首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Genetic analysis of durable leaf rust resistance in winter wheat   总被引:8,自引:0,他引:8  
Quantitative resistance that delays the epidemic development of leaf rust in wheat is an important source for durable resistance breeding. The Swiss winter wheat variety ’Forno’ shows a high level of quantitative resistance against leaf rust. This resistance has been effective for more than 10 years and can therefore be considered to be durable. In order to map quantitative trait loci (QTL) for durable leaf rust resistance we analysed 204 F5 recombinant inbred lines (RILs) of the cross between the winter wheat ’Forno’ and the winter spelt ’Oberkulmer’ for their level of leaf rust resistance (LR) and leaf tip necrosis (LTN) in four different environments. Both traits showed a continuous distribution and were significantly correlated (r=−0.5). Across environments we detected 8 QTL for leaf rust resistance (6 inherited from ’Forno’) and 10 QTL for the quantitative expression of LTN (6 inherited from ’Forno’). Of the 6 QTL responsible for the durable leaf rust resistance of ’Forno’, 1 major QTL coincided with a thaumatin locus on 7BL explaining 35% of the phenotypic variance. Four QTL for LR coincided with QTL for LTN. At these loci the alleles of ’Forno’ increased the level of resistance as well as the extent of LTN, indicating pleiotropy. Received: 1 July 1999 / Accepted: 30 July 1999  相似文献   

2.
Genetic analysis of durable resistance against leaf rust in durum wheat   总被引:1,自引:0,他引:1  
The Italian durum wheat cultivar Creso possesses a high level of durable resistance to leaf rust based on both hypersensitive and non-hypersensitive components. In order to investigate the genetic basis of this resistance, a segregating population composed of 123 recombinant inbred lines (RILs) derived from the cross Creso × Pedroso, was evaluated for disease severity in adult plants under field conditions. Furthermore, the resistance of parents and RILs was evaluated by assessing macroscopically the latency period and microscopically the number and type of pathogen colonies formed following artificial inoculation with a specific isolate. This experiment was performed at controlled conditions at two developmental stages. Besides some minor QTLs, one major QTL explaining both reduction of disease severity in the field and increased latency period was found on the long arm of chromosome 7B, and closely associated PCR-based and DArT markers were identified. Daniela Marone and Ana I. Del Olmo contributed equally to the work.  相似文献   

3.
Seedling resistance to leaf rust available in the synthetic hexaploid wheat line Syn137 was characterised by means of cytogenetic and linkage mapping. Monosomic analysis located a single dominant gene for leaf rust resistance on chromosome 5D. Molecular mapping not only confirmed this location but also positioned the gene to the distal part of the long arm of chromosome 5D. A test of allelism showed that the gene, tentatively named LrSyn137, is independent but closely linked to Lr1. It appears that Syn137 is occasionally heterogeneous for Lr1 since the analysis of the Lr1-specific marker RGA567-5 in the genetic mapping population indicated the presence of Lr1. Syn137 represents another source of genetic variation that can be useful for the diversification of leaf rust resistance in wheat cultivars.  相似文献   

4.
Pyramiding of genes that confer partial resistance is a method for developing wheat (Triticum aestivum L.) cultivars with durable resistance to leaf rust caused by Puccinia triticina. In this research, a doubled haploid population derived from the cross between the synthetic hexaploid wheat (SHW) (×Aegilotriticum spp.) line TA4152-60 and the North Dakota breeding line ND495 was used for identifying genes conferring partial resistance to leaf rust in both the adult plant and seedling stages. Five QTLs located on chromosome arms 3AL, 3BL, 4DL, 5BL and 6BL were associated with adult plant resistance with the latter four representing novel leaf rust resistance QTLs. Resistance effects of the 4DL QTL were contributed by ND495 and the effects of the other QTLs were contributed by the SHW line. The QTL on chromosome arm 3AL had large effects and also conferred seedling resistance to leaf rust races MJBJ, TDBG and MFPS. The other major QTL, which was on chromosome arm 3BL, conferred seedling resistance to race MFPS and was involved in a significant interaction with a locus on chromosome arm 5DS. The QTLs and the associated molecular markers identified in this research can be used to develop wheat cultivars with potentially durable leaf rust resistance.  相似文献   

