首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Heteroduplex DNA molecules were prepared in vitro using one strand of DNA carrying a point mutation and one strand of the corresponding wild-type DNA. The heteroduplex DNA was transfected into competent bacteria and the progeny genotypes in the resulting infective centers were determined. From the results were conclude that about 80% of all transfected DNA molecules are repaired before DNA replication starts. This fraction of repaired DNA is independent of the location of the mismatched nucleotide pair. However, mismatch correction occurs preferentially on the H strand of the heteroduplex DNA.The repair does not depend on a known phage coded function but requires the active bacterial genes mut U, mut H, mut S and probably mut L.  相似文献   

2.
In vitro packaging of bacteriophage T7 DNA requires ATP.   总被引:1,自引:1,他引:0       下载免费PDF全文
Removal of nucleoside triphosphates from extracts prepared from bacteriophage T7-infected Escherichia coli results in a stringent requirement for added ATP to form infective phage particles by in vitro packaging of bacteriophage T7 DNA. Optimal packaging efficiency was achieved at a concentration of about 1.25 mM. Other nucleoside triphosphates could be substituted for ATP, but none of the common nucleoside triphosphates was as effective as ATP in promoting in vitro encapsulation.  相似文献   

3.
T4 heteroduplex heterozygotes are lost selectively after prolonged incubation of phage-infected Escherichia coli cells under nonreplicating conditions. The loss of heterozygosity occurs for four out of six rII sites tested and is not dependent upon T4 v gene function. The results are interpreted to indicate the existence of a base-specific system for the recognition of mismatched bases in intracellular DNA.  相似文献   

4.
DNA packaging in vitro by an isolated bacteriophage T7 procapsid.   总被引:8,自引:5,他引:3       下载免费PDF全文
The results of previous in vivo studies indicate that a DNA-free procapsid (capsid I) packages bacteriophage T7 DNA during infection of Escherichia coli. It was shown here that capsid I, isolated by electrophoresis in metrizamide density gradients, packaged DNA and formed infectious phage particles when incubated in vitro with extracts deficient in capsid proteins.  相似文献   

5.
A double-strand break in a bacteriophage T7 genome significantly reduced the ability of that DNA to produce viable phage when the DNA was incubated in an in vitro DNA replication and packaging system. When a homologous piece of T7 DNA (either a restriction fragment or T7 DNA cloned into a plasmid) that was by itself unable to form a complete phage was included in the reaction, the break was repaired to the extent that many more viable phage were produced. Moreover, repair could be completed even when a gap of about 900 nucleotides was put in the genome by two nearby restriction cuts. The repair was accompanied by acquisition of a genetic marker that was present only on the restriction fragment or on the T7 DNA cloned into a plasmid. These data are interpreted in light of the double-strand gap repair mode of recombination.  相似文献   

6.
In vitro packaging of bacteriophate T7 DNA synthesized in vitro.   总被引:11,自引:5,他引:6       下载免费PDF全文
An in vitro DNA packaging system was used to encapsulate T7 DNA that had been synthesized by extracts prepared from gently lysed Escherchia coli infected with bacteriophage T7 carrying amber mutations in gene 3 or in both genes 3 and 6. Isopycnic centrifugation of density-labeled wild-type DNA was employed in an effort to separate product from template; suppressor-free indicator bacteria were used to eliminate contributions from endogenous DNA or contaminating phage. Additional controls indicated that fragmented DNA is packaged in vitro only with very low efficiency and that the frequency of recombination during packaging is too low to affect interpretation of these experiments. T7 DNA replicated by extracts prepared using T7 mutants deficient in both genes 3 and 6 could be packaged in vitro with an efficiency comparable to that found when highly purified virion T7 DNA was used. When T7 deficient in the gene 3 endonuclease but with normal levels of the gene 6 exonuclease was used, fast-sedimentingconcatemer-like DNA structures were formed during in vitro DNA synthesis. Electron microscopy revealed many branched and highly complex DNA structures formed during this reaction. This concatemer-like DNA was encapsulated in vitro with an efficiency significantly greater than that found for DNA the length of a single T7 genome.  相似文献   

