首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Enzymes are key molecules in signal-transduction pathways. However, only a small fraction of more than 500 human kinases, 300 human proteases and 200 human phosphatases is characterised so far. Peptide microarray based technologies for extremely efficient profiling of enzyme substrate specificity emerged in the last years. This technology reduces set-up time for HTS assays and allows the identification of downstream targets. Moreover, peptide microarrays enable optimisation of enzyme substrates. Focus of this review is on assay principles for measuring activities of kinases, phosphatases or proteases and on substrate identification/optimisation for kinases. Additionally, several examples for reliable identification of substrates for lysine methyl-transferases, histone deacetylases and SUMO-transferases are given. Finally, use of high-density peptide microarrays for the simultaneous profiling of kinase activities in complex biological samples like cell lysates or lysates of complete organisms is described. All published examples of peptide arrays used for enzyme profiling are summarised comprehensively.  相似文献   

2.
Endogenous proteinases in biological fluids such as human saliva produce a rich peptide repertoire that reflects a unique combination of enzymes, substrates, and inhibitors/activators. Accordingly, this subproteome is an interesting source of biomarkers for disease processes that either directly or indirectly involve proteolysis. However, the relevant proteinases, typically very low abundance molecules, are difficult to classify and identify. We hypothesized that a sensitive technique for monitoring accumulated peptide products in an unbiased, global manner would be very useful for detecting and profiling proteolytic activities in complex biological samples. Building on the longstanding use of 18O isotope-based approaches for the classification of proteolytic and other enzymatic processes we devised a new method for evaluating endogenous proteinases. Specifically, we showed that upon ex vivo incubation endogenous proteinases in human parotid saliva introduced 18O from isotopically enriched water into the C-terminal carboxylic groups of their peptide products. Subsequent peptide sequence determination and inhibitor profiling enabled the detection of discrete subsets of proteolytic products that were generated by different enzymes. As a proof-of-principle we used one of these fingerprints to identify the relevant activity as tissue kallikrein. We termed this technique PALeO. Our results suggest that PALeO is a rapid and highly sensitive method for globally assessing proteinase activities in complex biological samples.  相似文献   

3.
Proteolytic activation of zymogens or controlled degradation of inhibitory factors is part of a major regulatory system on the post-translational level to regulate treatment induced cellular stress responses. The identification of differential activity based substrates is thus of high interest to prioritize and validate candidate targets for drug discovery. Here we present a novel subtractive substrate phage display screening method for the selection of treatment induced post-translational peptide modifications in complex proteomes. We investigated this approach with tumor cells in response to a protease activating anticancer treatment modality using subtractive and iterative screening of cellular extracts derived from control and treated cells. Specific phage were identified that served as substrates for proteolytic activities in response to treatment related activity changes and could be distinguished from substrates for unspecific proteolytic background activities. Novel, selected peptide substrates were investigated in vitro and in vivo and showed high substrate specificity and functional biological significance.  相似文献   

4.
Robust methods for highly parallel, quantitative analysis of cellular protein tyrosine kinase activities may provide tools critically needed to decipher oncogenic signaling, discover new targeted drugs, diagnose cancer and monitor patients. Here, we describe proof-of-principle for a novel protein kinase assay with the potential to help overcome these challenges. MALDI-TOF mass spectrometry provides an ideal tool for label-free multiplexed analysis of peptide phosphorylation, but is poorly matched to homogeneous assays and complex samples. Thus, we conjugated a common oligonucleotide tag to multiple peptide substrates, offering efficient capture from solution-phase kinase reactions by annealing to the complementary sequence tethered to PEG-passivated superparamagnetic microparticles. To enable reversible conjugation, we developed a novel bifunctional cross-linker allowing simple and efficient preparation of photocleavable peptide-oligonucleotide conjugates. After washing away contaminants and following photorelease, MALDI-TOF analysis yielded relative phosphorylation of each peptide with high sensitivity and specificity. Validating the hybridization-mediated multiplexed kinase assay, when three peptide substrate-oligonucleotide conjugates were mixed with the tyrosine kinase c-Abl and ATP, we readily observed their differential phosphorylation yet measured a common IC(50) for the Abl kinase inhibitor imatinib. This new assay enables analysis of protein kinase activities in a multiplexed format amenable to screening inhibitors against multiple kinases in parallel, an important capability for drug discovery and predictive diagnostics.  相似文献   

5.

