首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Calmodulin (CaM) may function as a regulatory subunit of ryanodine receptor (RYR) channels, modulating both channel activation and inhibition by Ca2+; however, mechanisms underlying differences in CaM regulation of the RYR isoforms expressed in skeletal muscle (RYR1) and cardiac muscle (RYR2) are poorly understood. Here we use a series of CaM mutants deficient in Ca2+ binding to compare determinants of CaM regulation of the RYR1 and RYR2 isoforms. In submicromolar Ca2+, activation of the RYR1 isoform by each of the single-point CaM mutants was similar to that by wild-type apoCaM, whereas in micromolar Ca2+, RYR1 inhibition by Ca2+CaM was abolished by mutations targeting CaM's C-terminal Ca2+ sites. In contrast to the RYR1, no activation of the cardiac RYR2 isoform by wild-type CaM was observed, but rather CaM inhibited the RYR2 at all Ca2+ concentrations (100 nM to 1 mM). Consequently, whereas the apparent Ca2+ sensitivity of the RYR1 isoform was enhanced in the presence of CaM, the RYR2 displayed the opposite response (RYR2 Ca2+ EC50 increased 7-10-fold in the presence of 5 microM wild-type CaM). CaM inhibition of the RYR2 was nonetheless abolished by each of four mutations targeting individual CaM Ca2+ sites. Furthermore, a mutant CaM deficient in Ca2+ binding at all four Ca2+ sites significantly activated the RYR2 and acted as a competitive inhibitor of RYR2 regulation by wild-type Ca2+CaM. We conclude that Ca2+ binding to CaM determines the effect of CaM on both RYR1 and RYR2 channels and that isoform differences in CaM regulation reflect the differential tuning of Ca2+ binding sites on CaM when bound to the different RYRs. These results thus suggest a novel mechanism by which CaM may contribute to functional diversity among the RYR isoforms.  相似文献   

2.
Sheep liver cytoplasmic aldehyde dehydrogenase is strongly inhibited by Mg2+, Ca2+ and Mn2+. The inhibition is only partial, however, with 8-15% of activity remaining at high concentrations of these agents. In 50 mM-Tris/Hcl, pH 7.5, the concentrations giving half-maximal effect were: Mg2+, 6.5 micrometers; Ca2+, 15.2 micrometers; Mn2+, 1.5 micrometer. The esterase activity of the enzyme is not affected by such low metal ion concentrations, but appears to be activated by high concentrations. Fluorescence-titration and stopped-flow experiments provide evidence for interaction of Mg2+ with NADH complexes of the enzyme. As no evidence for the presence of increased concentrations of functioning active centres was obtained in the presence of Mg2+, it is concluded that effects of Mg2+ (and presumably Ca2+ and Mn2+ also) are brought about by trapping increased concentrations of NADH in a Mg2+-containing complex. This complex must liberate products more slowly than any of the complexes involved in the non-inhibited mechanism.  相似文献   

3.
A radioisotope flux-rapid-quench-Millipore filtration method is described for determining the effects of Ca2+, adenine nucleotides, and Mg2+ on the Ca2+ release behaviour of "heavy" sarcoplasmic reticulum (SR) vesicles. Rapid 45Ca2+ efflux from passively loaded vesicles was blocked by the addition of Mg2+ and ruthenium red. At pH 7 and 10(-9) M Ca2+, vesicles released 45Ca2+ with a low rate (k = 0.1 s-1). An increase in external Ca2+ concentration to 4 microM or the addition of 5 mM ATP or the ATP analogue adenosine 5'-(beta,gamma-methylenetriphosphate) (AMP-PCP) resulted in intermediate 45Ca2+ release rates. The maximal release rate was observed in media containing 4 microM Ca2+ and 5 mM AMP-PCP and had a first-order rate constant of 30-100 s-1. Mg2+ partially inhibited Ca2+- and nucleotide-induced 45Ca2+ efflux. In the absence of AMP-PCP, 45Ca2+ release was fully inhibited at 5 mM Mg2+ or 5 mM Ca2+. The composition of the release media was systematically varied, and the flux data were expressed in the form of Hill equations. The apparent n values of activation of Ca2+ release by ATP and AMP-PCP were 1.6-1.9. The Hill coefficient of Ca2+ activation (n = 0.8-2.1) was dependent on nucleotide and Mg2+ concentrations, whereas the one of Mg2+ inhibition (n = 1.1-1.6) varied with external Ca2+ concentration. These results suggest that heavy SR vesicles contain a "Ca2+ release channel" which is capable of conducting Ca2+ at rates comparable with those found in intact muscle. Ca2+, AMP-PCP (ATP), and Mg2+ appear to act at noninteracting or interacting sites of the channel.  相似文献   

