首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intracellular calcium levels play an important role in myofibril disintegration and regeneration of muscle fibers. Earlier studies have shown that the calcium activated protease, calpain, is involved in the removal of Z-discs from myofibrils of striated muscle and the tripeptide-aldehyde, leupeptin, which is an inhibitor of calpain, inhibits this activity. In the present communication, we demonstrate that leupeptin and another calpain inhibitor, E64d, inhibit the fusion of mouse skeletal muscle C2C12 myoblasts to form multinucleated myotubes in tissue culture.  相似文献   

2.
The mechanism(s) underlying eccentric damage to skeletal muscle cytoskeleton remain unclear. We examined the role of Ca(2+) influx and subsequent calpain activation in eccentric damage to cytoskeletal proteins. Eccentric muscle damage was induced by stretching isolated mouse muscles by 20% of the optimal length in a series of 10 tetani. Muscle force and immunostaining of the cytoskeletal proteins desmin, dystrophin, and titin were measured at 5, 15, 30, and 60 min after eccentric contractions and compared with the control group that was subjected to 10 isometric contractions. A Ca(2+)-free solution and leupeptin (100 microM), a calpain inhibitor, were applied to explore the role of Ca(2+) and calpain, respectively, in eccentric muscle damage. After eccentric contractions, decreases in desmin and dystrophin immunostaining were apparent after 5 min that accelerated over the next 60 min. Increased titin immunostaining, thought to indicate damage to titin, was evident 10 min after stretch, and fibronectin entry, indicating membrane disruption, was evident 20 min after stretch. These markers of damage also increased in a time-dependent manner. Muscle force was reduced immediately after stretch and continued to fall, reaching 56 +/- 2% after 60 min. Reducing extracellular calcium to zero or applying leupeptin minimized the changes in immunostaining of cytoskeletal proteins, reduced membrane disruption, and improved the tetanic force. These results suggest that the cytoskeletal damage and membrane disruption were mediated primarily by increased Ca(2+) influx into muscle cells and subsequent activation of calpain.  相似文献   

3.
Myosin-Va is a molecular motor that may participate in synaptic vesicle cycling. Calpain cleaves myosin-Va in vitro at methionine 1141 in the tail domain. We show that intracellular proteolysis of myosin-Va occurs in rat cortical synaptosomes depolarized in the presence of calcium, evidenced by the formation of an 80 k polypeptide that co-migrates in SDS-PAGE with the 80 k fragment produced by the in vitro proteolysis of myosin-Va by calpain. Anti-myosin-Va antibody recognized this polypeptide in Western blots and immunoprecipitated it from synaptosome extracts. Calpastatin, a calpain-specific inhibitor, or leupeptin, a general cysteine protease inhibitor, suppressed or blocked formation of the 80 k polypeptide depending on membrane permeability. We conclude that myosin-Va undergoes intracellular proteolysis by endogenous calpain, when synaptosomes are depolarized in the presence of calcium, at the same cleavage site previously identified in vitro, thus, making it a target for calcium signaling during synaptic activation.  相似文献   

4.
Synthesis of a new cell penetrating calpain inhibitor (calpeptin)   总被引:15,自引:0,他引:15  
N-terminal of Leu-norleucinal or Leu-methioninal was modified to obtain a cell penetrative peptide inhibitor against calpain. Benzyloxycarbonyl (Z) derivatives had less active against papain than phenylbutyryl derivatives and leupeptin. Z-Leu-nLeu-H (calpeptin) was more sensitive to calpain I than Z-Leu-Met-H and leupeptin. Calpeptin was most potent among synthesized inhibitors in terms of preventing the Ca2+-ionophore induced degradation of actin binding protein and P235 in intact platelets. After 30 min incubation with intact platelets, calpeptin completely abolished calpain activity in platelets but no effect was observed in case of leupeptin. Calpeptin also inhibited 20K phosphorylation in platelets stimulated by thrombin, ionomycin or collagen. Thus calpeptin was found to be a useful cell-penetrative calpain inhibitor.  相似文献   

