首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phagocytosis of IgG-coated erythrocytes (EIgG) has been shown to augment the bacterial lipopolysaccharide (LPS)-stimulated increase in serum tumor necrosis factor-alpha (TNF-alpha) levels. The present study evaluated the role of Fcgamma-receptor (FcgammaR) signaling and complement activation in the effect of EIgG on the TNF-alpha response to LPS. The role of FcgammaR was determined using FcR gamma-chain knockout mice that lack functional FcgammaRI and FcgammaRIII. In wild-type animals, EIgG caused a 16-fold augmentation of the serum TNF-alpha response to LPS, whereas there was no augmentation in the FcgammaR-deficient animals. Heat-damaged erythrocytes also augmented the TNF-alpha response to LPS. This effect was absent in FcgammaR-deficient animals. An IgG antibody against heated erythrocytes was detected in mouse serum. The complement activation caused by EIgG had little effect on the LPS-stimulated increase in serum TNF-alpha levels as indicated by activation of complement with cobra venom factor or IgM-coated erythrocytes as well as studies with C5-deficient mice. These results indicate that FcgammaR signaling primarily mediates the augmented serum TNF-alpha response to LPS caused by EIgG.  相似文献   

2.
3.
4.
Lipopolysaccharide (LPS) is a potent activator of tumor necrosis factor-alpha (TNF-alpha) production by macrophages. LPS stimulates the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and increases TNF-alpha mRNA and protein accumulation in RAW 264.7 murine macrophages. However, the role of ERK1/2 activation in mediating LPS-stimulated TNF-alpha production is not well understood. Inhibition of ERK1/2 activation with PD-98059 or overexpression of dominant negative ERK1/2 decreased LPS-induced TNF-alpha mRNA quantity. LPS rapidly increased early growth response factor (Egr)-1 binding to the TNF-alpha promoter; this response was blunted in cells treated with PD-98059 or transfected with dominant-negative ERK1/2. Using a chloramphenicol acetyltransferase reporter gene linked to the Egr-1 promoter, we show that LPS increased Egr-1 promoter activity via an ERK1/2-dependent mechanism. These results delineate the role of ERK1/2 activation of Egr-1 activity in mediating LPS-induced increases in TNF-alpha mRNA expression in macrophages.  相似文献   

5.
The overproduction of the cytokine TNF-alpha is associated with inflammatory and autoimmune diseases. We have developed a means to block TNF-alpha production with ribozymes directed against TNF-alpha mRNA to selectively inhibit its production in vitro and in vivo. Following cationic lipid-mediated delivery to peritoneal murine macrophages in culture, anti-TNF-alpha ribozymes were more effective inhibitors of TNF-alpha secretion than catalytically inactive ribozyme controls. Inhibition of TNF-alpha secretion was proportional to the concentration of ribozyme administered, with an IC50 of approximately 10 nM. After i.p. injection of cationic lipid/ribozyme complexes, elicited macrophages accumulated approximately 6% of the administered ribozyme. The catalytically active ribozyme suppressed LPS-stimulated TNF-alpha secretion by approximately 50% relative to an inactive ribozyme control without inhibiting secretion of another proinflammatory cytokine produced by macrophages, IL-1alpha. Ribozyme-specific TNF-alpha mRNA degradation products were found among the mRNA extracted from macrophages following in vivo ribozyme treatment and ex vivo stimulation. Thus, catalytic ribozymes can accumulate in appropriate target cells in vivo; once in the target cell, ribozymes can be potent inhibitors of specific gene expression.  相似文献   

