首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Angiotensin II (Ang II) stimulates tumor growth and angio-genesis in some solid cancer cells, but its anti-apoptosis role in breast cancer remains unclear. To address this issue, we investigated the effect of Ang II on adriamycin-induced apoptosis in breast cancer MCF-7 cells. Treatment of human breast cancer MCF-7 cells with adriamycin, a DNA topoisomerase IIα inhibitor, caused apoptosis. However, cells pretreated with Ang II were resistant to this apoptosis. Ang II significantly reduced the ratio of apoptotic cells and stimulation of phospho-Akt-Thr308 and phospho-Akt-Ser473 in a dose-dependent and time-dependent manner. In addition, Ang II significantly prevented apoptosis through inhibiting the cleavage of procaspase-9, a major downstream effector of Akt. TheAng II type 1 receptor (AT1R) was responsible for these effects. Among the signaling molecules downstream of AT1R, we revealed that the phosphatidylinositol 3-kinase/Akt pathway plays a predominant role in the anti-apoptotic effect of Ang II. Our data indicated that Ang n plays a critical anti-apoptotic role in breast cancer cells by a mechanism involving AT1R/phosphatidylinositol 3-kinase/Akt activation and the subsequent suppression of caspase-9 activation.  相似文献   

2.
The caspase-8 homologue FLICE-inhibitory protein (FLIP) functions as a caspase-8 dominant negative, blocking apoptosis induced by the oligomerization of the adapter protein FADD/MORT-1. FLIP expression correlates with resistance to apoptosis induced by various members of the tumor necrosis factor family such as TRAIL. Furthermore, forced expression of FLIP renders cells resistant to Fas-mediated apoptosis. Although FLIP expression is regulated primarily by MEK1 activity in activated T cells, the oncogenic signaling pathways that regulate FLIP expression in tumor cells are largely unknown. In this report, we examined the roles of the MAP kinase and phosphatidylinositol (PI) 3-kinase signaling pathways in the regulation of FLIP expression in tumor cells. We observed that the MEK1 inhibitor PD98059 reduced FLIP levels in only 2 of 11 tumor cell lines tested. In contrast, disruption of the PI 3-kinase pathway with the specific inhibitor LY294002 reduced Akt (protein kinase B) phosphorylation and the levels of FLIP protein and mRNA in all cell lines evaluated. The introduction of a dominant negative Akt adenoviral construct also consistently reduced FLIP expression as well as the phosphorylation of the Akt target glycogen synthase kinase-3. In addition, infection of the same cell lines with a constitutively active Akt adenovirus increased FLIP expression and the phosphorylation of GSK-3. These data add FLIP to the growing list of apoptosis inhibitors in which expression or function is regulated by the PI 3-kinase-Akt pathway.  相似文献   

3.
4.
Although aging is shown to be associated with decreased apoptosis and increased survival of cells in the colonic mucosa of Fischer 344 rats, the regulatory mechanisms are poorly understood. The current investigation examines the involvement of phosphotidylinositol 3-kinase (PI3K)/Akt signaling pathway in mediating the events of colonic mucosal cell survival during aging. We have observed that aging is associated with activation of PI3K/Akt signaling, as evidenced by the higher levels of phosphorylated forms of p85, the regulatory subunit of PI3K and of Akt in the proximal and distal colonic mucosa, of aged (21-23 mo) than in young (4-7 mo) rats. These increases are accompanied by a concomitant rise in phosphorylation of proapoptotic protein Bad, which is sequestered by the 14-3-3 family of proteins following phosphorylation by Akt, resulting in a reduction in nonphosphorylated Bad. The amount of antiapoptotic Bcl-xL bound to nonphosporylated Bad in the colonic mucosa is found to be substantially lower in aged than in young rats, resulting in a marked rise in the unbound/free form of Bcl-xL in the aging colon. The age-related activation of PI3K and the reduction in caspase-3 activity could be reversed by wortmannin, a specific inhibitor of PI3K. Increased levels of Bcl-xL and phosphorylated forms of Akt and Bad and reduction in caspase-3 activity were observed throughout the entire length of the colonic crypt of aged rats. We conclude that the constitutive activation of the PI3K/Akt-signaling pathway is partly responsible for the age-related increase in colonic mucosal cell survival. This is evident throughout the entire length of the colonic crypt.  相似文献   