5.
Inhibitors of calcium-dependent proteases (calpains) such as leupeptin and antipain have been shown to selectively inhibit platelet activation by thrombin. Based upon this observation, it has been proposed that calpains play a role in the initiation of platelet activation. In the present studies, we have examined the effect of leupeptin on the earliest known event in thrombin-induced platelet activation: the interaction between the agonist, its receptors, and the guanine nucleotide-binding proteins which stimulate phospholipase C (Gp) and inhibit adenylyl cyclase (Gi). We found that leupeptin inhibited thrombin's ability to stimulate phosphoinositide hydrolysis, suppress cAMP formation, and dissociate Gp and Gi into subunits. Leupeptin had no effect, however, on the same responses to other agonists or on thrombin binding to platelets. Although these observations might suggest, as others have concluded, that calpain is involved in the initiation of platelet activation by thrombin, we also found that: 1) substituting platelet membranes for intact platelets and decreasing the free Ca2+ concentration below the threshold required for calpain activation did not diminish the effects of leupeptin on phosphoinositide hydrolysis and cAMP formation, 2) washing the platelets after incubation with leupeptin reversed the effects of the inhibitor, 3) permeabilizing the platelets with saponin did not enhance the inhibitory effects of leupeptin, and 4) leupeptin inhibited the proteolysis of fibrinogen and the hydrolysis of S2238 by thrombin. Similar results in these assays were obtained with antipain. Therefore, our observations suggest that the inhibition of platelet activation by leupeptin is due to a direct interaction with thrombin and need not reflect a role for calpain in the initiation of platelet activation.  相似文献   

6.
Mouse NB2a/dl neuroblastoma cells elaborate axonal neurites in response to various chemical treatments including dibutyryl cyclic AMP and serum deprivation. Hirudin, a specific inhibitor of thrombin, initiated neurite outgrowth in NB2a/dl cells cultured in the presence of serum; however, these neurites typically retracted within 24 h. The cysteine protease inhibitors leupeptin and N-acetyl-leucyl-leucyl-norleucinal (CI; preferential inhibitor of micromolar calpain but also inhibits millimolar calpain) at 10(-6) M considerably enhanced neurite outgrowth induced by serum deprivation, but could not induce neuritogenesis in the presence of serum. A third cysteine protease inhibitor, N-acetyl-leucyl-leucyl-methional (CII; preferential inhibitor of millimolar calpain but also inhibits micromolar calpain), had no detectable effects by itself. Cells treated simultaneously with hirudin and either leupeptin, CI, or CII elaborated stable neurites in the presence of serum. Cell-free enzyme assays demonstrated that hirudin inhibited thrombin but not calpain, CI and CII inhibited calpain but not thrombin, and leupeptin inhibited both proteases. These results imply that distinct proteolytic events, possibly involving more than one protease, regulate the initiation and subsequent elongation and stabilization of axonal neurites. Since the addition of exogenous thrombin or calpain to serum-free medium did not modify neurite outgrowth, the proteolytic events affected by these inhibitors may be intracellular or involve proteases distinct from thrombin or calpain.  相似文献   

7.
Kyotorphin (Tyr-Arg) accumulation in the dialysed synaptosol from the rat brain in the presence of an inhibitor of kyotorphin-degrading enzyme, was maximal at neutral pH. This accumulation was activated by calcium ions, but was inhibited by leupeptin and SH-blocking agents, a finding which suggests the involvement of calcium-activated neutral protease (CANP or calpain). In addition, the kyotorphin-precursor protein, being processed by purified mu- or m-CANP, was detected at about 160 kDa on Sephacryl S-300 chromatography of the synaptosol. The present findings seem to be the first evidence for the role of CANP as a processing enzyme of neuropeptide-precursor in nerve terminals.  相似文献   

8.
Protein kinase C prepared from rat brain was used to phosphorylate a calcium-activated neutral protease, purified from bovine cardiac muscle. Attempts to phosphorylate the enzyme in the presence of calcium were unsuccessful, unless the protease inhibitor leupeptin was also present. Phosphorylation of the 74K subunit of the protease was completely inhibited in the absence of phosphatidylserine and diolein, indicating that phosphorylation of the enzyme was catalysed by the calcium and phospholipid-dependent protein kinase C.  相似文献   