Background

Cancer invasion and metastasis are closely associated with activities within the degradome; however, little is known about whether these activities can be detected in the blood of cancer patients.

Methodology and Principal Findings

The peptidome-degradome profiles of pooled blood plasma sampled from 15 breast cancer patients (BCP) and age, race, and menopausal status matched control healthy persons (HP) were globally characterized using advanced comprehensive separations combined with tandem Fourier transform mass spectrometry and new data analysis approaches that facilitated top-down peptidomic analysis. The BCP pool displayed 71 degradome protein substrates that encompassed 839 distinct peptidome peptides. In contrast, the HP 50 degradome substrates found encompassed 425 peptides. We find that the ratios of the peptidome peptide relative abundances can vary as much as >4000 fold between BCP and HP. The experimental results also show differential degradation of substrates in the BCP sample in their functional domains, including the proteolytic and inhibitory sites of the plasmin-antiplasmin and thrombin-antithrombin systems, the main chains of the extracellular matrix protection proteins, the excessive degradation of innate immune system key convertases and membrane attack complex components, as well as several other cancer suppressor proteins.

Conclusions

Degradomics-peptidomics profiling of blood plasma is highly sensitive to changes not evidenced by conventional bottom-up proteomics and potentially provides unique signatures of possible diagnostic utility.  相似文献   

6.
A major bottleneck for validation of new clinical diagnostics is the development of highly sensitive and specific assays for quantifying proteins. We previously described a method, stable isotope standards with capture by antipeptide antibodies, wherein a specific tryptic peptide is selected as a stoichiometric representative of the protein from which it is cleaved, is enriched from biological samples using immobilized antibodies, and is quantitated using mass spectrometry against a spiked internal standard to yield a measure of protein concentration. In this study, we optimized a magnetic-bead-based platform amenable to high-throughput peptide capture and demonstrated that antibody capture followed by mass spectrometry can achieve ion signal enhancements on the order of 10(3), with precision (CVs <10%) and accuracy (relative error approximately 20%) sufficient for quantifying biomarkers in the physiologically relevant ng/mL range. These methods are generally applicable to any protein or biological fluid of interest and hold great potential for providing a desperately needed bridging technology between biomarker discovery and clinical application.  相似文献   

7.
Matrix metalloproteinases (MMPs) are a family of zinc-containing endopeptidases that proteolyze extracellular matrix components as well as a variety of functional proteins. Here we describe a "degradomics" method that efficiently identifies substrates of MMP-14 in a complex protein mixture, such as plasma. Plasma proteins were incubated in the presence or absence of the MMP-14 catalytic domain and displayed on two-dimensional (2-D) gels. After a comparison of the gels, we selected 40 protein spots that reproducibly showed disparities. Upon in-gel digestion, mass determination, and peptide mass fingerprinting, we identified 15 different proteins from 31 spots. These proteins included six known substrates and nine potential substrates of MMP-14. Among the latter, the purified forms of apolipoprotein A-I, apolipoprotein E, and plasma gelsolin were cleaved in vitro by MMP-14, confirming that each of them is a novel substrate of MMP-14. These results demonstrate that our method rapidly and selectively identifies MMP-14 substrates from human plasma proteins. This method would thus constitute a powerful tool for identifying the substrates of MMPs and other proteases in highly complex mixtures of proteins and would enhance our understanding of the biological roles of these enzymes.  相似文献   

8.
Wang YY  Cheung PY  Wong MS  Lo SC 《Proteomics》2003,3(5):580-583
Two-dimensional electrophoresis (2-DE) is one of the most commonly used techniques in proteomic investigations. However, due to the complex interplay of incidence including significant biological sample variations, lengthy steps involved in performing 2-DE as well as exposure time with silver staining, it is sometimes difficult to differentiate authentic differences caused by drug treatment with those artifacts caused by sample variations, running conditions of 2-DE as well as treatment time in silver staining etc. If we can compare pooled samples of control and treatment groups run in a single gel and stained together, we would be more comfortable with our findings. We propose here a low cost and highly effective method for locating differentially expressed proteins before and after drug treatment. This "two-in-one gel" technique might partially solve the problems mentioned above.  相似文献   

