anammox bacterium-specific functional genes. All anammox bacteria employ hydrazine oxidoreductase (HZO) (= [Hzo]3) to oxidize hydrazine to N2 as the main source for a useable reductant, which enables them to generate proton-motive force for energy production (32, 36, 65). Phylogenetic analyses of Hzo protein sequences revealed three sequence clusters, of which the cladistic structure of cluster 1 is in agreement with the anammox bacterial 16S rRNA gene phylogeny (57). The hzo genes have emerged as an alternative phylogenetic and functional marker for characterization of anammox bacterial communities (43, 44, 57), allowing the 16S rRNA gene-based investigation methods to be corroborated and improved.The contribution of anammox to the removal of fixed N is highly variable in estuarine and coastal sediments (50). For instance, anammox may be an important pathway for the removal of excess N (23) or nearly negligible (48, 54, 67, 68). This difference may be attributable to a difference in the structure and composition of anammox bacterial communities, in particular how the abundance of individual cohorts depends on particular environmental conditions. Anthropogenic disturbance with variable source and intensity of eutrophication and pollution may further complicate the anammox bacterium-environment relationship.Jiaozhou Bay is a large semienclosed water body of the temperate Yellow Sea in China. Eutrophication has become its most serious environmental problem, along with red tides (harmful algal blooms), species loss, and contamination with toxic chemicals and harmful microbes (14, 15, 21, 61, 71). Due to different sources of pollution and various levels of eutrophication across Jiaozhou Bay (mariculture, municipal and industrial wastewater, crude oil shipyard, etc.), a wide spectrum of environmental conditions may contribute to a widely varying community structure of anammox bacteria. This study used both 16S rRNA and hzo genes as targets to measure their abundance, diversity, and spatial distribution and assess the response of the resident anammox bacterial community to different environmental conditions. Environmental factors with potential for regulating the sediment anammox microbiota are discussed.  相似文献   

13.
14.
Anaerobic ammonium-oxidizing (anammox) bacteria have the unique ability to synthesize fatty acids containing linearly concatenated cyclobutane rings, termed “ladderane lipids.” In this study we investigated the effect of temperature on the ladderane lipid composition and distribution in anammox enrichment cultures, marine particulate organic matter, and surface sediments. Under controlled laboratory conditions we observed an increase in the amount of C20 [5]-ladderane fatty acids compared with the amount of C18 [5]-ladderane fatty acids with increasing temperature and also an increase in the amount of C18 [5]-ladderane fatty acids compared with the amount of C20 [5]-ladderane fatty acids with decreasing temperature. Combining these data with results from the natural environment showed a significant (R2 = 0.85, P = <0.0001, n = 121) positive sigmoidal relationship between the amounts of C18 and C20 [5]-ladderane fatty acids and the in situ temperature; i.e., there is an increase in the relative abundance of C18 [5]-ladderane fatty acids at lower temperatures and vice versa, particularly at temperatures between 12°C and 20°C. Novel shorter (C16) and longer (C22 to C24) ladderane fatty acids were also identified, but their relative amounts were small and did not change with temperature. The adaptation of ladderane fatty acid chain length to temperature changes is similar to the regulation of common fatty acid composition in other bacteria and may be the result of maintaining constant membrane fluidity under different temperature regimens (homeoviscous adaptation). Our results can potentially be used to discriminate between the origins of ladderane lipids in marine sediments, i.e., to determine if ladderanes are produced in situ in relatively cold surface sediments or if they are fossil remnants originating from the warmer upper water column.Anaerobic ammonium-oxidizing (anammox) bacteria possess the unique ability to oxidize NH4+ with NO2 to N2 under anoxic conditions (42). Since the discovery of the anammox process in a wastewater treatment plant in the Netherlands (21), studies have indicated that anammox bacteria are omnipresent in low-oxygen environments around the world. Anammox therefore forms an important link in both the oceanic (4, 7, 17, 18, 31) and freshwater (14, 33) nitrogen cycles. Unlike other Planctomycetes, anammox bacteria contain a unique “organelle” called the anammoxosome (19, 37, 44-46). The membrane of this compartment contains unusual “ladderane” lipids (37). The core ladderane lipids consist of C18 and C20 fatty acids containing either 3 or 5 linearly concatenated cyclobutane rings, which