9.
10.
Glutamate is believed to be an excitatory amino acid neurotransmitter in the retina. Enzymes for glutamate metabolism, such as glutamate dehydrogenase, ornithine aminotransferase, glutaminase, and aspartate aminotransferase (AAT), exist mainly in the mitochondria. The abnormal increase of intracellular calcium ions in ischemic retinal cells may cause an influx of calcium ions into the mitochondria, subsequently affecting various mitochondrial enzyme activities through the activity of mitochondrial calpain. As AAT has the highest level of activity among enzymes involved in glutamate metabolism, we investigated the change of AAT activity in ischemic and hypoxic rat retinas and the protection against such activity by calpain inhibitors. We used normal RCS (rdy+/rdy+) rats. For the in vivo studies, we clamped the optic nerve of anesthetized rats to induce ischemia. In the in vitro studies, the eye cups were incubated with Locke's solution saturated with 95% N2/5% CO2. The activity of cytosolic AAT (cAAT) was about 20% of total activity, whereas mitochondrial AAT (mAAT) was about 75% in rat retina. Ninety minutes of ischemia or hypoxia caused a 20% decrease in mAAT activity, whereas cAAT activity remained unchanged. To examine the contribution of intracellular calcium ions to the degradation of mAAT, we used Ca2+-free Locke's solution containing 1 mM EGTA, ryanodine (Ca2+ channel blocker), and thapsigargin (Ca2+-ATPase inhibitor). In the present study, thapsigargin in Ca2+-free Locke's solution, but not ryanodine in this solution, was found to prevent AAT degradation. AAT degradation was also prevented by calpain inhibitors (Ca2+-dependent protease inhibitor) such as calpeptin at 1 nM, 10 nM, 0.1 microM, 1 microM and 10 microM, and by calpain inhibitor peptide, but not by other protease inhibitors (10 microM leupeptin, pepstatin, chymostatin). Additionally, we determined the subcellular localization of calpain activity and examined the change of calpain activity in ischemic rat retinas. Our results suggest that decreased activity of mAAT in ischemic and hypoxic rat retinas might be evoked by the degradation by calpain-catalyzed proteolysis in mitochondria.  相似文献   

11.
Calcium-activated neutral proteases (calpain, EC 3.4.22.17) bind to agarose matrices (Bio-Gel A-150m, Sepharose 4B, and Ultrogel AcA 34) with high affinity in the presence of calcium. 6-O-beta-Galactopyranosyl-D-galactose, a disaccharide which closely resembles the repeating unit of the agarose matrices, completely blocks the binding of calpains and can release agarose-bound enzymes in the presence of calcium. At least 1 microM level of free calcium is required for binding. Other calcium binding proteins, including calmodulin, calpastatin, casein, and neurofilament proteins, fail to bind under the same conditions. Both calpain I and calpain II can be readily purified from crude enzyme preparations by agarose chromatography in the presence of calcium and leupeptin. Agarose-bound enzymes are eluted with calcium-free solutions or can be released in the presence of calcium by 1% Triton X-100, but not by 1 M urea or 20% ethylene glycol. Enzymes eluted from agarose are activated, as evidenced by the appearance of faster migrating forms (76 and 78 kDa) of the 80-kDa catalytic subunit of calpain I upon electrophoresis and by the increased sensitivity of calpain II to activation by micromolar levels of calcium. The electrophoretic migration of the 30-kDa regulatory subunit is, however, unaltered in enzyme fractions eluted from an agarose column. When the enzyme subunits are dissociated in 1 M NaSCN, only the 30-kDa subunit binds to the agarose matrix. Furthermore, neither calpain I nor calpain II binds to agarose when their 30-kDa subunit is autocatalyzed to an 18-kDa fragment, indicating that the NH2-terminal of the 30-kDa subunit is important for the binding of calpains to an agarose matrix.  相似文献   

12.
The endogenous calpain inhibitor, calpastatin, modulates some patho-physiological aspects of calpain signaling. Excess calpain can escape this inhibition and as well, many calpain isoforms and autolytically generated protease core fragments are not inhibited by calpastatin. There is a need, therefore, to develop specific, cell-permeable calpain inhibitors to block uncontrolled proteolysis and prevent tissue damage during brain and heart ischemia, spinal-cord injury and Alzheimer's diseases. Here, we report the first high-resolution crystal structures of rat mu-calpain protease core complexed with two traditional, low molecular mass inhibitors, leupeptin and E64. These structures show that access to a slightly deeper, but otherwise papain-like active site is gated by two flexible loops. These loops are divergent among the calpain isoforms giving a potential structural basis for substrate/inhibitor selectivity over other papain-like cysteine proteases and between members of the calpain family.  相似文献   