5.
The objective of this study was to map new resistance genes against powdery mildew (Blumeria graminis f. sp. hordei L.), leaf rust (Puccinia hordei L.) and scald [Rhynchosporium secalis (Oud.) J. Davis] in the advanced backcross doubled haploid (BC2DH) population S42 derived from a cross between the spring barley cultivar Scarlett and the wild barley accession ISR42-8 (Hordeum vulgare ssp. spontaneum). Using field data of disease severity recorded in eight environments under natural infestation and genotype data of 98 SSR loci, we detected nine QTL for powdery mildew, six QTL for leaf rust resistance and three QTL for scald resistance. The presence of the exotic QTL alleles reduced disease symptoms by a maximum of 51.5, 37.6 and 16.5% for powdery mildew, leaf rust and scald, respectively. Some of the detected QTL may correspond to previously identified qualitative (i.e. Mla) and to quantitative resistance genes. Others may be newly identified resistance genes. For the majority of resistance QTL (61.0%) the wild barley contributed the favourable allele demonstrating the usefulness of wild barley in the quest for resistant cultivars.  相似文献   

6.
Inheritance of leaf rust and stem rust resistance in 'Roblin' wheat.   总被引:2,自引:0,他引:2  
P L Dyck 《Génome》1993,36(2):289-293
The Canadian common wheat (Triticum aestivum L.) cultivar 'Roblin' is resistant to both leaf rust (Puccinia recondita Rob. ex. Desm.) and stem rust (Puccinia graminis Pers. f. sp. tritici Eriks. and E. Henn.). To study the genetics of this resistance, 'Roblin' was crossed with 'Thatcher', a leaf rust susceptible cultivar, and RL6071, a stem rust susceptible line. A set of F6 random lines was developed from each cross. The random lines and the parents were grown in a field rust nursery artificially inoculated with a mixture of P. recondita and P. graminis isolates and scored for rust reaction. The same material was tested with specific races of leaf rust and stem rust. These data indicated that 'Roblin' has Lr1, Lr10, Lr13, and Lr34 for resistance to P. recondita and Sr5, Sr9b, Sr11, and possibly Sr7a and Sr12 for resistance to P. graminis. In a 'Thatcher' background, the presence of Lr34 contributes to improve stem rust resistance, which appears also to occur in 'Roblin'.  相似文献   

7.
Genetic resistance is the most effective approach to managing wheat leaf rust. The aim of this study was to characterize seedling and adult plant leaf rust resistance of a world wheat collection. Using controlled inoculation with ten races of Puccinia triticina, 14 seedling resistance genes were determined or postulated to be present in the collection. Lr1, Lr3, Lr10 and Lr20 were the most prevalent genes around the world while Lr9, Lr14b, Lr3ka and/or Lr30 and Lr26 were rare. To confirm some gene postulations, the collection was screened with gene-specific molecular markers for Lr1, Lr10, Lr21 and Lr34. Although possessing the Lr1 and/or Lr10 gene-specific marker, 51 accessions showed unexpected high infection types to P. triticina race BBBD. The collection was tested in the field, where rust resistance ranged from nearly immune or highly resistant with severity of 1 % and resistant host response to highly susceptible with severity of 84 % and susceptible host response. The majority of the accessions possessing the adult plant resistance (APR) gene Lr34 had a maximum rust severity of 0–35 %, similar to or better than accession RL6058, a Thatcher-Lr34 near-isogenic line. Many accessions displayed an immune response or a high level of resistance under field conditions, likely as a result of synergy between APR genes or between APR and seedling resistance genes. However, accessions with three or more seedling resistance genes had an overall lower field severity than those with two or fewer. Immune or highly resistant accessions are potential sources for improvement of leaf rust resistance. In addition, some lines were postulated to have known but unidentified genes/alleles or novel genes, also constituting potentially important sources of novel resistance.  相似文献   