9.
10.
Biospectroscopy has the potential to investigate and characterize biological samples and could, therefore, be utilized to diagnose various diseases in a clinical environment. An important consideration in spectrochemical studies is the cost‐effectiveness of the substrate used to support the sample, as high expense would limit their translation into clinic. In this paper, the performance of low‐cost aluminium (Al) foil substrates was compared with the commonly used low‐emissivity (low‐E) slides. Attenuated total reflection‐Fourier transform infrared spectroscopy was used to analyse blood plasma and serum samples from women with endometrial cancer and healthy controls. The 2 populations were differentiated using principal component analysis with support vector machines with 100% sensitivity in plasma samples (endometrial cancer = 70; healthy controls = 15) using both Al foil and low‐E slides as substrates. The same sensitivity results (100%) were achieved for serum samples (endometrial cancer = 60; healthy controls = 15). Specificity was found higher using Al foil (90%) in comparison to low‐E slides (85%) and lower using Al foil (70%) in comparison to low‐E slides in serum samples. The establishment of Al foil as low‐cost and highly performing substrate would pave the way for large‐scale, multicentre studies and potentially for routine clinical use.

  相似文献   


11.

Background

Recognizing EGFR as key orchestrator of the metastatic process in colorectal cancer, but also the substantial heterogeneity of responses to anti-EGFR therapy, we examined the pattern of composite tumor kinase activities governed by EGFR-mediated signaling that might be implicated in development of metastatic disease.

Patients and Methods

Point mutations in KRAS, BRAF, and PIK3CA and ERBB2 amplification were determined in primary tumors from 63 patients with locally advanced rectal cancer scheduled for radical treatment. Using peptide arrays with tyrosine kinase substrates, ex vivo phosphopeptide profiles were generated from the same baseline tumor samples and correlated to metastasis-free survival.

Results

Unsupervised clustering analysis of the resulting phosphorylation of 102 array substrates defined two tumor classes, both consisting of cases with and without KRAS/BRAF mutations. The smaller cluster group of patients, with tumors generating high ex vivo phosphorylation of phosphatidylinositol-3-kinase-related substrates, had a particularly aggressive disease course, with almost a half of patients developing metastatic disease within one year of follow-up.

Conclusion

High phosphatidylinositol-3-kinase-mediated signaling activity of the primary tumor, rather than KRAS/BRAF mutation status, was identified as a hallmark of poor metastasis-free survival in patients with locally advanced rectal cancer undergoing radical treatment of the pelvic cavity.  相似文献   

12.
Serum peptidomics is a special form of functional proteomics. The small number of blood proteins that are the source of most prominent peptides in human serum serve as a substrate pool for commonly occurring and/or cancer-derived proteases. Exoprotease activities in particular, when superimposed on the ex vivo coagulation and complement degradation pathways, contribute to generation of not only cancer-specific but also "cancer type"-specific serum peptides. Following development of a unique, semiautomated serum peptide profiling platform and after completing investigations to eliminate common experimental bias, we have now studied possible effects of gender and age on serum peptidomes of 200 healthy men and women, ages 20-80, and of 60 patients (30 men and 30 women) with metastatic thyroid carcinomas. Extensive MALDI-TOF MS and data analysis suggested negligible contributions of both age and gender to the serum peptidome patterns except that healthy men and women under 35 years, but not older individuals, could be distinguished with approximately 70% accuracy. Considering the more advanced age of most patients, this finding is unlikely to interfere with peptidomics analysis of most cancers. By examining patient samples and age/gender-matched controls followed by variability analysis of either demographic or disease (versus control) groups, we could conclusively rule out demographic bias. An optimized, 12-peptide ion thyroid cancer signature was then developed, enabling classification of an independent validation set with 95% sensitivity and 95% specificity (binomial confidence intervals, 75.1-99.9%). Ten of these peptides had previously been assigned to signature patterns of other solid tumor cancers. One of the two newly discovered peptides was dehydro-Ala(3)-fibrinopeptide A. As we expand this study to include hundreds of thyroid cancer patients, the peptide signature will be adjusted, further validated, and then evaluated in a clinical setting used either independently or in combination with existing markers.  相似文献   