7.
M Sun  D Louie    P Serwer 《Biophysical journal》1999,77(3):1627-1637
Bacteriophage T7 packages its double-stranded DNA genome in a preformed protein capsid (procapsid). The DNA substrate for packaging is a head-to-tail multimer (concatemer) of the mature 40-kilobase pair genome. Mature genomes are cleaved from the concatemer during packaging. In the present study, fluorescence microscopy is used to observe T7 concatemeric DNA packaging at the level of a single (microscopic) event. Metabolism-dependent cleavage to form several fragments is observed when T7 concatemers are incubated in an extract of T7-infected Escherichia coli (in vitro). The following observations indicate that the fragment-producing metabolic event is DNA packaging: 1) most fragments have the hydrodynamic radius (R(H)) of bacteriophage particles (+/-3%) when R(H) is determined by analysis of Brownian motion; 2) the fragments also have the fluorescence intensity (I) of bacteriophage particles (+/-6%); 3) as a fragment forms, a progressive decrease occurs in both R(H) and I. The decrease in I follows a pattern expected for intracapsid steric restriction of 4',6-diamidino-2-phenylindole (DAPI) binding to packaged DNA. The observed in vitro packaging of a concatemer's genomes always occurs in a synchronized cluster. Therefore, the following hypothesis is proposed: the observed packaging of concatemer-associated T7 genomes is cooperative.  相似文献   

8.
A system capable of in vitro packaging of exogenous bacteriophage T7 DNA has been used to monitor the biological activity of DNA replicated in vitro. This system has been used to follow the effects of UV radiation on in vitro replication and recombination. During the in vitro replication process, a considerable exchange of genetic information occurs between T7 DNA molecules present in the reaction mixture. This in vitro recombination is reflected in the genotype of the T7 phage produced after in vitro encapsulation; depending on the genetic markers selected, recombinants can comprise nearly 20% of the total phage production. When UV-irradiated DNA is incubated in this system, the amount of in vitro synthesis is reduced and the total amount of viable phage produced after in vitro packaging is diminished. In vitro recombination rates are also lower when the participating DNA molecules have been exposed to UV. However, biochemical and genetic measurements confirmed that there is little or no transfer of pyrimidine dimers from irradiated DNA into undamaged molecules.  相似文献   

9.
The effect of ultraviolet radiation on DNA replication has been examined with an in vitro system capable of replicating intact chromosomes of T7 DNA from an exogenous template. Exposure of the template DNA to ultraviolet radiation resulted in a sharp drop in the amount of in vitro DNA synthesis. The residual replication detected when irradiated templates were used was found to proceed semiconservatively and to result in the production of pieces of duplex DNA approximately the same size as the average distance between pyrimidine dimers. It was also found that prior irradiation of the template inhibits formation of fast-sedimenting concatemer-like DNA structures normally synthesized in vitro. Hybridization studies demonstrated that the product synthesized in vitro from ultraviolet-irradiated templates includes DNA from both the left and right halves of the T7 chromosome. This may mean that after ultraviolet irradiation more than one origin of replication exists.  相似文献   

10.
M Son  S J Hayes  P Serwer 《Gene》1989,82(2):321-325
The in vitro DNA packaging of several DNA bacteriophages is stimulated by the presence of neutral polymers. To optimize bacteriophage T7 DNA packaging and to understand the basis for optimization, the efficiency of T7 DNA packaging has been determined at completion, as a function of the type, molecular mass, and concentration of the polymer added. When the polymer used was polyethylene glycol (PEG) of 0.2, 0.6 or 12.6 kDa, the efficiency of DNA packaging reached maximum at an intermediate concentration of polymer. The osmotic pressure (Pos) at maximum efficiency was either in, or close to, the range of colloid Pos measured for the intact host cell. The optimum Pos increased as the size of the polymer used decreased. PEG-100 (of 0.1 kDa) did not stimulate in vitro T7 DNA packaging. Dextran of 10 kDa also stimulated packaging and produced maximum efficiency at a physiological Pos. The degree of stimulation increases as DNA packaging extract concentration decreases; stimulation by as much as two to three orders of magnitude is observed. The presence of added polymer reduces fluctuations in DNA packaging efficiency caused by variability in the concentration of DNA packaging extracts. For reproducible and high efficiency packaging, the dextran was more reliable than the PEGs, possibly because the Pos of the dextran solutions is less sensitive to polymer concentration than is the Pos of PEG solutions. The optimum concentration of dextran at completion was also the optimum at all times before completion.  相似文献   