are ester bound to a glycerol backbone or ether bound as alkyl chains (35). In addition, the intact polar lipids containing the core lipid structures may have different types of polar head groups, including phosphatidylcholine (PC), phosphatidylethanolamine (PE), or phosphatidylglycerol (PG) (1, 22). In silico density simulation modeling experiments with a ladderane lipid-containing membrane (glycerol-bound mixed ether-ester containing both ladderane moieties) have indicated that ladderane lipids could provide a denser cell membrane than conventional membrane lipids (37). Since the anammoxosome appears to be impenetrable to fluorophores, the ladderane membrane could function in cell energy conservation (37, 44).Experimental evidence has shown that anammox bacteria isolated from wastewater treatment reactors grow over a wide range of temperatures (20 to 43°C) and have an optimum temperature of about 35°C (39). In the natural environment the anammox process has been reported to occur at temperatures as low as −2.5°C in sea ice (5, 26) and as high as 70°C in hot springs and hydrothermal vent areas (3, 12). Furthermore, “Candidatus Scalindua spp.” has been successfully enriched from marine sediment (Gullmarsfjord, Sweden) in sequencing batch reactors at temperatures of 15 and 20°C (43). In other bacteria containing common fatty acids temperature adaptation can be achieved by (among other things) modifying the composition of the membrane bilayers to deal with alterations in membrane viscosity due to changes in temperature. This process has been well documented and is termed “homeoviscous adaptation”; i.e., the fatty acid composition is changed to maintain membrane fluidity (23, 27, 34, 40). Currently, it is not known how anammox bacteria, with their highly unusual ladderane lipids, react to temperature. To investigate this, we analyzed the ladderane lipid composition of anammox bacteria grown at different temperatures in sequencing batch reactors and in samples from different natural environments covering a wide range of temperatures.  相似文献   

15.
16.
Several mycoplasma species feature a membrane protrusion at a cell pole, and unknown mechanisms provide gliding motility in the direction of the pole defined by the protrusion. Mycoplasma gallisepticum, an avian pathogen, is known to form a membrane protrusion composed of bleb and infrableb and to glide. Here, we analyzed the gliding motility of M. gallisepticum cells in detail. They glided in the direction of the bleb at an average speed of 0.4 μm/s and remained attached around the bleb to a glass surface, suggesting that the gliding mechanism is similar to that of a related species, Mycoplasma pneumoniae. Next, to elucidate the cytoskeletal structure of M. gallisepticum, we stripped the envelopes by treatment with Triton X-100 under various conditions and observed the remaining structure by negative-staining transmission electron microscopy. A unique cytoskeletal structure, about 300 nm long and 100 nm wide, was found in the bleb and infrableb. The structure, resembling an asymmetrical dumbbell, is composed of five major parts from the distal end: a cap, a small oval, a rod, a large oval, and a bowl. Sonication likely divided the asymmetrical dumbbell into a core and other structures. The cytoskeletal structures of M. gallisepticum were compared with those of M. pneumoniae in detail, and the possible protein components of these structures were considered.Mycoplasmas are commensal and occasionally pathogenic bacteria that lack a peptidoglycan layer (50). Several species feature a membrane protrusion at a pole; for Mycoplasma mobile, this protrusion is called the head, and for Mycoplasma pneumoniae, it is called the attachment organelle (25, 34-37, 52, 54, 58). These species bind to solid surfaces, such as glass and animal cell surfaces, and exhibit gliding motility in the direction of the protrusion (34-37). This motility is believed to be essential for the mycoplasmas'' pathogenicity (4, 22, 27, 36). Recently, the proteins directly involved in the gliding mechanisms of mycoplasmas were identified and were found to have no similarities to those of known motility systems, including bacterial flagellum, pilus, and slime motility systems (25, 34-37).Mycoplasma gallisepticum is an avian pathogen that causes serious damage to the production of eggs for human consumption (50). The cells are pear-shaped and have a membrane protrusion, consisting of the so-called bleb and infrableb (29), and gliding motility (8, 14, 22). Their putative cytoskeletal structures may maintain this characteristic morphology because M. gallisepticum, like other mycoplasma species, does not have a cell wall (50). In sectioning electron microscopy (EM) studies of M. gallisepticum, an intracellular electron-dense structure in the bleb and infrableb was observed, suggesting the existence of a cytoskeletal