13.
Abstract: Calcium influx into SH-SY5Y human neuroblastoma cells after ionophore treatment or transient permeabilization in calcium-containing medium increased ALZ-50 immunoreactivity markedly. This increase was prevented by inhibitors active against calpain or against protein kinase C (PKC), suggesting that both of these enzymes were required to mediate the effect of calcium influx on ALZ-50 immunoreactivity. Treatment with PKC activator TPA increased ALZ-50 immunoreactivity in the absence of calcium influx or after intracellular delivery of the specific calpain inhibitor calpastatin, indicating that the influence of PKC was downstream from that of calpain. Calcium influx also resulted in μ-calpain autolysis (one index of calpain activation) and the transient appearance of PKM (i.e., free PKC catalytic subunits, generated by calpain-mediated cleavage of the regulatory and catalytic PKC domains). Inhibition of calpain within intact cells resulted in a dramatic increase in steady-state levels of total τ (migrating at 46–52 kDa) but resulted in a relatively minor increase in 68-kDa ALZ-50-immunoreactive τ isoforms. Although calcium influx into intact cells resulted in accumulation of ALZ-50 immunoreactivity, total τ levels were, by contrast, rapidly depleted. Incubation of isolated fractions with calpain in the presence of calcium indicated that ALZ-50-immunoreactive τ isoforms were more resistant to calpain-mediated proteolysis than were non-ALZ-50 reactive τ isoforms. These data therefore indicate that calpain may regulate τ levels directly via proteolysis and indirectly through PKC activation. A consequence of the latter action is altered τ phosphorylation, perhaps involving one or more kinase cascades, and the preferential accumulation of ALZ-50-immunoreactive τ isoforms due to their relative resistance to degradation. These findings provide a basis for the possibility that disregulation of calcium homeostasis may contribute to the pathological levels of conversion of τ to A68 by hyperactivation of the calpain/PKC system.  相似文献   

14.
The role of calcium and intracellular calpains in the expression of platelet prothrombinase activity was investigated. Incubation of gel-filtered platelets with complement proteins C5b-9 resulted in alpha-granule and dense granule secretion and exposure of membrane binding sites for coagulation factors Va and Xa. This was accompanied by the release of microparticles from the cell surface that incorporated plasma membrane glycoproteins GP Ib, IIb, and IIIa and the alpha-granule membrane protein GMP-140. Generation of these membrane microparticles was dependent on the presence of extracellular calcium and was accompanied by proteolytic degradation of the cytoskeletal proteins, actin binding protein (ABP), talin, and myosin heavy chain. Microparticle formation was also detected when unstirred platelets were activated by thrombin plus collagen, although proteolysis of ABP, talin, or myosin was not observed. Preincorporation of the calpain inhibitor leupeptin into the platelet cytosol completely blocked C5b-9-induced proteolysis of ABP, talin, and myosin. However, inhibition of this calpain-mediated proteolysis had no effect on platelet secretion, the generation of microparticles, the exposure of membrane sites for factors Va and Xa, or the expression of prothrombinase activity. Furthermore, the microparticles that formed in the presence of leupeptin contained intact ABP, talin, and myosin heavy chain. Prior depletion of ATP with metabolic inhibitors eliminated all platelet responses to thrombin plus collagen, but did not affect C5b-9-induced microparticle formation or exposure of binding sites for factor Va on the microparticles. These data indicate that the formation of microparticles and the expression of platelet prothrombinase activity in response to C5b-9 are dependent upon an influx of calcium into the platelet cytosol, but do not require metabolic energy or calpain-mediated proteolysis of cytoskeletal proteins.  相似文献   

15.
Strepin P-l, a new proteinase inhibitor, is a low molecular weight peptide isolated from the culture fluid of Streptomyces tanabeensis (SAB-934). Strepin P-l strongly inhibited not only cysteine proteinases, calpain and papain, but also trypsin. The purification procedures included HP-20 adsorption chromatography, DEAE-cellulose, Amberlite CG-50, Sephadex LH-20 and G-25 column chromatography. The yield was 12mg from 8 liters of culture fluid. The proteinase inhibitor thus prepared was a peptide composed of tyrosine, valine and argininal, that reacted positively with Sakaguchi and Pauly reagents on TLC. The N-terminal amino acid, tyrosine, was blocked with an isovaleryl group and the structure was elucidated to be AMsovaleryl-tyrosyl-valyl-argininal. The amino acid sequence-inhibitory activity relationships of strepin P-l, leupeptin and antipain toward calpain and papain are also discussed.  相似文献   

16.
Two molecular species of Ca2+-dependent neutral protease (calpains I and II) and its endogenous inhibitor (calpastatin) in cytosol fraction of bovine adrenal medulla were separated by hydrophobic interaction chromatography. Both calpains I and II, having low and high Ca2+ requirements for casein hydrolysis, respectively, were found to activate tyrosine hydroxylase(TH) that had been purified from cytosol fraction of bovine adrenal medulla. This activation of TH by calpain was inhibited by leupeptin and the endogenous inhibitor, calpastatin. The activated TH with calpain II, characterized by high-performance gel permeation chromatography, had a reduced Mr of 120,000 from the Mr of 230,000 of native enzyme.  相似文献   