11.
Model for DNA packaging into bacteriophage T4 heads.   总被引:7,自引:7,他引:0       下载免费PDF全文
The mechanism of DNA packaging into bacteriophage T4 heads in vivo was investigated by glucosylation of hydroxymethylcytosine residues in a conditionally glucose-deficient host. Cytoplasmic DNA associated with partially packaged ts49 heads can be fully glucosylated, whereas DNA already packaged into these heads is shown to be resistant to glucosylation. After temperature shift and completion of arrested packaging into the reversible temperature-sensitive ts49 head, the structure of the DNA in the mature ts49 phage was investigated by restriction enzyme digestion, autoradiography, and other techniques. Such mature DNA appears to be fully glucosylated along part of its length and nonglucosylated on the remainder. Its structure suggests that the DNA is run into the head linearly and unidirectionally from one mature end and that there is little sequence specificity in that portion of the T4 DNA which first enters the capsid. This technique should be useful in investigation of the three-dimensional structure of first- and last-packaged DNA within the head; preliminary studies including autoradiography of osmotically shocked phage suggest that the DNA which first enters the head is deposited toward the center of the capsid and that the end of the DNA which first enters the head exits first upon injection. In conjunction with studies of the structure of condensed DNA, the positions and functions of T4 capsid proteins in DNA packaging, and the order of T4 packaging functions [Earnshaw and Harrison, Nature (London) 268:598-602, 1977; Hsiao and Black, Proc. Natl. Acad. Sci. U.S.A. 74:3652-3656, 1977; Müller-Salamin et al., J. Virol. 24:121-134, 1977; Richards et al., J. Mol. Biol. 78:255-259, 1973], the features described above suggest the following model: the first DNA end is fixed to the proximal apex of the head at p20 and the DNA is then pumped into the head enzymatically by proteins (p20 + p17) which induce torsion in the DNA molecule.  相似文献   

12.
We developed a simple, direct, physical assay to detect genetic recombination of bacteriophage T7 DNA in vitro. In this assay two mature T7 DNA molecules, each having a unique restriction enzyme site, are incubated in the presence of a cell-free extract from T7-infected Escherichia coli cells. After extraction of the DNA, restriction enzyme digestion, and agarose gel electrophoresis, genetic recombination is detected by the appearance of a novel recombinant DNA band. Recombination frequencies as high as 13% have been observed. We used this assay to determine the genetic requirements for in vitro recombination. In agreement with results obtained previously with a biological assay, T7 recombination in vitro appears to proceed via two distinct pathways.  相似文献   

13.
In vitro packaging of bacteriophage SPP1 DNA into procapsids is described and the requirements of this process were determined. Combination of proheads with an extract supplying terminase, DNA and phage tails yielded up to 10(7 )viable phages per milliliter of in vitro reaction under optimized conditions. The presence of neutral polymers and polyamines had a concentration and type dependent effect in the packaging reaction. The terminase donor extract lost rapidly activity at 30 degrees C in contrast to the stability of the prohead donor extract. Maturation to infective virions was observed using both procapsids assembled in SPP1 infected cells and procapsid-like structures assembled in Escherichia coli that overexpressed the SPP1 prohead gene clusters. Neither a majority of aberrant capsid-related structures present in the latter material nor procapsids lacking the portal protein inhibited DNA packaging. Addition of purified portal protein reduced DNA packaging activity in vitro only at concentrations 20-fold higher than those found in the SPP1 infected cell. The SPP1 DNA packaged in vitro originated exclusively from the terminase donor extract. This packaging selectivity was not observed in vivo during mixed infections. The data are compatible with a model for processive headful DNA packaging in which terminase and DNA co-produced in the same cell are tightly associated and can effectively discriminate the portal vertex of DNA packaging-proficient proheads from aberrant structures, from portal-less procapsids, and from isolated portal protein.  相似文献   

14.
We developed a system for DNA packaging of isolated bacteriophage T4 proheads in vitro and studied the role of prohead expansion in DNA packaging. Biologically active proheads have been purified from a number of packaging-deficient mutant extracts. The cleaved mature prohead is the active structural precursor for the DNA packaging reaction. Packaging of proheads requires ATP, Mg2+ and spermidine, and is stimulated by polyethylene glycol and dextran. Predominantly expanded proheads (ELPs) are produced at 37 degrees C and predominantly unexpanded proheads (ESPs) are produced at 20 degrees C. Both the expanded and unexpanded proheads are active in DNA packaging in vitro. This is based on the observations that (1) both ESPs and ELPs purified by chromatography on DEAE-Sephacel showed DNA packaging activity; (2) apparently homogeneous ELPs prepared by treatment with sodium dodecyl sulfate (which dissociates ESPs) retained significant biological activity; (3) specific precipitation of ELPs with anti-hoc immunoglobulin G resulted in loss of DNA packaging activity; and (4) ESPs upon expansion in vitro to ELPs retained packaging activity. Therefore, contrary to the models that couple DNA packaging to head expansion, in T4 the expansion and packaging appear to be independent, since the already expanded DNA-free proheads can be packaged in vitro. We therefore propose that the unexpanded to expanded prohead transition has evolved to stabilize the capsid and to reorganize the prohead shell functionally from a core-interacting to a DNA-interacting inner surface.  相似文献   