structure (7, 24, 29, 37, 58). Recently, the existence of such a structure has been confirmed by scanning EM of the structure remaining after Triton X-100 extraction (13), although the details are still unclear.A human pathogen, M. pneumoniae, has a rod-shaped cytoskeletal structure in the attachment organelle (9, 15, 16, 31, 37, 57). M. gallisepticum is related to M. pneumoniae (63, 64), as represented by 90.3% identity between the 16S rRNA sequences, and it has some open reading frames (ORFs) homologous to the component proteins of the cytoskeletal structures of M. pneumoniae (6, 17, 48). Therefore, the cytoskeletal structures of M. gallisepticum are expected to be similar to those of M. pneumoniae, as scanning EM images also suggest (13).The fastest-gliding species, M. mobile, is more distantly related to M. gallisepticum; it has novel cytoskeletal structures that have been analyzed through negative-staining transmission EM after extraction by Triton X-100 with image averaging (45). This method of transmission EM following Triton X-100 extraction clearly showed a cytoskeletal “jellyfish” structure. In this structure, a solid oval “bell,” about 235 nm wide and 155 nm long, is filled with a 12-nm hexagonal lattice. Connected to this bell structure are dozens of flexible “tentacles” that are covered with particles 20 nm in diameter at intervals of about 30 nm. The particles appear to have 180° rotational symmetry and a dimple at the center. The involvement of this cytoskeletal structure in the gliding mechanism was suggested by its cellular localization and by analyses of mutants lacking proteins essential for gliding.In the present study, we applied this method to M. gallisepticum and analyzed its unique cytoskeletal structure, and we then compared it with that of M. pneumoniae.  相似文献   

17.
To better understand the influence of environmental conditions on the adsorption of extracellular chromosomal DNA and its availability for natural transformation, the amount and conformation of adsorbed DNA were monitored under different conditions in parallel with transformation assays using the soil bacterium Azotobacter vinelandii. DNA adsorption was monitored using the technique of quartz crystal microbalance with dissipation (QCM-D). Both silica and natural organic matter (NOM) surfaces were evaluated in solutions containing either 100 mM NaCl or 1 mM CaCl2. The QCM-D data suggest that DNA adsorbed to silica surfaces has a more compact and rigid conformation in Ca2+ solution than in Na+ solution and that the reverse is true when DNA is adsorbed to NOM surfaces. While the amounts of DNA adsorbed on a silica surface were similar for Ca2+ and Na+ solutions, the amount of DNA adsorbed on an NOM-coated surface was higher in Ca2+ solution than in Na+ solution. Transformation frequencies for dissolved DNA and DNA adsorbed to silica and to NOM were 6 × 10−5, 5 × 10−5, and 2.5 × 10−4, respectively. For NOM-coated surfaces, transformation frequencies from individual experiments were 2- to 50-fold higher in the presence of Ca2+ than in the presence of Na+. The results suggest that groundwater hardness (i.e., Ca2+ concentration) will affect the amount of extracellular DNA adsorbed to the soil surface but that neither adsorption nor changes in the conformation of the adsorbed DNA will have a strong effect on the frequency of natural transformation of A. vinelandii.Horizontal gene transfer contributes to microbial evolution and provides mechanisms for the spread of both antimicrobial resistance genes and genetically engineered DNA. While most studies on horizontal gene transfer focus on conjugation, recent reviews on extracellular DNA (16, 27) document the need to consider also natural transformation. The amount of extracellular DNA in the soil is on the order of hundreds of ng/g of dry soil (27). Extracellular DNA adsorbs to many common soil constituents, including sand, clay, and natural organic matter (NOM) (16, 27), and once adsorbed may persist for days or years (16).As first reported by Lorenz et al. (18), adsorbed DNA is available for natural transformation and therefore represents a potential environmental reservoir facilitating horizontal gene transfer. DNA adsorbed on sand surfaces has been successfully transferred to both Gram-positive and Gram-negative soil bacteria, including Bacillus subtilis (18), Pseudomonas stutzeri (19), and Acinetobacter calcoaceticus (4). Other studies have focused on transformation with DNA adsorbed to other surfaces (for example, clay minerals [15], humic acids [6], and intact soils [25, 31]). In most previous studies, adsorbed DNA transformed at a lower frequency than dissolved DNA (see, for example, references 4 and 11). However, higher transformation frequencies for adsorbed DNA than for dissolved DNA have been reported in two studies (18, 19). In addition, Demaneche et al. were unable to detect Pseudomonas