8.
Abstract

Leaf rust of wheat (Triticum aestivum L.), incited by Puccinia recondita ex Desm. f. sp. tritici Eriks, is one of the most important wheat diseases in Egypt. Methyl jasmonate (MJ) is a potential plant elicitor which induces a wide range of chemical and anatomical defense reactions in conifers and might be used to increase systemic resistance against biotic damage. In the greenhouse, different concentrations of MJ (10, 20 and 30 mM) were applied as seed soaking plus foliar spray or only as foliar spray to control leaf rust and induction of secondary compound production in leaves of wheat plants. Foliar spray was applied after 30 and 50 days of sowing. Results indicated that all concentrations and treatments reduced the severity of rust disease caused by P. recondita f. sp. tritici in wheat leaves during 45 days of inoculations. Disease incidence was decreased significantly in MJ-treated plants as seed soaking plus foliar spray with 20 and 30 mM when compared to 10 mM MJ or control plants. The study revealed that, with increasing concentrations of MJ, the secondary metabolites were greatly increased. Endogenous levels of both free and conjugated putrescine, spermidine and spermine increased in response to the elicitor. Activities of polyamine biosynthetic enzymes of ornithine decarboxylase (ODC) and polyamine oxidase (PAO) displayed up to threefold increases relative to untreated control. Moreover, significant increases in activities of plant defense-related protein, enzymes as peroxidase and chitinase as well as free and conjugated phenols contents were recorded in treated plants compared with untreated and infected plants. Furthermore, MJ treatment increased the chlorophyll-a, chlorophyll-b and carotenoids pigments contents, the higher increase was obtained with combined treatment between seeds soaking plus foliar spray at 20 and 30 mM of MJ. Under field conditions, three concentrations of MJ, i.e. 10, 20 and 30 mM as combined treatment between seeds soaking plus foliar spray or only as foliar spray were applied to study their effect against rust disease. Foliar spray was applied after 30 and 80 days of sowing. Results showed that the high reduction in disease severity was obtained with combined treatments between seeds soaking plus foliar spray with MJ at 20 and 30 mM compared with other treatments and control. At the same time, all treatments increased the growth and grain yield of wheat plants. It could be suggested that combination treatment between seeds soaking plus foliar spray with methyl jasmonate might be used commercially for controlling rust disease of wheat plants under field conditions.  相似文献   

9.

Key message

New leaf rust adult plant resistance (APR) QTL QLr.cim - 6BL was mapped and confirmed the known pleotropic APR gene Lr46 effect on leaf rust in durum wheat line Bairds.

Abstract

CIMMYT-derived durum wheat line Bairds displays an adequate level of adult plant resistance (APR) to leaf rust in Mexican field environments. A recombinant inbred line (RIL) population developed from a cross of Bairds with susceptible parent Atred#1 was phenotyped for leaf rust response at Ciudad Obregon, Mexico, during 2013, 2014, 2015 and 2016 under artificially created epidemics of Puccinia triticina (Pt) race BBG/BP. The RIL population and its parents were genotyped with the 50 K diversity arrays technology (DArT) sequence system and simple sequence repeat (SSR) markers. A genetic map comprising 1150 markers was used to map the resistance loci. Four significant quantitative trait loci (QTLs) were detected on chromosomes 1BL, 2BC (centromere region), 5BL and 6BL. These QTLs, named Lr46, QLr.cim-2BC, QLr.cim-5BL and QLr.cim-6BL, respectively, explained 13.5–60.8%, 9.0–14.3%, 2.8–13.9%, and 11.6–29.4%, respectively, of leaf rust severity variation by the inclusive composite interval mapping method. All of these resistance loci were contributed by the resistant parent Bairds, except for QLr.cim-2BC, which came from susceptible parent Atred#1. Among these, the QTL on chromosome 1BL was the known pleiotropic APR gene Lr46, whereas QLr.cim-6BL, a consistently detected locus, should be a new leaf rust resistance locus in durum wheat. The mean leaf rust severity of RILs carrying all four QTLs ranged from 8.0 to 17.5%, whereas it ranged from 10.9 to 38.5% for three QTLs (Lr46 + 5BL + 6BL) derived from the resistant parent Bairds. Two RILs with four QTLs combinations can be used as sources of complex APR in durum wheat breeding.
  相似文献   

10.
11.