15.
16.
Processing of concatemers of bacteriophage T7 DNA in vitro   总被引:3,自引:0,他引:3  
The T7 chromosome is a double-stranded linear DNA molecule flanked by direct terminal repeats or so-called terminal redundancies. Late in infection bacteriophage T7 DNA accumulates in the form of concatemers, molecules that are comprised of T7 chromosomes joined in a head to tail arrangement through shared terminal redundancies. To elucidate the molecular mechanisms of concatemer processing, we have developed extracts that process concatemeric DNA. The in vitro system consists of an extract of phage T7-infected cells that provides all T7 gene products and minimal levels of endogenous concatemeric DNA. Processing is analyzed using a linear 32P-labeled substrate containing the concatemeric joint. T7 gene products required for in vitro processing can be divided into two groups; one group is essential for concatemer processing, and the other is required for the production of full length left-hand ends. The products of genes 8 (prohead protein), 9 (scaffolding protein), and 19 (DNA maturation) along with gene 18 protein are essential, indicating that capsids are required for processing. In extracts lacking one or more of the products of genes 2 (Escherichia coli RNA polymerase inhibitor), 5 (DNA polymerase), and 6 (exonuclease), full length right-hand ends are produced. However, the left-hand ends produced are truncated, lacking at least 160 base pairs, the length of the terminal redundancy. Gene 3 endonuclease, required for concatemer processing in vivo, is not required in this system. Both the full length left- and right-hand ends produced by the processing reaction are protected from DNase I digestion, suggesting that processing of the concatemeric joint substrate is accompanied by packaging.  相似文献   

17.
18.
A set of pneumococcal strains containing immediately adjacent or nearby double mutations at the amiA locus, conferring resistance to amethopterin, has been isolated by oligonucleotide site-specific mutagenesis. Repair of these double mutations has been measured by transformation of wild-type strains with DNA extracted from these strains. In several transformations we have observed an inhibition of repair by neighbouring mismatches. This inhibition ranges from mild to severe depending upon the interfering mismatch. Unrepaired mismatches can strongly inhibit repair of an adjacent repairable mutation. This suggests that the repair-complex proteins attach not only to repairable mismatches but also to some mismatches known to escape the repair system.  相似文献   

19.
After infection of Escherichia coli with bacteriophage T7, the parenteral DNA forms a stable association with host cell membranes. The DNA-membrane complex isolated in cesium chloride gradients is free of host DNA and the bulk of T7 RNA. The complex purified through two cesium chloride gradients contains a reproducible set of proteins which are enriched in polypeptides having molecular weights of 54,000, 34,000, and 32,000. All proteins present in the complex are derived from host membranes. Treatment of the complex with Bruij-58 removes 95% of the membrane lipid and selectively releases certain protein components. The Brij-treated complex has an S value of about 1,000 and the sedimentation rate of this material is not altered by treatment with Pronase or RNase.  相似文献   

20.
The cell-free extract from blue-green alga Anacystis nidulans contains enzymatic activities which repair in vitro transforming DNA of bacteriophage T4 damaged by UV light or X-rays. The repair effect of the extract was observed with double-stranded irradiated DNA but not with denatured irradiated DNA. The level of restoration of the transforming activity depends on the protein concentration in the reaction mixture and on the dose of irradiation. A fraction of DNA lesions induced by X-rays is repaired by a NAD-dependent polynucleotide ligase present in the extract. The repair of UV-induced lesions is the most efficient in the presence of magnesium ions, NAD, ATP and the four deoxynucleoside triphosphates. The results indicate that the repair of UV-irradiated DNA is performed with the participation of DNA polymerase and polynucleotide ligase which function in the cell-free extract of the algae on the background of a low deoxyribonuclease activity.Abbreviations UV ultraviolet - TA transforming activity - PN-ligase polynucleotide ligase - NAD nicotinamide adenine dinucleotide - dNTP deoxynucleoside triphosphates - dATP, dGTP, dTTP triphosphates of deoxyadenosine, deoxyguanosine, deoxythymidine and deoxycytidine, respectively  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号