fluorescens transformants in a variety of liquid media despite successful transformations in sterile soil columns (8).Several studies have evaluated the influence of nutrients (24, 34) and soil (8, 11, 23, 31) on transformation efficiency. Less information is available on the influence of adsorbed DNA conformation on transformation efficiency. Pietramellara et al. speculated that the decrease in transformation rates they observed upon repeated wetting and drying cycles of adsorbed DNA was due to conformational changes (28). Cai et al. also speculated that differences in the conformation of adsorbed DNA could be responsible for lower transformation efficiencies for DNA bound to kaolinte and inorganic clays (2), based on their previous work characterizing adsorption to different surfaces (3). Detailed characterizations of the conformation of adsorbed DNA only recently became feasible, and the influence of the conformation of adsorbed DNA on transformation frequencies has not, to our knowledge, been systematically investigated.Characterization of the mass and conformation of DNA adsorbed on different surfaces can be accomplished using quartz crystal microbalance with dissipation (QCM-D) (7, 22). QCM-D measurements are based on the shift in frequency (ΔF) and the decay in vibrating energy (ΔD) that occur as molecules adsorb to piezoelectric sensors (29, 33). Viscosity, elastic shear modulus, and effective thickness of the adsorbed material can be determined by fitting the frequency and dissipation data to the viscoelastic Voigt model (7). Based on Nguyen and colleagues'' previous work with plasmid DNA adsorption on silica and NOM-coated surfaces, increasing electrolyte concentrations and the presence of divalent cations favor DNA adsorption (20-22). In addition, inner sphere complexation by Ca2+ with DNA phosphate backbone allows the formation of DNA-adsorbed layers that are more compact than the DNA-adsorbed layer formed by charge shielding in solution with a high Na+ concentration (20-22).The objective of this study was to investigate both the adsorption of chromosomal DNA to representative soil particle surfaces and the effect of such adsorption on natural transformation. We used QCM-D to characterize the conformation of adsorbed DNA on silica and NOM surfaces under two different solution chemistries (100 mM Na+ and 1 mM Ca2+). The influences of adsorption and of differences in the conformation of the adsorbed DNA on transformation frequencies were tested in a common soil bacterium, Azotobacter vinelandii. A. vinelandii is naturally competent (26) but had not been previously reported to be transformed with adsorbed DNA.  相似文献   

18.
Spores of Bacillus subtilis contain a number of small, acid-soluble spore proteins (SASP) which comprise up to 20% of total spore core protein. The multiple α/β-type SASP have been shown to confer resistance to UV radiation, heat, peroxides, and other sporicidal treatments. In this study, SASP-defective mutants of B. subtilis and spores deficient in dacB, a mutation leading to an increased core water content, were used to study the relative contributions of SASP and increased core water content to spore resistance to germicidal 254-nm and simulated environmental UV exposure (280 to 400 nm, 290 to 400 nm, and 320 to 400 nm). Spores of strains carrying mutations in sspA, sspB, and both sspA and sspB (lacking the major SASP-α and/or SASP-β) were significantly more sensitive to 254-nm and all polychromatic UV exposures, whereas the UV resistance of spores of the sspE strain (lacking SASP-γ) was essentially identical to that of the wild type. Spores of the dacB-defective strain were as resistant to 254-nm UV-C radiation as wild-type spores. However, spores of the dacB strain were significantly more sensitive than wild-type spores to environmental UV treatments of >280 nm. Air-dried spores of the dacB mutant strain had a significantly higher water content than air-dried wild-type spores. Our results indicate that α/β-type SASP and decreased spore core water content play an essential role in spore resistance to environmentally relevant UV wavelengths whereas SASP-γ does not.Spores of Bacillus spp. are highly resistant to inactivation by different physical stresses, such as toxic chemicals and biocidal agents, desiccation, pressure and temperature extremes, and high fluences of UV or ionizing radiation (reviewed in references 33, 34, and 48). Under stressful environmental conditions, cells of Bacillus spp. produce endospores that can stay dormant for extended periods. The reason for the high resistance of bacterial spores to environmental extremes lies in the structure of the spore. Spores possess thick layers of highly cross-linked coat proteins, a modified peptidoglycan spore cortex, a low core water content, and abundant intracellular constituents, such as the calcium chelate of dipicolinic acid