6.
7.
Local TNF-alpha production in different organs may affect HIV replication and pathogenesis. Alveolar macrophages (AMs) obtained by bronchoalveolar lavage from asymptomatic HIV-seropositive and HIV-seronegative individuals did not spontaneously release TNF-alpha, but LPS stimulation of these cells significantly increased TNF-alpha production. We tested whether NF-kappa B affects TNF-alpha production by AMs using N-tosyl-l -phenylalanine chloromethylketone (TPCK) or N-benzoyl-l -tyrosine ethyl ester (BTEE), which inhibit the degradation of I kappa B, or tricyclodecan-9-yl-xanthogenate-potassium (D609), which inhibits phospholipase C. Alveolar macrophages were exposed to LPS alone and with the chemical protease inhibitors TPCK, BTEE, and D609. NF-kappa B DNA binding induced by LPS treatment of AMs was inhibited by TPCK, BTEE, and D609. These agents also inhibited TNF-alpha mRNA and TNF-alpha protein production. After 24 h, the levels of TNF-alpha mRNA reached equilibrium, as assessed by RT-PCR. The levels of NF-kappa B mRNA remained constant under all conditions. The levels of I kappa B-alpha mRNA were similar after 30, 60, and 180 min, but the I kappa B-beta mRNA concentration was initially low and increased over time under all conditions. I kappa B-alpha and I kappa B-beta protein production was not affected by the chemical protease inhibitors. Our data show that TNF-alpha production by LPS-stimulated AMs from asymptomatic HIV-seropositive and -seronegative individuals is regulated via the phospholipase C pathway and by NF-kappa B DNA binding activity without obvious changes in I kappa B-alpha or I kappa B-beta protein concentrations.  相似文献   

8.
Tpl2 knockout mice produce low levels of TNF-alpha when exposed to lipopolysaccharide (LPS) and they are resistant to LPS/D-Galactosamine-induced pathology. LPS stimulation of peritoneal macrophages from these mice did not activate MEK1, ERK1, and ERK2 but did activate JNK, p38 MAPK, and NF-kappaB. The block in ERK1 and ERK2 activation was causally linked to the defect in TNF-alpha induction by experiments showing that normal murine macrophages treated with the MEK inhibitor PD98059 exhibit a similar defect. Deletion of the AU-rich motif in the TNF-alpha mRNA minimized the effect of Tpl2 inactivation on the induction of TNF-alpha. Subcellular fractionation of LPS-stimulated macrophages revealed that LPS signals transduced by Tpl2 specifically promote the transport of TNF-alpha mRNA from the nucleus to the cytoplasm.  相似文献   

9.
10.
11.
12.
Chronic ethanol feeding sensitizes Kupffer cells to activation by lipopolysaccharide (LPS), leading to increased production of tumor necrosis factor-alpha (TNF-alpha). Adiponectin treatment protects mice from ethanol-induced liver injury. Because adiponectin has anti-inflammatory effects on macrophages, we hypothesized that adiponectin would normalize chronic ethanol-induced sensitization of Kupffer cells to LPS-mediated signals. Serum adiponectin concentrations were decreased by 45% in rats fed an ethanol-containing diet for 4 wk compared with pair-fed rats. Adiponectin dose dependently inhibited LPS-stimulated accumulation of TNF-alpha mRNA and peptide in Kupffer cells from both pair- and ethanol-fed rats. Kupffer cells from ethanol-fed rats were more sensitive to both globular (gAcrp) and full-length adiponectin (flAcrp) than Kupffer cells from pair-fed controls with suppression at 10 ng/ml adiponectin after chronic ethanol feeding. Kupffer cells expressed both adiponectin receptors 1 and 2; chronic ethanol feeding did not change the expression of adiponectin receptor mRNA or protein. gAcrp suppressed LPS-stimulated ERK1/2 and p38 phosphorylation as well as IkappaB degradation at 100-1,000 ng/ml in Kupffer cells from both pair- and ethanol-fed rats. However, only LPS-stimulated ERK1/2 phosphorylation was sensitive to 10 ng/ml gAcrp. gAcrp also normalized LPS-stimulated DNA binding activity of early growth response-1 with greater sensitivity in Kupffer cells from rats fed chronic ethanol. In conclusion, these results demonstrate that Kupffer cells from ethanol-fed rats are more sensitive to the anti-inflammatory effects of both gAcrp and flAcrp. Suppression of LPS-stimulated ERK1/2 signaling by low concentrations of gAcrp was associated with normalization of TNF-alpha production by Kupffer cells after chronic ethanol exposure.  相似文献   