Key message

We detected several, most likely novel QTL for adult plant resistance to rusts. Notably three QTL improved resistance to leaf rust and stripe rust simultaneously indicating broad spectrum resistance QTL.

Abstract

The rusts of wheat (Puccinia spp.) are destructive fungal wheat diseases. The deployment of resistant cultivars plays a central role in integrated rust disease management. Durability of resistance would be preferred, but is difficult to analyse. The Austrian winter wheat cultivar Capo was released in the 1989 and grown on a large acreage during more than two decades and maintained a good level of quantitative leaf rust and stripe rust resistance. Two bi-parental mapping populations: Capo × Arina and Capo × Furore were tested in multiple environments for severity of leaf rust and stripe rust at the adult plant stage in replicated field experiments. Quantitative trait loci associated with leaf rust and stripe rust severity were mapped using DArT and SSR markers. Five QTL were detected in multiple environments associated with resistance to leaf rust designated as QLr.ifa-2AL, QLr.ifa-2BL, QLr.ifa-2BS, QLr.ifa-3BS, and QLr.ifa-5BL, and five for resistance to stripe rust QYr.ifa-2AL, QYr.ifa-2BL, QYr.ifa-3AS, QYr.ifa-3BS, and QYr.ifa-5A. For all QTL apart from two (QYr.ifa-3AS, QLr.ifa-5BL) Capo contributed the resistance improving allele. The leaf rust and stripe rust resistance QTL on 2AL, 2BL and 3BS mapped to the same chromosome positions, indicating either closely linked genes or pleiotropic gene action. These three multiple disease resistance QTL (QLr.ifa-2AL/QYr.ifa-2AL, QLr.ifa.2BL/QYr.ifa-2BL, QLr.ifa-3BS/QYr.ifa.3BS) potentially contribute novel resistance sources for stripe rust and leaf rust. The long-lasting resistance of Capo apparently rests upon a combination of several genes. The described germplasm, QTL and markers are applicable for simultaneous resistance improvement against leaf rust and stripe rust.  相似文献   

12.
In the cross of the durable leaf rust resistant wheat Sinvalocho MA and the susceptible line Gama6, four specific genes were identified: the seedling resistance gene Lr3, the adult plant resistance (APR) genes LrSV1 and LrSV2 coming from Sinvalocho MA, and the seedling resistance gene LrG6 coming from Gama6. Lr3 was previously mapped on 6BL in the same cross. LrSV1 was mapped on chromosome 2DS where resistance genes Lr22a and Lr22b have been reported. Results from rust reaction have shown that LrSV1 from Sinvalocho is not the same allele as Lr22b and an allelism test with Lr22a showed that they could be alleles or closely linked genes. LrSV1 was mapped in an 8.5-cM interval delimited by markers gwm296 distal and gwm261 proximal. Adult gene LrSV2 was mapped on chromosome 3BS, cosegregating with gwm533 in a 7.2-cM interval encompassed by markers gwm389 and gwm493, where other disease resistance genes are located, such as seedling gene Lr27 for leaf rust, Sr2 for stem rust, QTL Qfhs.ndsu-3BS for resistance to Fusarium gramineum and wheat powdery mildew resistance. The gene LrG6 was mapped on chromosome 2BL, with the closest marker gwm382 at 0.6 cM. Lines carrying LrSV1, LrSV2 and LrG6 tested under field natural infection conditions, showed low disease infection type and severity, suggesting that this kind of resistance can be explained by additive effects of APR and seedling resistance genes. The identification of new sources of resistance from South American land races and old varieties, supported by modern DNA technology, contributes to sustainability of agriculture through plant breeding.  相似文献   

13.

Key Message

This is the first report on genetic analysis and genome mapping of major dominant genes for near non-host resistance to barley crown rust ( Puccinia coronata var. hordei ) in common wheat.