and α/β-type small, acid-soluble spore proteins (α/β-type SASP), the last two of which protect spore DNA (6, 42, 46, 48, 52). DNA damage accumulated during spore dormancy is also efficiently repaired during spore germination (33, 47, 48). UV-induced DNA photoproducts are repaired by spore photoproduct lyase and nucleotide excision repair, DNA double-strand breaks (DSB) by nonhomologous end joining, and oxidative stress-induced apurinic/apyrimidinic (AP) sites by AP endonucleases and base excision repair (15, 26-29, 34, 43, 53, 57).Monochromatic 254-nm UV radiation has been used as an efficient and cost-effective means of disinfecting surfaces, building air, and drinking water supplies (31). Commonly used test organisms for inactivation studies are bacterial spores, usually spores of Bacillus subtilis, due to their high degree of resistance to various sporicidal treatments, reproducible inactivation response, and safety (1, 8, 19, 31, 48). Depending on the Bacillus species analyzed, spores are 10 to 50 times more resistant than growing cells to 254-nm UV radiation. In addition, most of the laboratory studies of spore inactivation and radiation biology have been performed using monochromatic 254-nm UV radiation (33, 34). Although 254-nm UV-C radiation is a convenient germicidal treatment and relevant to disinfection procedures, results obtained by using 254-nm UV-C are not truly representative of results obtained using UV wavelengths that endospores encounter in their natural environments (34, 42, 50, 51, 59). However, sunlight reaching the Earth''s surface is not monochromatic 254-nm radiation but a mixture of UV, visible, and infrared radiation, with the UV portion spanning approximately 290 to 400 nm (33, 34, 36). Thus, our knowledge of spore UV resistance has been constructed largely using a wavelength of UV radiation not normally reaching the Earth''s surface, even though ample evidence exists that both DNA photochemistry and microbial responses to UV are strongly wavelength dependent (2, 30, 33, 36).Of recent interest in our laboratories has been the exploration of factors that confer on B. subtilis spores resistance to environmentally relevant extreme conditions, particularly solar UV radiation and extreme desiccation (23, 28, 30, 34 36, 48, 52). It has been reported that α/β-type SASP but not SASP-γ play a major role in spore resistance to 254-nm UV-C radiation (20, 21) and to wet heat, dry heat, and oxidizing agents (48). In contrast, increased spore water content was reported to affect B. subtilis spore resistance to moist heat and hydrogen peroxide but not to 254-nm UV-C (12, 40, 48). However, the possible roles of SASP-α, -β, and -γ and core water content in spore resistance to environmentally relevant solar UV wavelengths have not been explored. Therefore, in this study, we have used B. subtilis strains carrying mutations in the sspA, sspB, sspE, sspA and sspB, or dacB gene to investigate the contributions of SASP and increased core water content to the resistance of B. subtilis spores to 254-nm UV-C and environmentally relevant polychromatic UV radiation encountered on Earth''s surface.  相似文献   

19.
20.
We previously reported that CD4C/human immunodeficiency virus (HIV)Nef transgenic (Tg) mice, expressing Nef in CD4+ T cells and cells of the macrophage/dendritic cell (DC) lineage, develop a severe AIDS-like disease, characterized by depletion of CD4+ T cells, as well as lung, heart, and kidney diseases. In order to determine the contribution of distinct populations of hematopoietic cells to the development of this AIDS-like disease, five additional Tg strains expressing Nef through restricted cell-specific regulatory elements were generated. These Tg strains express Nef in CD4+ T cells, DCs, and macrophages (CD4E/HIVNef); in CD4+ T cells and DCs (mCD4/HIVNef and CD4F/HIVNef); in macrophages and DCs (CD68/HIVNef); or mainly in DCs (CD11c/HIVNef). None of these Tg strains developed significant lung and kidney diseases, suggesting the existence of as-yet-unidentified Nef-expressing cell subset(s) that are responsible for inducing organ disease in CD4C/HIVNef Tg mice. Mice from all five strains developed persistent oral carriage of Candida albicans, suggesting an impaired immune function. Only strains expressing Nef in CD4+ T cells showed CD4+ T-cell depletion, activation, and apoptosis. These results demonstrate that expression of Nef in CD4+ T cells is the primary determinant of their depletion. Therefore, the pattern of Nef expression in specific cell population(s) largely determines the nature of the resulting pathological changes.The major cell targets and reservoirs for human immunodeficiency virus type 1 (HIV-1)/simian immunodeficiency virus (SIV) infection in vivo are CD4+ T lymphocytes and antigen-presenting cells (macrophages and dendritic cells [DC]) (21, 24, 51). The cell specificity of these viruses