4.
The patch-clamp technique was used to investigate the effect of intracellular Mg2+ (Mgi2+) on the conductance of the large-conductance, Ca(2+)-activated K+ channel in cultured rat skeletal muscle. Measurements of single-channel current amplitudes indicated that Mgi2+ decreased the K+ currents in a concentration-dependent manner. Increasing Mgi2+ from 0 to 5, 10, 20, and 50 mM decreased channel currents by 34%, 44%, 56%, and 73%, respectively, at +50 mV. The magnitude of the Mgi2+ block increased with depolarization. For membrane potentials of -50, +50, and +90 mV, 20 mM Mgi2+ reduced the currents 22%, 56%, and 70%, respectively. Mgi2+ did not change the reversal potential, indicating that Mg2+ does not permeate the channel. The magnitude of the Mgi2+ block decreased as the concentration of K+ was increased. At a membrane potential of +50 mv, 20 mM Mgi2+ reduced the currents 71%, 56%, and 25% for Ki+ of 75, 150, and 500 mM. These effects of Mgi2+, voltage, and K+ were totally reversible. Although the Woodhull blocking model could approximate the voltage and concentration effects of the Mgi2+ block (Kd approximately 30 mM with 150 mM symmetrical K+; electrical distance approximately 0.22 from the inner surface), the Woodhull model could not account for the effects of K+. Double reciprocal plots of 1/single channel current vs. 1/[K+] in the presence and absence of Mgi2+, indicated that the Mgi2+ block is consistent with apparent competitive inhibition between Mgi2+ and Ki+. Cai2+, Nii2+, and Sri2+ were found to have concentration- and voltage-dependent blocking effects similar, but not identical, to those of Mgi2+. These observations suggest the blocking by Mgi2+ of the large-conductance, Ca(2+)-activated K+ channel is mainly nonspecific, competitive with K+, and at least partially electrostatic in nature.  相似文献   

5.
In many cell types, low concentrations of inositol 1,4,5-trisphosphate (IP3) release only a portion of the intracellular IP3-sensitive Ca2+ store, a phenomenon known as "quantal" Ca2+ release. It has been suggested that this effect is a result of reduced activity of the IP3- dependent Ca2+ channel with decreasing calcium concentration within the IP3-sensitive store ([Ca2+]s). To test this hypothesis, the properties of IP3-dependent Ca2+ release in single saponin-permeabilized HSY cells were studied by monitoring [Ca2+]s using the Ca(2+)-sensitive fluorescent dye mag-fura-2. In permeabilized cells, blockade of the sarco/ER Ca(2+)-ATPase pump in stores partially depleted by IP3 induced further Ca2+ release via an IP3-dependent route, indicating that Ca2+ entry via the sarco/ER Ca(2+)-ATPase pump had been balanced by Ca2+ loss via the IP3-sensitive channel before pump inhibition. IP3- dependent Mn2+ entry, monitored via quenching of luminal mag-fura-2 fluorescence, was readily apparent in filled stores but undetectable in Ca(2+)-depleted stores, indicating markedly reduced IP3-sensitive channel activity in the latter. Also consistent with reduced responsiveness of Ca(2+)-depleted stores to IP3, the initial rate of refilling of these stores was unaffected by the presence of 0.3 microM IP3, a concentration that was clearly effective in eliciting Ca2+ release from filled stores. Analysis of the rate of Ca2+ release at various IP3 concentrations indicated a significant shift of the IP3 dose response toward higher [IP3] with decreasing [Ca2+]s. We conclude that IP3-dependent Ca2+ release in HSY cells is a steady-state process wherein Ca2+ efflux via the IP3 receptor Ca2+ channel is regulated by [Ca2+]s, apparently via changes in the sensitivity of the channel to IP3.  相似文献   