Abstract

Barley crown rust, caused by Puccinia coronata var. hordei, primarily occurs on barley (Hordeum vulgare L.) in the Great Plain regions of the United States. However, a few genotypes of common wheat (Triticum aestivum L.) were susceptible to this pathogen among 750 wheat accessions evaluated. To investigate the genetics of crown rust resistance in wheat, a susceptible winter wheat accession PI 350005 was used in crosses with two resistant wheat varieties, Chinese Spring and Chris. Analysis of F1 plants and F2 populations from these two crosses indicated that crown rust resistance is controlled by one and two dominant genes in Chris and Chinese Spring, respectively. To determine the chromosome location of the resistance gene Cr1 in Chris, a set of 21 monosomic lines derived from Chris was used as female parents to cross with a susceptible spring type selection (SSTS35) derived from the PI 350005/Chris cross. Monosomic analysis indicated that Cr1 is located on chromosome 5D in Chris and one of the crown rust resistance genes is located on chromosome 2D in Chinese Spring. The other gene in Chinese Spring is not on 5D and thus is different from Cr1. Molecular linkage analysis and QTL mapping using a population of 136 doubled haploid lines derived from Chris/PI 350005 further positioned Cr1 between SSR markers Xwmc41-2 and Xgdm63 located on the long arm of chromosome 5D. Our study suggests that near non-host resistance to crown rust in these different common wheat genotypes is simply inherited.  相似文献   

14.
Genetic analysis of durable resistance to yellow rust in bread wheat   总被引:8,自引:0,他引:8  
Yellow rust, caused by Puccinia striiformis, is one of the most damaging diseases affecting bread wheat in temperate regions. Although resistance to yellow rust is frequently overcome by new virulent races, a durable form of resistance in the French bread wheat Camp Rémy (CR) has remained effective since its introduction in 1980. We used 217 F7 recombinant inbred lines (RILs) derived from the cross between CR and the susceptible cultivar Récital to identify and map quantitative trait loci (QTLs) involved in durable yellow rust resistance. Six significant QTLs that were stable over a 4-year period were detected. Two QTLs, denoted QYr.inra-2DS and QYr.inra-5BL.2, were located on the short arm of chromosome 2D and the long arm of chromosome 5B, respectively. Each explained on average 25–35% of the observed phenotypic variation and were probably inherited from Cappelle Desprez, a parent of CR that confers durable adult plant resistance to yellow rust. QYr.inra-2DS probably corresponds to the Yr16 gene. The most consistent QTL, designated QYr.inra-2BL, was located on the centromeric region of chromosome 2B and explained 61% of the phenotypic variation in 2003. This QTL was responsible for seedling-stage resistance and may correspond to a cluster of genes, including Yr7. The remaining QTLs were mapped to the short arm of chromosome 2B (R2=22–70%) and to the long arm of chromosomes 2A (R2=0.20–0.40) and 5B (R2=0.18–0.26). This specific combination of seedling and adult plant resistance genes found in CR and CD may constitute the key to their durable resistance against yellow rust.  相似文献   

15.
Molecular mapping of stem and leaf rust resistance in wheat   总被引:7,自引:0,他引:7  
Stem rust caused by Puccinia graminis f. sp. tritici Eriks and Henn and leaf rust caused by Puccinia triticina Rob. ex Desm. are major constraints to wheat production worldwide. In the present study, F4-derived SSD population, developed from a cross between Australian cultivars ‘Schomburgk’ and ‘Yarralinka’, was used to identify molecular markers linked to rust resistance genes Lr3a and Sr22. A total of 1,330 RAPD and 100 ISSR primers and 33 SSR primer pairs selected ob the basis of chromosomal locations of these genes were used. The ISSR marker UBC 840540 was found to be linked with Lr3a in repulsion at a distance of 6.0 cM. Markers cfa2019 and cfa2123 flanked Sr22 at a distance of 5.9 cM (distal) and 6.0 cM (proximal), respectively. The use of these markers in combination would predict the presence or absence of Sr22 in breeding populations. A previously identified PCR-based diagnostic marker STS638 linked to Lr20 was validated in this population. This marker showed a recombination value of 7.1 cM with Lr20.  相似文献   