5.
Normal cellular functions of hamartin and tuberin, encoded by the TSC1 and TSC2 tumor suppressor genes, are closely related to their direct interactions. However, the regulation of the hamartin-tuberin complex in the context of the physiologic role as tumor suppressor genes has not been documented. Here we show that insulin or insulin growth factor (IGF) 1 stimulates phosphorylation of tuberin, which is inhibited by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 but not by the mitogen-activated protein kinase inhibitor PD98059. Expression of constitutively active PI3K or active Akt, including Akt1 and Akt2, induces tuberin phosphorylation. We further demonstrate that Akt/PKB associates with hamartin-tuberin complexes, promoting phosphorylation of tuberin and increased degradation of hamartin-tuberin complexes. The ability to form complexes, however, is not blocked. Akt also inhibits tuberin-mediated degradation of p27(kip1), thereby promoting CDK2 activity and cellular proliferation. Our results indicate that tuberin is a direct physiological substrate of Akt and that phosphorylation of tuberin by PI3K/Akt is a major mechanism controlling hamartin-tuberin function.  相似文献   

6.
Hepatoma-derived growth factor (HDGF) stimulates the migration, invasion and metastasis in several types of cancer cells. However, the mechanism underlying HDGF-stimulated migration remains unclear. In this study, we investigated the influence of HDGF on cytoskeleton remodeling and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway in non-transformed NIH/3T3 cells. Exogenous HDGF promoted the migration and the formation of dorsal ruffles and podosome rosettes. Besides, HDGF supply increased the PI3K expression and Akt phosphorylation in dose- and time-dependent manners. Application of LY294002, a PI3K inhibitor, attenuated the HDGF-induced migration, dorsal ruffles and podosome rosettes formation. Consistently, the HDGF-overexpressing NIH/3T3 transfectants exhibited significantly increased motility and elevated PI3K/Akt activities, which were repressed by LY294002 or adenovirus-mediated overexpression of endogenous PI3K antagonist, PTEN. In summary, HDGF elicits the activation of PI3K/Akt signaling cascade, thereby promoting cytoskeleton remodeling to stimulate cellular migration.  相似文献   

7.
8.
Sendai virus (SeV) infection causes apoptosis, which is manifested only late after infection; however, inhibition of phosphatidylinositol 3-kinase (PI3K) dramatically accelerates the process. We report here that rapid apoptosis uses the same mitochondrial apoptotic pathway as slow apoptosis. Cytoplasmic cytochrome c (cyt c) was released early in both cases, but the antiapoptotic protein XIAP prevented early activation of the caspases in cells with active PI3K. When the enzyme was inhibited, XIAP was degraded rapidly in infected cells, allowing cyt c to cause caspase activation and early apoptosis. Thus, SeV infection-mediated apoptosis is temporally regulated by the prevention of XIAP degradation by PI3K.  相似文献   

9.
Interleukin (IL)-32 is a recently described proinflammatory cytokine, characterized by the induction of nuclear factor (NF)-kappaB activation. We studied IL-32alpha expression in human pancreatic periacinar myofibroblasts, which play important roles in the regulation of extracellular matrix metabolism and inflammatory responses in the pancreas. IL-32alpha protein expression was evaluated by Western blot analyses, and IL-32alpha mRNA expression was analyzed by Northern blot and real-time PCR analyses. IL-32alpha mRNA was weakly expressed without a stimulus, and its expression was markedly enhanced by IL-1beta, IFN-gamma, and TNF-alpha. IL-1beta, IFN-gamma, and TNF-alpha enhanced intracellular accumulation of IL-32alpha protein, but IL-32alpha was not detected in supernatants. Each cytokine dose and time dependently induced IL-32alpha mRNA expression. An inhibitor of phosphatidylinositol 3-kinase (LY294002) significantly suppressed IL-1beta-, IFN-gamma-, and TNF-alpha-induced IL-32alpha mRNA expression, although MAPK inhibitors had no effect. Akt activation in response to these cytokines was confirmed by Western blot. Furthermore, LY294002 suppressed both IL-1beta- and TNF-alpha-induced NF-kappaB activation and IL-1beta-, TNF-alpha-, and IFN-gamma-induced activated protein-1 (AP-1) activation. Blockade of NF-kappaB and AP-1 activation by an adenovirus expressing a stable mutant form of IkappaBalpha and a dominant negative mutant of c-Jun markedly suppressed IL-1beta-, IFN-gamma-, and/or TNF-alpha-induced IL-32alpha mRNA expression. Human pancreatic periacinar myofibroblasts expressed IL-32alpha in response to IL-1beta, TNF-alpha, and IFN-gamma. IL-32alpha mRNA expression is dependent on interactions between the phosphatidylinositol 3-kinase/Akt-pathway and the NF-kappaB/AP-1 system.  相似文献   