6.
Laver DR 《Biophysical journal》2007,92(10):3541-3555
The free [Ca2+] in endoplasmic/sarcoplasmic reticulum Ca2+ stores regulates excitability of Ca2+ release by stimulating the Ca2+ release channels. Just how the stored Ca2+ regulates activation of these channels is still disputed. One proposal attributes luminal Ca2+-activation to luminal facing regulatory sites, whereas another envisages Ca2+ permeation to cytoplasmic sites. This study develops a unified model for luminal Ca2+ activation for single cardiac ryanodine receptors (RyR2) and RyRs in coupled clusters in artificial lipid bilayers. It is shown that luminal regulation of RyR2 involves three modes of action associated with Ca2+ sensors in different parts of the molecule; a luminal activation site (L-site, 60 microM affinity), a cytoplasmic activation site (A-site, 0.9 microM affinity), and a novel cytoplasmic inactivation site (I2-site, 1.2 microM affinity). RyR activation by luminal Ca2+ is demonstrated to occur by a multistep process dubbed luminal-triggered Ca2+ feedthrough. Ca2+ binding to the L-site initiates brief openings (1 ms duration at 1-10 s(-1)) allowing luminal Ca2+ to access the A-site, producing up to 30-fold prolongation of openings. The model explains a broad data set, reconciles previous conflicting observations and provides a foundation for understanding the action of pharmacological agents, RyR-associated proteins, and RyR2 mutations on a range of Ca2+-mediated physiological and pathological processes.  相似文献   

7.
Synaptosomes isolated from sheep brain cortex accumulate Ca2+, Sr2+ and Mg2+ when incubated in isosmotic sucrose media containing 5 mM of either of these cations. The maximal levels of cations retained per mg of protein are 100 nmol of Ca2+, 85 nmol of Mg2+ and 80 nmol of Sr2+. The loss of Ca2+ or Sr2+ from the preloaded synaptosomes is increased by monovalent cations in the following order: Na+> K+ > Li+> choline, whereas for the loss of Mg2+ this order is different: K+ > Na+ > Li ~ choline. The efflux of Ca2+ or Sr2+ induced by monovalent cations decreases as the temperature is lowered and it is nearly abolished at 0°C, whereas the efflux of Mg2+ is much less influenced by temperature. The results suggest that the mechanism of exchange of Ca2+ for Na+ in synaptosomes operates similarly for Sr2+, but not for Mg2+.  相似文献   

8.
A dose of heat which renders 98% of a population of Chinese hamster ovary cells reproductively dead has no significant effect on their Na+, K+, or Mg2+ content by 28 h postheat. In contrast, the cellular Ca2+ content increases in a dose-dependent manner as observed at 22 h after heating for 15-35 min at 45 degrees C. However, the rates of both influx and efflux of Ca2+ were reduced by heating. Increasing the cellular Ca2+ content by incubating the cells in high extracellular Ca2+, either at the time of heating or for a period of 22 h following heat, does not potentiate the lethal effect of heat. Completely blocking the heat-induced increase in Ca2+ content by incubating the cells in medium containing a low Ca2+ concentration does not protect the cells. Therefore, we conclude that heat does not produce any significant changes in the Na+, K+, or Mg2+ content of cells and that the heat-induced increase in Ca2+ does not play an important role in hyperthermic cell killing.  相似文献   

9.
Ca2+ influx into empty SR in the absence of Ca2+ pump activity was determined in skinned frog skeletal muscle fibers and compared with Ca2+ efflux from loaded SR (i.e., Ca2+ release) to deepen our understanding of the properties of the Ca2+ release channel (CRC). Calcium content in SR increased approximately in a first-order kinetics and finally reached the equilibrium level determined by cytoplasmic Ca2+ ([Ca2+]c). Because AMP caused an increase in the rate of Ca2+ influx, and procaine, Mg2+, and high concentrations of Ca2+ caused a characteristic decrease, the major Ca2+ influx pathway was concluded to be the CRC, as is true of Ca2+ release. The apparent rate constant (k(app)) of Ca2+ efflux did not significantly change when the loading level was decreased to one-third. At a given [Ca2+]c, the same equilibrium level of calcium in SR was attained with a similar k(app) by both Ca2+ influx and Ca2+ efflux. The relationship between [Ca2+]c and calcium in SR indicated the Ca2+ binding sites in SR. These results, together with the anticipated effects of these Ca2+ buffer sites on kinetics, are consistent with the idea that luminal Ca2+ inhibits the CRC.  相似文献   