17.
Calphostin C (UCN-1028C), a newly isolated compound from Cladosporium cladosporioides, is a potent and specific inhibitor of protein kinase C, because it was 1000 times more inhibitory to protein kinase C (IC50, 0.05 microM) than other protein kinases such as cAMP-dependent protein kinase and tyrosine-specific protein kinase (IC50, greater than 50 microM). Calphostin C did not inhibit calcium activated neutral protease (calpain)-digested protein kinase C, indicating that it interacts with the regulatory domain of protein kinase C. In addition this compound showed inhibitory effects on the binding of [3H]PDBu to protein kinase C. The potent cytotoxic activity and antitumor activity of calphostin C might be due to the inhibition of protein kinase C, and thus it may be potentially useful for the therapeutic application.  相似文献   

18.
Sarcopenia, the age‐related loss of muscle mass, is a highly‐debilitating consequence of aging. In this investigation, we show sarcopenia is greatly reduced by muscle‐specific overexpression of calpastatin, the endogenous inhibitor of calcium‐dependent proteases (calpains). Further, we show that calpain cleavage of specific structural and regulatory proteins in myofibrils is prevented by covalent modification of calpain by nitric oxide (NO) through S‐nitrosylation. We find that calpain in adult, non‐sarcopenic muscles is S‐nitrosylated but that aging leads to loss of S‐nitrosylation, suggesting that reduced S‐nitrosylation during aging leads to increased calpain‐mediated proteolysis of myofibrils. Further, our data show that muscle aging is accompanied by loss of neuronal nitric oxide synthase (nNOS), the primary source of muscle NO, and that expression of a muscle‐specific nNOS transgene restores calpain S‐nitrosylation in aging muscle and prevents sarcopenia. Together, the findings show that in vivo reduction of calpain S‐nitrosylation in muscle may be an important component of sarcopenia, indicating that modulation of NO can provide a therapeutic strategy to slow muscle loss during old age.  相似文献   

19.
Calcium-induced weakening of skeletal muscle Z-disks   总被引:1,自引:0,他引:1  
Structural changes in the Z disk were sensitively detected by measuring fragmentation indexes of myofibrils. The Ca2+-induced weakening of Z disks and the Z-disk removal by muscle calpain could be clearly distinguished by using muscle calpastatin, an endogenous inhibitor of muscle calpain. The Ca2+-induced weakening of Z disks occurred without concomitant release of alpha-actinin and had maxima at 10(-4) M Ca2+ and 45 degrees C and a minimum at pH 6.5, while the Z-disk removal by calpain had similar optima to the caseinolytic activity of calpain, at 10(-3) M Ca2+, 20 degrees C and pH 7.0. The Ca2+-induced weakening of Z disks is therefore not due to the proteolytic action of calpain. In postmortem muscle, moreover, the Ca2+-induced weakening of Z disks was inferred to be predominate over calpain proteolysis, and therefore to be the major factor in the characteristic weakening of Z disks.  相似文献   

20.
Myogenesis is a complex sequence of events, including the irreversible transition from the proliferation-competent myoblast stage into fused, multinucleated myotubes. During embryonic development, myogenic differentiation is regulated by positive and negative signals from surrounding tissues. Stimulation due to stretch- or load-induced signaling is now beginning to be understood as a factor which affects gene sequences, protein synthesis and an increase in Ca2+ influx in myocytes. Evidence of the involvement of Ca2+ -dependent activity in myoblast fusion, cell membrane and cytoskeleton component reorganization due to the activity of the ubiquitous proteolytic enzymes, calpains, has been reported. Whether there is a link between stretch- or load-induced signaling and calpain expression and activation is not known. Using a magnetic bead stimulation assay and C2C12 mouse myoblasts cell population, we have demonstrated that mechanical stimulation via laminin receptors leads to an increase in m-calpain expression, but no increase in the expression of other calpain isoforms. Our study revealed that after a short period of stimulation, m-calpain relocates into focal adhesion complexes and is followed by a breakdown of specific focal adhesion proteins previously identified as substrates for this enzyme. We show that stimulation also leads to an increase in calpain activity in these cells. These data support the pivotal role for m-calpain in the control of muscle precursor cell differentiation and thus strengthen the idea of its implication during the initial events of muscle development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号