10.
11.
PI3K/Akt plays a critical role in prostate cancer cell growth and survival. Recent studies have shown that the effect of PI3K/Akt in prostate cells is mediated through androgen signaling. The PI3K inhibitor, LY294002, and a tumor suppressor, PTEN, negatively regulate the PI3K/Akt pathway and repress AR activity. However, the molecular mechanisms whereby PI3K/Akt and PTEN regulate the androgen pathway are currently unclear. Here, we demonstrate that blocking the PI3K/Akt pathway reduces the expression of an endogenous AR target gene. Moreover, we show that the repression of AR activity by LY294002 is mediated through phosphorylation and inactivation of GSK3beta, a downstream substrate of PI3K/Akt, which results in the nuclear accumulation of beta-catenin. Given the recent evidence that beta-catenin acts as a coactivator of AR, our findings suggest a novel mechanism by which PI3K/Akt modulates androgen signaling. In a PTEN-null prostate cancer cell line, we show that PTEN expression reduces beta-catenin-mediated augmentation of AR transactivation. Using the mutants of beta-catenin, we further demonstrate that the repressive effect of PTEN is mediated by a GSK3beta-regulated degradation of beta-catenin. Our results delineate a novel link among the PI3K, wnt, and androgen pathways and provide fresh insights into the mechanisms of prostate tumor development and progression.  相似文献   

12.
13.
Inducible nitric oxide synthase (iNOS) is known to produce nitric oxide (NO), which is a main contributor to asthmatic airway inflammation. Recent studies have shown that phosphatidylinositol 3-kinase (PI3K) is ubiquitously expressed in airway epithelial cells and its inhibition could relieve airway inflammation and hyperresponsiveness. This study aimed to explore the interaction of PI3K and NO signaling in allergic asthma. We investigated the effects of PI3K inhibitor wortmannin on iNOS expression in bronchiole epithelial cells and NO, IL-4 and IFN-γ levels in lung tissues of asthmatic rat model, which was prepared by 10% OVA solution sensitization and 1% OVA aerosol challenge. Our results showed that the ratio of eosinophils to total cells in BALF, PI3K activity, NO and IL-4 levels in lung tissues was increased after OVA sensitization and challenge, but then was attenuated by the administration of wortmannin. In contrast, IFN-γ level in lung tissues was decreased after OVA sensitization and challenge and increased after the administration of wortmannin. The expression of iNOS protein in bronchiole epithelial cells, iNOS mRNA level and iNOS activity in lung tissues was markedly upregulated after OVA sensitization and challenge, but the upregulation was significantly antagonized by wortmannin. Taken together, these data provide evidence that PI3K functions upstream to modulate iNOS/NO signaling, which then promotes the development of airway inflammation in asthmatic animal model. PI3K inhibitor wortmannin could lead to reduced iNOS expression and NO production, therefore inhibiting airway inflammatory responses.  相似文献   

14.
Hypoxia is a common environmental stress that influences signaling pathways and cell function. Several cell types, including neuroendocrine chromaffin cells, have evolved to sense oxygen levels and initiate specific adaptive responses to hypoxia. Here we report that under hypoxic conditions, rat pheochromocytoma PC12 cells are resistant to apoptosis induced by serum withdrawal and chemotherapy treatment. This effect is also observed after treatment with deferoxamine, a compound that mimics many of the effects of hypoxia. The hypoxia-dependent protection from apoptosis correlates with activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, which is detected after 3-4 h of hypoxic or deferoxamine treatment and is sustained while hypoxic conditions are maintained. Hypoxia-induced Akt activation can be prevented by treatment with cycloheximide or actinomycin D, suggesting that de novo protein synthesis is required. Finally, inhibition of PI3K impairs both the protection against apoptosis and the activation of Akt in response to hypoxia, suggesting a functional link between these two phenomena. Thus, reduced oxygen tension regulates apoptosis in PC12 cells through activation of the PI3K/Akt survival pathway.  相似文献   

15.
Erythropoietin (Epo)-induced glycosylphosphatidylinositol (GPI) hydrolysis was previously described to be correlated with phospholipase C-gamma 2 (PLC-gamma2) activation. Here, we analyzed the involvement of phosphatidylinositol (PtdIns) 3-kinase in GPI hydrolysis through PLC-gamma2 tyrosine phosphorylation in response to Epo in FDC-P1 cells transfected with a wild type (WT) erythropoietin-receptor (Epo-R). We showed that phosphatidylinositol 3-kinase (PtdIns 3-kinase) inhibitor LY294002 inhibits Epo-induced hydrolysis of endogenous GPI and Epo-induced PLC-gamma2 tyrosine phosphorylation in a dose-dependent manner. Wortmannin, another PtdIns 3-kinase inhibitor, also suppressed Epo-induced PLC-gamma2 tyrosine phosphorylation. We also present evidence that PLC-gamma2 translocation to the membrane fraction on Epo stimulation is completely inhibited by LY294002. Upon Epo stimulation, the tyrosine-phosphorylated PLC-gamma2 was found to be associated with the tyrosine-phosphorylated Grb2-associated binder (GAB)2, SHC and SHP2 proteins. LY294002 cell preincubation did not affect GAB2, SHC and SHP2 tyrosine phosphorylation but inhibited the binding of PLC-gamma2 to GAB2 and SHP2. Taken together, these results show that PtdIns 3-kinase controls Epo-induced GPI hydrolysis through PLC-gamma2.  相似文献   