13.
Bladder cancer (BC) is the sixth common cancer in the world, characterized by high recurrent rate and poor prognosis. In most cases is asymptomatic and it can take years until symptoms develop. What is more, diagnosed patients need regular re-examinations which are invasive and expensive. Here, we used chromogenic substrates for the qualitative determination of specific activity of urine enzymes in healthy and bladder cancer patients. The peptide ABZ-Met-Lys-Val-Trp-ANB-NH2 appears at low absorbance at 410 nm. During the hydrolysis, a free ANB-NH2 is released which has a maximum absorbance at 410 nm. Using the peptide, we identified proteolytic activity in the majority of urine samples collected from patients with diagnosed bladder cancer, while the proteolytic activity in urine samples from healthy volunteers was not detected.  相似文献   

14.
15.
Porcine aortic endothelial cells (PAECs) produce glycoproteins with important biological functions, such as the control of cell adhesion, blood clotting, blood pressure, the immune system, and apoptosis. Cell surface glycoproteins play important roles in these biological activities. To understand the control of cell surface glycosylation, we elucidated biosynthetic pathways leading to N- and O-glycans in PAECs. Based on the enzyme activities, PAECs should be rich in complex biantennary N-glycans. In addition, the enzymes synthesizing complex O-glycans with core 1 and 2 structures are present in PAECs. The first enzyme of the O-glycosylation pathway, polypeptide GalNAc-transferase, was particularly active. Its specificity toward synthetic peptide substrates was found to be similar to that of purified bovine colostrum enzyme T1. A significant fraction of PAECs treated with tumour necrosis factor alpha or human serum detached from the culture plate, and most of these cells were apoptotic. The apoptotic cell population exhibited decreased core 2 beta 6-GlcNAc-transferase activity. In contrast, the activities of core 1 beta 3-Gal-transferase, which synthesizes O-glycan core 1, and of alpha 3-sialyltransferase (O), which sialylates core 1, were increased in apoptotic PAECs. Thus, apoptotic PAECs are predicted to have fewer complex O-glycans and a higher proportion of short, sialylated core 1 chains.  相似文献   

16.
Human biospecimens provide the basis for research, leading to a better understanding of human disease biology and discovery of new treatments that are tailored to individual patients with cancer or other common complex diseases. The collection, processing, preservation, storage and providing access to these resources are key activities of biobanks. Biobanks must ensure proper quality of samples and data, ethical and legal compliance as well as transparent and efficient access procedures. The standards for biobanking outlined herein are intended to be implemented in biobanks and to supply researchers with high‐quality samples fitted for an intended use.

Several variables in the pre‐analytical phase can affect the quality of biological samples. © K. Zatloukal.  相似文献   

17.
Catalytic mechanisms of carboxypeptidase A (CPA) are well known for their diversity and the relative inaccessibility for a decisive comprehension. Recent encouraging attempts through modern computational techniques promoted new challenges for the complementary experimental endeavors. In this work, we have applied the stopped-flow technique and the method of reaction progress curve fitting to extract kinetic parameters for the CPA-catalyzed hydrolyses of smaller (typical) peptide and ester substrates, known for their strong activating/inhibiting impact, thus to which the traditional method of "initial rates" is not applicable. Our approach that innately implies the overall constancy of the affecter (substrate plus "active" product) concentration, made it possible to rigorously determine the physically meaningful "effective" values for the catalytic and Michaelis constants under diverse experimental conditions including variable temperature and urea or trimethylamine N-oxide concentrations. Analysis of the obtained results allowed for: (i) the further substantiation of diverse mechanistic patterns for archetypal specific peptide and ester substrates, (ii) testing and disclosure of intrinsic links between the stabilizing/destabilizing and activating/inhibiting effects for the important model enzyme, CPA, and (iii) tentative explanation of a distinct activating/inhibiting impact of these substrates through the strong specific interaction of their benzyl (Bz) moiety with the substrate binding S(3) subsite of CPA. We have demonstrated that stabilization of CPA either through the interaction with an extra Bz moiety (belonging to another substrate or to the product) leads to the increase of its catalytic power with respect to the specific peptide substrate and to its decrease with respect to the counterpart ester substrate. We conjecture that the catalytic mechanisms operating in these two cases include: (a) the "promoted water" mechanism for the peptide substrate that, seemingly, provides the almost "perfect induced fit" (low-barrier conformational adaptation), and (b) presumably, the "anhydride intermediate" mechanism for the ester substrate that, anyway, requires substantial conformational rearrangement (in fact, "partial or local unfolding") of the protein environment in the course of the rate-determining step.  相似文献   