16.
17.
西科麦2028是地理远缘小麦材料的杂交后代,具有突出的抗条锈病性能。为了解西科麦2028对小麦条锈病的抗性遗传规律,以西科麦2028和铭贤169的杂交群体为研究对象,采用我国目前小麦条锈菌流行小种CYR31、CYR32、CYR33、Su11-4对供试群体进行成株期接种,分析杂交后代的抗病性及分布情况。结果表明:西科麦2028对CYR31的抗病性由3对显性基因控制;对CYR32由2对显性和1对隐性基因控制;对CYR33由1对显性基因控制;对Su11-4由1对显性和1对隐性基因控制。  相似文献   

18.
Luo L  Zhang J  Yang G  Li Y  Li K  He G 《Molecular biology reports》2008,35(2):195-200
The purouindoline gene (pin) coding for puroindoline proteins (PINs) is located on chromosome 5D, controls grain hardness, and the PINs have in vitro antimicrobial activity against gram-positive (G+) bacteria, gram-negative (G-) bacteria and fungi. Wheat leaf rust caused by Puccinia triticina is one of the most important fungal diseases for common wheat with AABBDD genomes. Tetraploid wheat (AABB genome) varieties Luna and Venusia were transformed with the purouindoline a (pinA) gene by bombardment, express PINA consititutively. Transgenic plants showed enhanced response to leaf rust in greenhouse and field. Comparative study of harvesting parameters showed significant differences between transgenic and control plants. These indexes were significantly lower (P < 0.05) in control plants than that in transgenic plants, which suggests that they are significantly affected by pinA gene and that the puroindoline a protein (PINA) can effectively inhibit in vivo the growth of fungal, and the transgenic tetraploid wheat can grow well in Hubei Province, Central China, where the tetraploid wheat varieties Luna and Venusia have poor yield due to their disease-sensitivity.  相似文献   

19.
Little is known about the genetic control of heterosis in the complex polyploid crop species oilseed rape (Brassica napus L.). In this study, two large doubled-haploid (DH) mapping populations and two corresponding sets of backcrossed test hybrids (THs) were analysed in controlled greenhouse experiments and extensive field trials for seedling biomass and yield performance traits, respectively. Genetic maps from the two populations, aligned with the help of common simple sequence repeat markers, were used to localise and compare quantitative trait loci (QTL) related to the expression of heterosis for seedling developmental traits, plant height at flowering, thousand seed mass, seeds per silique, siliques per unit area and seed yield. QTL were mapped using data from the respective DH populations, their corresponding TH populations and from mid-parent heterosis (MPH) data, allowing additive and dominance effects along with digenic epistatic interactions to be estimated. A number of genome regions containing numerous heterosis-related QTL involved in different traits and at different developmental stages were identified at corresponding map positions in the two populations. The co-localisation of per se QTL from the DH population datasets with heterosis-related QTL from the MPH data could indicate regulatory loci that may also contribute to fixed heterosis in the highly duplicated B. napus genome. Given the key role of epistatic interactions in the expression of heterosis in oilseed rape, these QTL hotspots might harbour genes involved in regulation of heterosis (including fixed heterosis) for different traits throughout the plant life cycle, including a significant overall influence on heterosis for seed yield.  相似文献   

20.
Rust diseases are a major cause of yield loss in wheat worldwide, and are often controlled through the incorporation of resistance genes using conventional phenotypic selection methods. Slow-rusting resistance genes are expressed quantitatively and are typically small in genetic effect thereby requiring multiple genes to provide adequate protection against pathogens. These effects are valuable and are generally considered to confer durable resistance. Therefore an understanding of the chromosomal locations of such genes and their biological effects are important in order to ensure they are suitably deployed in elite germplasm. Attila is an important wheat grown throughout the world and is used as a slow-rusting donor in international spring wheat breeding programs. This study identified chromosomal regions associated with leaf rust and stripe rust resistances in a cross between Attila and a susceptible parent, Avocet-S, evaluated over 3 years in the field. Genotypic variation for both rusts was large and repeatable with line-mean heritabilities of 94% for leaf rust resistance and 87% for stripe rust. Three loci, including Lr46/Yr29 on chromosome 1BL, were shown to provide resistance to leaf rust whereas six loci with small effects conferred stripe rust resistance, with a seventh locus having an effect only by epistasis. Disease scoring over three different years enabled inferences to be made relating to stripe rust pathogen strains that predominated in different years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号