10.
11.
Ruthenium red and/or EGTA prevent cyclic uptake and release of Ca2+ in mitochondria. These compounds inhibit but do not prevent the swelling of liver mitochondria induced by Ca2+ plus t-butyl hydroperoxide or Ca2+ plus N-ethylmaleimide. Ruthenium red and/or EGTA have complex effects on the release rate of Ca2+ and other cations induced by t-butyl hydroperoxide or N-ethylmaleimide. To determine the relationship between permeability changes and Ca2+ release in the absence of Ca2+ cycling, a novel method of data collection and analysis is developed which allows the relative time courses of Ca2+ release and Mg2+ release or swelling to be accurately and quantitatively compared. This method eliminates errors in time course comparisons which arise from the aging of mitochondrial preparations and allows data from different preparations to be directly contrasted. Using the method, it is shown that permeability changes caused by Ca2+-releasing agents are not secondary effects arising from Ca2+ cycling between uptake and release carriers. In the absence of Ca2+-cycling inhibitors, Ca2+ release induced by t-butyl hydroperoxide or N-ethylmaleimide is, in part, carrier-mediated. In the presence of EGTA and ruthenium red, Ca2+ release induced by either agent is mediated solely by the permeability pathway. No differences are apparent in the solute selectivity of the inner membrane permeability defect induced by Ca2+ plus t-butyl hydroperoxide or Ca2+ plus N-ethylmaleimide. A novel type of Ca2+ release from energized liver mitochondria is reported. This release is induced by EGTA, occurs in the absence of other releasing agents or nonspecific permeability changes, and is rapid (greater than or equal to 50 nmol/min/mg protein).  相似文献   

12.
Distribution of some bivalent cations (Ca2+, Mg2+, Zn2+) in histones isolated from healthy mice liver and ascitic hepatoma 22A cells has been investigated by atomic-absorption analysis. It has been shown that the content of these cations is higher in normal and diseased H3, H2B and H1 fractions and lower--in H2A; however, in the H4 fraction these metals are not detected. A significant increase of Ca2+, Mg2+ and Zn2+ levels has been established in ascitic H3, H2B and H1 fractions. An increase of bivalent cations (Ca2+, Mg2+, Zn2+) content in some histone fractions apparently is bound with the changes of histone--histone and histone--DNA interactions.  相似文献   

13.
14.
Two proteins of molecular mass 13 kDa, a specific inhibitor of Na+, K+ -ATPase and another of 12 kDa, which can distinguish between Ca2, Mg2+ and Ca2+ -ATPase activities have been obtained from the pooled fractions isolated from rat brain, using Sephadex G-100 chromatography. In order to determine the key step(s), which is affected by the modulators, we have designed an in vitro experiment of phosphorylation and dephosphorylation of these ATPases in the absence and presence of the modulators. The results suggest that the phosphorylation step of Mg2+ -independent Ca2+ -ATPase is inhibited, while in Mg2+ -dependent Ca2 -ATPase, the dephosphorylation step is stimulated by the modulators. The findings support our earlier observation that the modulators are able to distinguish between Mg2+ -independent and dependent Ca2+ -ATPases activities.  相似文献   

15.
Calcium ions that have been preloaded into isolated sarcoplasmic reticulum subfractions in the presence of ATP and pyrophosphate may be released upon addition of a large number of diverse pharmacologic substances. We report here that not only caffeine, but also Ca2+ ions, thymol, quercetin, menthol, halothane, chloroform, 1-ethyl-2-methylbenzimidazole, ryanodine, tetraphenylboron, ketoconazole, miconazole, clotrimazole, W-7, doxorubicin, 5,5'-dithiobis-(2-nitrobenzoic acid), p-chloromercuribenzoic acid, and low concentrations of Ag+ induce Ca2+ release from such triadic sarcoplasmic reticulum. All these drugs induce increased undirectional Ca2+ efflux. We believe all these drug-induced Ca2+ releases are mediated by Ca2+ efflux through the same ion channel since these releases are all greatly attenuated when light sarcoplasmic reticulum is substituted for triads and are even more pronounced when transverse tubule-free terminal cisternae are substituted for triads, and all these forms of drug-induced Ca2+ release are inhibited by submicromolar concentrations of ruthenium red, and by submillimolar concentrations of tetracaine, 9-aminoacridine, and Ba2+, yet they are not affected by nifedipine even at a concentration of 50 microM.  相似文献   