is largely dependent on the expression of CD4 and of its coreceptors, CCR5 and CXCR-4, at the cell surface (29, 66). Infection of these immune cells leads to the severe disease, AIDS, showing widespread manifestations, including progressive immunodeficiency, immune activation, CD4+ T-cell depletion, wasting, dementia, nephropathy, heart and lung diseases, and susceptibility to opportunistic pathogens, such as Candida albicans (1, 27, 31, 37, 41, 82, 93, 109). It is reasonable to assume that the various pathological changes in AIDS result from the expression of one or many HIV-1/SIV proteins in these immune target cells. However, assigning the contribution of each infected cell subset to each phenotype has been remarkably difficult, despite evidence that AIDS T-cell phenotypes can present very differently depending on the strains of infecting HIV-1 or SIV or on the cells targeted by the virus (4, 39, 49, 52, 72). For example, the T-cell-tropic X4 HIV strains have long been associated with late events and severe CD4+ T-cell depletion (22, 85, 96). However, there are a number of target cell subsets expressing CD4 and CXCR-4, and identifying which one is responsible for this enhanced virulence has not been achieved in vivo. Similarly, the replication of SIV in specific regions of the thymus (cortical versus medullary areas), has been associated with very different outcomes but, unfortunately, the critical target cells of the viruses were not identified either in these studies (60, 80). The task is even more complex, because HIV-1 or SIV can infect several cell subsets within a single cell population. In the thymus, double (CD4 CD8)-negative (DN) or triple (CD3 CD4 CD8)-negative (TN) T cells, as well as double-positive (CD4+ CD8+) (DP) T cells, are infectible by HIV-1 in vitro (9, 28, 74, 84, 98, 99, 110) and in SCID-hu mice (2, 5, 91, 94). In peripheral organs, gut memory CCR5+ CD4+ T cells are primarily infected with R5 SIV, SHIV, or HIV, while circulating CD4+ T cells can be infected by X4 viruses (13, 42, 49, 69, 70, 100, 101, 104). Moreover, some detrimental effects on CD4+ T cells have been postulated to originate from HIV-1/SIV gene expression in bystander cells, such as macrophages or DC, suggesting that other infected target cells may contribute to the loss of CD4+ T cells (6, 7, 32, 36, 64, 90).Similarly, the infected cell population(s) required and sufficient to induce the organ diseases associated with HIV-1/SIV expression (brain, heart, and kidney) have not yet all been identified. For lung or kidney disease, HIV-specific cytotoxic CD8+ T cells (1, 75) or infected podocytes (50, 95), respectively, have been implicated. Activated macrophages have been postulated to play an important role in heart disease (108) and in AIDS dementia (35), although other target cells could be infected by macrophage-tropic viruses and may contribute significantly to the decrease of central nervous system functions (11, 86, 97), as previously pointed out (25).Therefore, because of the widespread nature of HIV-1 infection and the difficulty in extrapolating tropism of HIV-1/SIV in vitro to their cell targeting in vivo (8, 10, 71), alternative approaches are needed to establish the contribution of individual infected cell populations to the multiorgan phenotypes observed in AIDS. To this end, we developed a transgenic (Tg) mouse model of AIDS using a nonreplicating HIV-1 genome expressed through the regulatory sequences of the human CD4 gene (CD4C), in the same murine cells as those targeted by HIV-1 in humans, namely, in immature and mature CD4+ T cells, as well as in cells of the macrophage/DC lineages (47, 48, 77; unpublished data). These CD4C/HIV Tg mice develop a multitude of pathologies closely mimicking those of AIDS patients. These include a gradual destruction of the immune system, characterized among other things by thymic and lymphoid organ atrophy, depletion of mature and immature CD4+ T lymphocytes, activation of CD4+ and CD8+ T cells, susceptibility to mucosal candidiasis, HIV-associated nephropathy, and pulmonary and cardiac complications (26, 43, 44, 57, 76, 77, 79, 106). We demonstrated that Nef is the major determinant of the HIV-1 pathogenicity in CD4C/HIV Tg mice (44). The similarities of the AIDS-like phenotypes of these Tg mice to those in human AIDS strongly suggest that such a Tg mouse approach can be used to investigate the contribution of distinct HIV-1-expressing cell populations to their development.In the present study, we constructed and characterized five additional mouse Tg strains expressing Nef, through distinct regulatory elements, in cell populations more restricted than in CD4C/HIV Tg mice. The aim of this effort was to assess whether, and to what extent, the targeting of Nef in distinct immune cell populations affects disease development and progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号