13.
Expression of the inflammatory cytokine IL-1beta occurs in various inflammatory diseases, and IL-1beta production is regulated at multiple levels. There are conflicting reports about the effects of antioxidants on IL-1beta production. In this study, we investigated the regulatory role of the antioxidant DMSO on LPS-stimulated IL-1beta gene expression in human PBMC and in vivo. This study demonstrated that 1% DMSO increased LPS-stimulated (50 ng/ml) IL-1beta secretion in a dose- and time-dependent manner without altering TNF or IL-6. DMSO also elevated IL-1beta secretion by PBMC in response to exogenous superoxide anions. Despite the increase in IL-1beta, there was no augmentation of NF-kappaB with the addition of DMSO. The steady state mRNA coding for IL-1beta following LPS stimulation was also increased. Cycloheximide studies demonstrated that the DMSO augmentation of IL-1beta mRNA did not require de novo protein synthesis, and studies with actinomycin D showed that DMSO did not alter the half-life of IL-1beta mRNA, suggesting that DMSO did not change the stability of IL-1beta mRNA. Experiments using a reporter vector containing the 5'-flanking region of the human IL-1beta gene revealed that DMSO augmented LPS-induced IL-1beta reporter activity. In vivo, treatment of mice with DMSO significantly increased plasma levels of IL-1beta after endotoxin challenge. These data indicate that DMSO directly increases LPS-stimulated IL-1beta protein production through the mechanisms of augmenting promoter activity and increasing mRNA levels.  相似文献   

14.
15.
Treatment of rats with dexamethasone rapidly induced a marked weight loss which occurred within 3 days and persisted for several weeks. The cachectic state was paralleled by increased serum levels of triglycerides, albumin, and protein and a strong reduction of blood mononuclear leukocytes. In lung sections, an increased number of mononuclear giant cells was found but no bacteria, fungi, or Pneumocystis carinii organisms. Quite strikingly, alveolar macrophages from dexamethasone-treated rats, but not from control animals, were highly sensitive to LPS and released large amounts of TNF-alpha ex vivo. Also under in vivo conditions, high TNF-alpha serum concentrations were found in dexamethasone-treated but not control rats when examined 1 1/2 hr after an intravenous LPS injection. These data suggest that the glucocorticoid-induced cachexia of rats may be linked, at least in part, to readily inducible TNF-alpha release from primed macrophages.  相似文献   

16.
17.
18.
Omega-3 fatty acid (FA) emulsions reduce LPS-stimulated murine macrophage TNF-alpha production, but the exact mechanism has yet to be defined. The purpose of this study was to determine the mechanism for omega-3 FA inhibition of macrophage TNF-alpha production following LPS stimulation. RAW 264.7 cells were pretreated with isocaloric emulsions of omega-3 FA (Omegaven), omega-6 FA (Lipovenos), or DMEM and subsequently exposed to LPS. IkappaB-alpha and phospho-IkappaB-alpha were determined by Western blotting. NF-kappaB binding was assessed using the electromobility shift assay, and activity was measured using a luciferase reporter vector. RT-PCR and ELISA quantified TNF-alpha mRNA and protein levels, respectively. Pretreatment with omega-3 FA inhibited IkappaB phosphorylation and significantly decreased NF-kappaB activity. Moreover, omega-3-treated cells demonstrated significant decreases in both TNF-alpha mRNA and protein expression by 47 and 46%, respectively. These experiments demonstrate that a mechanism for proinflammatory cytokine inhibition in murine macrophages by omega-3 FA is mediated, in part, through inactivation of the NF-kappaB signal transduction pathway secondary to inhibition of IkappaB phosphorylation.  相似文献   

19.
The effect of selective PDE-I (vinpocetine), PDE-III (milrinone, CI-930), PDE-IV (rolipram, nitroquazone), and PDE-V (zaprinast) isozyme inhibitors on TNF-alpha and IL-1beta production from LPS stimulated human monocytes was investigated. The PDE-IV inhibitors caused a concentration dependent inhibition of TNF-alpha production, but only partially inhibited IL-1beta at high concentrations. High concentrations of the PDE-III inhibitors weakly inhibited TNF-alpha, but had no effect on IL-1beta production. PDE-V inhibition was associated with an augmentation of cytokine secretion. Studies with combinations of PDE isozyme inhibitors indicated that PDE-III and PDE-V inhibitors modulate rolipram's suppression of TNF production in an additive manner. These data confirm that TNF-alpha and IL-1beta production from LPS stimulated human monocytes are differentially regulated, and suggest that PDE-IV inhibitors have the potential to suppress TNF levels in man.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号