16.
The effects of various divalent cations on the Ca2+ uptake by microsomes from bovine aortic smooth muscle were studied. High concentrations (1 mM) of Co2+, Zn2+, Mn2+, Fe2+, and Ni2+ inhibited neither the Ca2+ uptake by the microsomes nor the formation of the phosphorylated intermediate (E approximately P) of the Ca2+,Mg2+-ATPase of the microsomes. The cadmium ion, however, inhibited both the Ca2+ uptake and the E approximately P formation by the microsomes. Dixon plot analysis indicated Cd2+ inhibited (Ki = 135 microM) the Ca2+ dependent E approximately P formation in a non-competitive manner. The inhibitory effect of Cd2+ was lessened by cysteine or dithiothreitol. The strontium ion inhibited the Ca2+ uptake competitively, while the E approximately P formation increased on the addition of Sr2+ at low Ca2+ concentrations. At a low Ca2+ concentration (1 microM), Sr2+ was taken up by the aortic microsomes in the presence of 1 mM ATP. It is thus suggested that Sr2+ replaces Ca2+ at the Ca2+ binding site on the ATPase.  相似文献   

17.
在温室条件下,采用盆栽根箱培养的方法研究盐胁迫下I 69杨(PopulusdeltoidesBartr.cv.'Lux')和NL 1381杨〔PopulusdeltoidesBartr.cv.'Lux'×P.euramericana(Dode)GeninierCL'I 45 51'〕根际、非根际土壤盐分分布特征。盐处理浓度共设3个水平:CK(NaCl0g kg)、处理A(NaCl1g kg)和处理B(NaCl2g kg),采用完全随机设计。结果表明,2个杨树无性系根际水溶性K+亏缺,水溶性Na+、Ca2+和Mg2+富集。K+的亏缺率及Na+的富集率随NaCl处理浓度的增大而减小,Ca2+和Mg2+的富集率在非盐渍条件下最低,处理A达最高,处理B较处理A略有下降。在盐胁迫下,无性系NL 1381杨根际土壤Na+的浓度和电导率均低于无性系I 69杨,可以有效减轻盐分对根系的渗透胁迫,相对而言具有较强的抗盐性。  相似文献   

18.
19.
We have constructed a three-dimensional reaction-diffusion model of the mammalian cardiac calcium release unit. We analyzed effects of diffusion coefficients, single channel current amplitude, density of RyR channels, and reaction kinetics of ATP(2-) with Ca(2+) and Mg(2+) ions on spatiotemporal concentration profiles of Ca(2+), Mg(2+), and ATP(2-) in the dyadic cleft during Ca(2+) release. The model revealed that Ca(2+) concentration gradients persist near RyRs in the steady state. Even with low number of open RyRs, peak [Ca(2+)] in the dyadic space reached values similar to estimates of luminal [Ca(2+)] in approximately 1 ms, suggesting that during calcium release the Ca(2+) gradient moves from the cisternal membrane towards the boundary of the dyadic space with the cytosol. The released Ca(2+) bound to ATP(2-), and thus substantially decreased ATP(2-) concentration in the dyadic space. The released Ca(2+) could also replace Mg(2+) in its complex with ATP(2-) during first milliseconds of release if dissociation of MgATP was fast. The results suggest that concentration changes of Ca(2+), Mg(2+), and ATP(2-) might be large and fast enough to reduce dyadic RyR activity. Thus, under physiological conditions, termination of calcium release may be facilitated by the synergic effect of the construction and chemistry of mammalian cardiac dyads.  相似文献   

20.
Erythrocyte membranes prepared by three different procedures showed (Mg2+ + Ca2+)-ATPase activities differing in specific activity and in affinity for Ca2+. The (Mg2+ + Ca2+)-ATPase activity of the three preparations was stimulated to different extents by a Ca2+-dependent protein activator isolated from hemolystes. The Ca2+ affinity of the two most active preparations was decreased as the ATP concentration in the assay medium was increased. Lowering the ATP concentration from 2 mM to 2–200 μM or lowering the Mg:ATP ratio to less than one shifted the (Mg2+ + Ca2+)-ATPase activity in stepwise hemolysis membranes from mixed “high” and “low” affinity to a single high Ca2+ affinity. Membranes from which soluble proteins were extracted by EDTA (0.1 mM) in low ionic strengh, or membranes prepared by the EDTA (1–10 mM) procedure, did not undergo the shift in the Ca2+ affinity with changes in ATP and MgCl2 concentrations. The EDTA-wash membranes were only weakly activated by the protein activator. It is suggested that the differences in properties of the (Mg2+ + Ca2+)-ATPase prepared by these three procedures reflect differences determined in part by the degree of association of the membrane with a soluble protein activator and changes in the state of the enzyme to a less activatable form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号