18.
Matrix metalloproteinases (MMPs) and the related tumor necrosis factor converting enzyme (TACE) are involved in tissue remodeling, cell migration, and processing of signaling molecules, such as cytokines and adhesion molecules. Fluorescence-quenched peptide substrates have been widely used to quantitate the actual enzymatic activity of MMPs. However, the various MMPs have very different specific activities toward these substrates. This restricts their value for the determination of composite proteolytic activity of mixtures of metalloproteinases in biological fluids. The N-terminal elongation of the most widely used MMP substrate (FS-1) with a Lys to the sequence Mca-Lys-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH(2) (FS-6) yields a fluorogenic peptide with improved substrate properties. As compared to FS-1, the specificity constant (kcat/Km) of FS-6 for collagenases (MMP-1, MMP-8, MMP-13) and MT1-MMP (MMP-14) is increased two- to ninefold and threefold, respectively, while those for gelatinases and matrilysin remain equally high. Using high-performance liquid chromatography-fluorescence detection, MMP activity can be quantitated in the picomolar range. FS-6 shows up to twofold higher specificity constants (kcat/Km of 0.8x10(6)M(-1)s(-1)) for TACE, as compared to standard substrates Mca-PLAQAV-Dpa-RSSSAR-NH(2) and Dabcyl-LAQAVRSSSAR-EDANS. FS-6 is fully water soluble and thus allows measurement of metalloproteinase activity in tissue culture conditions, e.g., on the surface of viable cells in situ.  相似文献   

19.
Hepatic lipase clears plasma cholesterol by lipolytic and nonlipolytic processing of lipoproteins. We hypothesized that the nonlipolytic processing (known as the bridging function) clears cholesterol by removing apoB-48- and apoB-100-containing lipoproteins by whole particle uptake. To test our hypotheses, we expressed catalytically inactive human HL (ciHL) in LDL receptor deficient "apoB-48-only" and "apoB-100-only" mice. Expression of ciHL in "apoB-48-only" mice reduced cholesterol by reducing LDL-C (by 54%, 46 +/- 6 vs. 19 +/- 8 mg/dl, P < 0.001). ApoB-48 was similarly reduced (by 60%). The similar reductions in LDL-C and apoB-48 indicate cholesterol removal by whole particle uptake. Expression of ciHL in "apoB-100-only" mice reduced cholesterol by reducing IDL-C (by 37%, 61 +/- 19 vs. 38 +/- 12 mg/dl, P < 0.003). Apo-B100 was also reduced (by 27%). The contribution of nutritional influences was examined with a high-fat diet challenge in the "apoB-100-only" background. On the high fat diet, ciHL reduced IDL-C (by 30%, 355 +/- 72 vs. 257 +/- 64 mg/dl, P < 0.04) but did not reduce apoB-100. The reduction in IDL-C in excess of apoB-100 suggests removal either by selective cholesteryl ester uptake, or by selective removal of larger, cholesteryl ester-enriched particles. Our results demonstrate that the bridging function removes apoB-48- and apoB-100-containing lipoproteins by whole particle uptake and other mechanisms.  相似文献   

20.
The 20 S proteasome is an endoprotease complex that preferentially cleaves peptides C-terminal of hydrophobic, basic, and acidic residues. Recently, we showed that these specific activities, classified as chymotrypsin-like, trypsin-like, and peptidylglutamyl peptide-hydrolyzing (PGPH) activity, are differently affected by Ritonavir, an inhibitor of human immunodeficiency virus-1 protease. Ritonavir competitively inhibited the chymotrypsin-like activity, whereas the trypsin-like activity was enhanced. Here we demonstrate that the Ritonavir-mediated up-regulation of the trypsin-like activity is not affected by specific active site inhibitors of the chymo-trypsin-like and PGPH activity. Moreover, we show that the mutual regulation of chymotrypsin-like and PGPH activities by their substrates as described previously by a "cyclical bite-chew" model is not affected by selective inhibitors of the respective active sites. These data challenge the bite-chew model and suggest that effectors of proteasome activity can act by binding to non-catalytic sites. Accordingly, we propose a kinetic "two-site modifier" model that assumes that the substrate (or effector) may bind to an active site as well as to a second non-catalytic modifier site. This model appears to be valid as it describes the complex kinetic effects of Ritonavir very well. Since Ritonavir partially inhibits major histocompatibility complex class I restricted antigen presentation, the postulated modifier site may be required to coordinate the active centers of the proteasome for the production of class I peptide ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号