16.
17.
The isolation of islet cells from the pancreas by enzymatic digestion causes many of these cells to undergo apoptosis. The aim of this work was to investigate the role of phosphatidylinositol 3-kinase (PI3-K)/Akt signaling in mediating the survival of isolated islets. Insulin-like growth factor-1 (IGF-I) was examined as a potential culture media supplement that could rescue isolated islets from their apoptotic fate. Western blot analysis demonstrated that Akt phosphorylation peaks 20 h after routine islet isolation. PI3-K inhibition with wortmannin abolished both basal and IGF-I-mediated Akt phosphorylation. IGF-I did not increase survival of isolated islets under normal conditions but it did have a protective effect against cytokine (TNF-alpha, IL-1beta, INF-gamma)-mediated cell death. The protective effect of IGF-I against cytokine-stimulated apoptosis was blocked by wortmannin. In addition, inhibition of basal levels of PI3-K activity caused a 31% decrease in islet survival, as shown by MTT assay. These results demonstrate that the PI3-K/Akt pathway mediates survival of isolated islets of Langerhans.  相似文献   

18.
19.
Oxidized low-density lipoprotein (OxLDL) is a risk factor in atherosclerosis and stimulates multiple signaling pathways, including activation of phosphatidylinositol 3-kinase (PI3-K)/Akt and p42/p44 mitogen-activated protein kinase (MAPK), which are involved in mitogenesis of vascular smooth muscle cells (VSMCs). We therefore investigated the relationship between PI3-K/Akt and p42/p44 MAPK activation and cell proliferation induced by OxLDL. OxLDL stimulated Akt phosphorylation in a time- and concentration-dependent manner, as determined by Western blot analysis. Phosphorylation of Akt stimulated by OxLDL and epidermal growth factor (EGF) was attenuated by inhibitors of PI3-K (wortmannin and LY294002) and intracellular Ca2+ chelator (BAPTA/AM) plus EDTA. Pretreatment of VSMCs with pertussis toxin, cholera toxin, and forskolin for 24 h also attenuated the OxLDL-stimulated Akt phosphorylation. In addition, pretreatment of VSMCs with wortmannin or LY294002 inhibited OxLDL-stimulated p42/p44 MAPK phosphorylation and [3H]thymidine incorporation. Furthermore, treatment with U0126, an inhibitor of MAPK kinase (MEK)1/2, attenuated the p42/p44 MAPK phosphorylation, but had no effect on Akt activation in response to OxLDL and EGF. Overexpression of p85-DN or Akt-DN mutants attenuated MEK1/2 and p42/p44 MAPK phosphorylation stimulated by OxLDL and EGF. These results suggest that the mitogenic effect of OxLDL is, at least in part, mediated through activation of PI3-K/Akt/MEK/MAPK pathway in VSMCs.  相似文献   

20.
Most, if not all, cytokines activate phosphatidylinositol 3-kinase (PI-3K). Although many cytokine receptors have direct binding sites for the p85 subunit of PI-3K, others, such as the interleukin-3 (IL-3) receptor beta common chain (betac) and the IL-2 receptor beta chain (IL-2Rbeta), lack such sites, leaving the mechanism by which they activate PI-3K unclear. Here, we show that the protooncoprotein Shc, which promotes Ras activation by recruiting the Grb2-Sos complex in response to stimulation of cytokine stimulation, also signals to the PI-3K/Akt pathway. Analysis of Y-->F and add-back mutants of betac shows that Y577, the Shc binding site, is the major site required for Gab2 phosphorylation in response to cytokine stimulation. When fused directly to a mutant form of IL-2Rbeta that lacks other cytoplasmic tyrosines, Shc can promote Gab2 tyrosyl phosphorylation. Mutation of the three tyrosyl phosphorylation sites of Shc, which bind Grb2, blocks the ability of the Shc chimera to evoke Gab2 tyrosyl phosphorylation. Overexpression of mutants of Grb2 with inactive SH2 or SH3 domains also blocks cytokine-stimulated Gab2 phosphorylation. The majority of cytokine-stimulated PI-3K activity associates with Gab2, and inducible expression of a Gab2 mutant unable to bind PI-3K markedly impairs IL-3-induced Akt activation and cell growth. Experiments with the chimeric receptors indicate that Shc also signals to the PI-3K/Akt pathway in response to IL-2. Our results suggest that cytokine receptors lacking direct PI-3K binding sites activate Akt via a Shc/Grb2/Gab2/PI-3K pathway, thereby regulating cell survival and/or proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号